Передача пилотного сигнала ретрансляционными станциями в многоскачковой ретрансляционной системе связи

Иллюстрации

Показать все

Изобретение относится к технике связи. Технический результат состоит в повышении эффективности ретрансляции. Для этого в способе поддержки многоскачковой ретрансляции в системе беспроводной связи ретрансляционная станция принимает данные и первый пилот-сигнал от предшествующей станции, например базовой станции или другой ретрансляционной станции. Ретрансляционная станция извлекает оценку канала на основе первого пилот-сигнала и выполняет детектирование данных на основе оценки канала. Ретрансляционная станция повторно отправляет данные и отправляет второй пилот-сигнал последующей станции, например абонентской станции или другой ретрансляционной станции. Каждый пилот-сигнал можно отправить в соответствии с форматом пилот-сигнала, выбранным для данного пилот-сигнала. Первый и второй пилот-сигналы могут быть отправлены, используя одинаковые или разные форматы пилот-сигнала. Ретрансляционная станция может принять информацию о канале от второй станции и может отправить информацию о канале первой станции и/или выбрать оценку для передачи данных для второй станции на основе информации о канале. 4 н. и 11 з.п. ф-лы, 1 табл., 16 ил.

Реферат

Настоящая заявка испрашивает приоритет предварительной заявки США №60/895,390, озаглавленной "PILOT TRANSMISSION BY RELAYS IN A MULTIHOP RELAY SYSTEM", поданной 16 марта 2007 года, права на которую переуступлены правообладателю настоящей заявки и которая включена посредством ссылки в настоящий документ во всей своей полноте.

Уровень техники

I. Область техники, к которой относится изобретение

Настоящее раскрытие относится, в целом, к связи, и более конкретно, к способам поддержки многоскачковой ретрансляции в системе беспроводной связи.

II. Уровень техники

Системы беспроводной связи широко применяются, чтобы обеспечивать различные услуги связи, такие как голосовые, видео, пакетные данные, обмен сообщениями, радиовещание и т.д.

Эти беспроводные системы могут быть системами коллективного доступа, способными к поддержке множества пользователей при совместном использовании доступных системных ресурсов. Примеры систем такого коллективного доступа включают в себя системы множественного доступа с кодовым разделением (CDMA), системы множественного доступа с временным разделением (TDMA), системы множественного доступа с частотным разделением (FDMA), системы ортогонального FDMA (OFDMA) и системы FDMA с единственной несущей (SC-FDMA). Беспроводные системы утвердились как растущее направление в области передачи данных. Текущие тенденции и требования обязывают предоставлять мультимедийные услуги, такие как голосовые, видео, интерактивные игры и т.д. с гарантированным качеством обслуживания (QoS). Высокая способность передачи данных желательна, чтобы поддерживать высокое качество мультимедийных услуг.

Система радиосвязи может поддерживать многоскачковую ретрансляцию, чтобы увеличить зону действия и/или производительность. С многоскачковой ретрансляцией базовая станция может передавать данные к абонентской станции через одну или более ретрансляционных станций. Каждая ретрансляционная станция может принимать данные от предшествующей станции (например, базовой станции или другой ретрансляционной станции) и может ретранслировать данные последующей станции (например, абонентской станции или другой ретрансляционной станции). Пересылка от одной станции к другой станции рассматривается как скачок. Желательно для каждой ретрансляционной станции ретранслировать данные настолько эффективно, насколько это возможно, и способом, который понятен абонентской станции.

Сущность изобретения

Здесь описываются способы поддержки многоскачковой ретрансляции в системе беспроводной связи. В одном аспекте, ретрансляционная станция принимает данные и первый пилот-сигнал от предшествующей станции, например базовой станции или другой ретрансляционной станции. Ретрансляционная станция повторно передает данные и передает второй пилот-сигнал последующей станции, например абонентской станции или другой ретрансляционной станции. Пилот-сигнал - это передача, известная заранее и передающей, и приемной станциям. Первый пилот-сигнал позволяет ретрансляционной станции восстановить данные, переданные предшествующей станцией. Второй пилот-сигнал позволяет последующей станции восстановить данные, переданные ретрансляционной станцией. Каждый пилот-сигнал может быть отправлен в соответствии с форматом пилот-сигнала, выбранным для этого пилот-сигнала.

В одной реализации ретрансляционная станция может принимать данные и первый пилот-сигнал от первой станции (например, базовой станции). Ретрансляционная станция может получить оценку канала на основе первого пилот-сигнала и затем выполнять детектирование данных на основе оценки канала. Ретрансляционная станция может повторно передать данные и передать второй пилот-сигнал второй станции (например, абонентской станции). Ретрансляционная станция может принимать информацию о канале от второй станции и может пересылать канальную информацию на первую станцию. Альтернативно или дополнительно, ретрансляционная станция может выбрать скорость для передачи данных на вторую станцию, основываясь на информации о канале.

В одной реализации абонентская станция может принимать данные и пилот-сигнал от ретрансляционной станции. Абонентская станция может получить оценку канала, основываясь на пилот-сигнале, и затем выполнить детектирование данных на основе оценки канала. Абонентская станция может определять информацию канала, основываясь на пилот-сигнале, и отослать информацию канала на ретрансляционную станцию.

Ниже описываются различные аспекты и особенности раскрытия в дополнительных деталях.

Краткое описание чертежей

Фиг.1 показывает систему радиосвязи, поддерживающую многоскачковую ретрансляцию.

Фиг.2 показывает структуру кадра без многоскачковой ретрансляции.

Фиг.3 показывает структуру поднесущей для полного использования поднесущих (FUSC).

Фиг.4 показывает структуру поднесущей для частичного использования поднесущих (PUSC).

Фиг.5 показывает структуру поднесущей для диапазона адаптивной модуляции и кодирования (AMC).

Фиг.6 показывает структуру кадра многоскачковой ретрансляции в прозрачном режиме.

Фиг.7 показывает структуру кадра многоскачковой ретрансляции в непрозрачном режиме.

Фиг.8 и 9 показывают две структуры кадра для трех скачков в непрозрачном режиме.

Фиг.10 показывает схему передачи данных и пилотного сигнала при двухскачковой ретрансляции.

Фиг.11 показывает схему передачи данных и пилотного сигнала при трехскачковой ретрансляции.

Фиг.12 показывает процесс поддержки многоскачковой ретрансляции ретрансляционной станцией.

Фиг.13 показывает устройство для поддержки многоскачковой ретрансляции.

Фиг.14 показывает процесс приема данных с многоскачковой ретрансляцией.

Фиг.15 показывает устройство приема данных с многоскачковой ретрансляцией.

Фиг.16 показывает блок-схему базовой станции, ретрансляционной станции и абонентской станции.

Подробное описание

Способы, описанные здесь, могут использоваться для различных систем радиосвязи, таких как: CDMA, TDMA, FDMA, OFDMA и SC-FDMA систем. Термины «система» и «сеть» часто взаимозаменяемы. Система CDMA может реализовывать радиотехнологии такие, как cdma2000, UTRA и т.д. Система OFDMA может реализовывать такие радиотехнологии, как UMB, E-UTRA, IEEE 802.11 (который также упоминается как Wi-Fi), IEEE 802.16 (который также упоминается как WiMAX), IEEE 802.20, Flash-OFDM® и т.д. Эти разнообразные радиотехнологии и стандарты известны в технике. Термины «радиотехнология», «технология радиодоступа» и «радиоинтерфейс» часто используются взаимозаменяемо.

Для ясности, определенные аспекты технологий описаны ниже для WiMAX, который описан в IEEE 802.16, озаглавленном «Раздел 16: Радиоинтерфейс для стационарных и мобильных систем широкополосного беспроводного доступа», Октябрь 1, 2004; IEEE 802.16e, озаглавленном «Раздел 16: для стационарных и мобильных систем широкополосного беспроводного доступа, Поправка 2: Физический уровень и уровень управления доступом к среде передачи для комбинированного стационарного и мобильного режима работы в лицензированных диапазонах», 28 февраля 2006 г. и в IEEE 802.16j, озаглавленном «Раздел 16: Радиоинтерфейс для стационарных и мобильных систем широкополосного беспроводного доступа. Спецификация многоскачковой ретрансляции», 24 декабря 2007 г. Эти документы общедоступны. Способы также могут быть использованы для IEEE 802.16m, который является новым радиоинтерфейсом, разработанным для WiMAX. IEEE 802.16j предусматривает многоскачковые ретрансляционные станции и предназначается для увеличения производительности IEEE 802.16-стандартов при внедрении ретрансляционных станций. Некоторые цели IEEE 802.16j заключаются в увеличении зоны покрытия, увеличении пропускной способности и емкости системы, сохранении ресурса батарей абонентских станций и минимизации сложности ретрансляционных станций.

Фиг.1 показывает систему 100 радиосвязи, которая поддерживает многоскачковую ретрансляцию. Для простоты, Фиг.1 показывает только одну базовую станцию (BS) 110, три ретрансляционных станции (RS) 120, 122 и 124 и две абонентских станции (SS) 130 и 132. В общем, система может включать в себя любое число базовых станций и любое число ретрансляционных станций, которые поддерживают связь с любым числом абонентских станций. Базовая станция - это станция, которая поддерживает связь с абонентскими станциями. Базовая станция может выполнять такие функции, как обеспечение связи, управление и контроль ретрансляционных станций и абонентских станций. Базовая станция может также называться узлом B, расширенным узлом B, точкой доступа и т.д. Ретрансляционная станция - это станция, которая обеспечивает связь с другими ретрансляционными станциями и/или абонентскими станциями. Ретрансляционная станция может также обеспечивать управление и контроль подчиненных ретрансляционных станций и/или абонентских станций. Радиоинтерфейс между ретрансляционной станцией и абонентской станцией может быть идентичным радиоинтерфейсу между базовой станцией и абонентской станцией. Базовая станция может быть связана с базовой сетью через линию ретрансляции (не показана на Фиг.1) для поддержки различных служб. Ретрансляционная станция может быть или может не быть подсоединенной непосредственно к линии обратной связи и может иметь функциональные ограничения при поддержке многоскачковой связи через ретрансляционную станцию.

Абонентские станции могут быть рассредоточены по системе, и каждая абонентская станция может быть стационарной или подвижной. Абонентская станция может также называться подвижной станцией, терминалом, терминалом доступа, пользовательским оборудованием, абонентской установкой, станцией и т.д. Абонентская станция может быть сотовым телефоном, личным цифровым помощником (PDA), радиоустройством, радиомодемом, портативным устройством, ноутбуком, радиотелефоном и т.д. Абонентская станция может связываться с базовой станцией и/или ретрансляционной станцией через нисходящую линию связи (DL) или восходящую линию связи (UL). Нисходящая линия связи (прямая линия связи) относится к линии связи от базовой станции или ретрансляционной станции к абонентской станции. Восходящая линия связи (обратная линия связи) относится к линии связи от абонентской станции к базовой станции или ретрансляционной станции.

В примере, показанном на Фиг.1, базовая станция 110 может связываться с абонентской станцией 130 через ретрансляционную станцию 120. Базовая станция 110 может передавать данные для абонентской станции 130 по нисходящей линии связи. Ретрансляционная станция 120 может принимать данные от базовой станции 110 и может ретранслировать данные по нисходящему каналу к абонентской станции 130. Базовая станция 110 и абонентская станция 130 также могут осуществлять связь непосредственно друг с другом.

Базовая станция 110 может также связываться с абонентской станцией 132 через ретрансляционные станции 122 и 124. Базовая станция может передавать данные для абонентской станции 132 по нисходящей линии связи. Ретрансляционная станция 122 может принимать данные от базовой станции 110 и может ретранслировать данные на ретрансляционную станцию 124. Ретрансляционная станция 124 может принимать данные от ретрансляционной станции 122 и может ретранслировать данные по нисходящей линии связи к абонентской станции 132. Базовая станция 110 может не иметь возможности связываться непосредственно с абонентской станцией 132 и может опираться на одну или более ретрансляционных станций для связи с абонентской станцией 132.

Фиг.1 показывает пример двухскачковой передачи между базовой станцией 110 и абонентской станцией 130. Фиг.1 также показывает пример трехскачковой передачи между базовой станцией 110 и абонентской станцией 132. В целом, базовая станция и абонентская станция могут связываться посредством любого числа скачков.

IEEE 802.16 использует мультиплексирование с ортогональным частотным разделением (OFDM) для нисходящей линии связи и восходящей линии связи. OFDM разделяет ширину полосы частот системы на множество (NFFT) ортогональных поднесущих, которые также могут называться тонами, элементарными посылками и т.д. Каждая поднесущая может быть промодулирована данными или пилот-сигналом. Количество поднесущих зависит от ширины полосы системы, а также от интервала между смежными поднесущими. Например, NFFT может быть равным 128, 256, 512, 1024 или 2048. Только подмножество NFFT совокупности поднесущих может быть используемым для пересылки данных и пилот-сигнала, а оставшиеся поднесущие могут быть поднесущими защиты, чтобы позволить системе соответствовать требованиям спектрального маскирования. Поднесущая данных является поднесущей, используемой для данных, а пилотная поднесущая является поднесущей, используемой для пилот-сигнала. Символ OFDM может передаваться в каждом периоде символа OFDM (или просто периоде символа) и может включать в себя используемые поднесущие данных для посылки данных, поднесущие пилот-сигнала для посылки пилот-сигнала и поднесущие защиты, не используемые для передачи данных или пилот-сигнала.

Фиг.2 показывает пример структуры кадра 200 без многоскачковой ретрансляции для режима дуплексной связи с временным разделением (TDD) для IEEE 802.16. График времени передачи может разделяться на блоки кадров. Каждый кадр может охватывать предопределенный временной промежуток, например 5 миллисекунд, и может быть разделен на подкадр нисходящей линии связи и подкадр восходящей линии связи. Подкадры нисходящей линии связи и восходящей линии связи могут быть разделены временным интервалом передачи (TTG) и временным интервалом приема (RTG).

Можно определить множество физических подканалов. Каждый физический подканал может включать в себя набор поднесущих, которые могут быть смежными или распределенными по полосе пропускания системы. Множество логических подканалов также может быть определено и отображено на физические подканалы на основе известного отображения. Логические подканалы могут упростить распределение ресурсов.

Как показано на Фиг.2, подкадр нисходящей линии связи может включать в себя преамбулу, заголовок кадра управления (FCH), карту нисходящей линии связи (DL-MAP), карту восходящей линии связи (UL-MAP) и пакеты нисходящей линии связи (DL). Преамбула может нести в себе известную передачу, которая может использоваться абонентскими станциями для детектирования кадра и синхронизации. FCH может переносить параметры, используемые для приема DL-MAP, UL-MAP и пакетов нисходящей линии связи. DL-MAP может переносить DL-MAP-сообщение, которое может включать в себя элементы (IE) для различных типов управляющей информации (например, распределения ресурсов) для доступа к нисходящей линии связи. UL-MAP может переносить UL-MAP-сообщение, которое может включать в себя IE для различных типов управляющей информации для доступа к восходящей линии связи. Пакеты нисходящей линии связи могут переносить данные для обслуживаемых абонентских станций. Подкадр восходящей линии связи может включать в себя пакеты восходящей линии связи, которые могут переносить данные от абонентских станций, запланированных для пересылки по восходящей линии связи.

В целом, подкадры нисходящей линии связи и восходящей линии связи могут перекрывать любую часть кадра. На примере, показанном на Фиг.2, кадр включает в себя 43 символа OFDM, подкадр нисходящей линии связи включает в себя 27 символов OFDM, а подкадр восходящей линии связи включает в себя 16 символов OFDM. Кадр, подкадр нисходящей линии связи и подкадр восходящей линии связи могут иметь также и другие продолжительности, которые могут быть постоянными или настраиваемыми.

IEEE 802.16 поддерживает FUSC, PUSC и диапазон AMC для передачи данных на нисходящей линии связи. Для FUSC каждый подканал включает в себя набор поднесущих со всей полосы пропускания системы. Для FUSC поднесущие упорядочиваются в группы и каждый подканал включает в себя набор поднесущих, со всей единственной группы. Для диапазона АМС каждый подканал включает в себя набор смежных поднесущих. Подкадр нисходящей линии связи может включать в себя ноль или более зон FUSC, ноль или более зон PUSC и ноль или более зон диапазонов АМС. Каждая зона включает в себя все поднесущие NFFT в одном или более символов канала OFDM.

Фиг.3 показывает структуру поднесущей для FUSC. В каждом символе OFDM поднесущие пилот-сигнала располагаются однородно среди имеющихся в распоряжении поднесущих и разнесены на 12 поднесущих. Поднесущие пилот-сигнала в четно пронумерованных символах OFDM разнесены на шесть поднесущих от поднесущих пилот-сигнала в нечетно пронумерованных символах OFDM. Каждый символ OFDM также включает в себя набор постоянных поднесущих пилот-сигнала (например, поднесущие 39, 261, ..., 1701). Из оставшихся поднесущих большинство используется для данных и некоторые используются как поднесущие защиты. Для OFDM, подканал включает в себя 48 поднесущих данных, распределенных по ширине полосы системы.

Фиг.4 показывает структуру поднесущей для PUSC. Доступные поднесущие упорядочены в кластеры, причем каждый кластер включает в себя 14 последовательных поднесущих. В каждом четно пронумерованном символе OFDM пятая и девятая поднесущая в каждом кластере являются поднесущими пилот-сигнала, а остальные 12 поднесущих являются поднесущими данных. В каждом нечетно пронумерованном символе OFDM первая и одиннадцатая поднесущие каждого кластера являются поднесущими пилот-сигнала, а остальные 12 поднесущих являются поднесущими данных. Кластеры упорядочены в группы, причем каждая группа включает в себя 24 кластера. Для PUSC, подканал включает в себя 24 поднесущих данных, распределенных по одной группе.

Фиг.5 показывает структуру поднесущей для диапазона АМС. Доступные поднесущие упорядочены в ячейки, причем каждая ячейка включает в себя 9 последовательных поднесущих. Центральная поднесущая в каждой ячейке является поднесущей пилот-сигнала, а остальные 8 поднесущих являются поднесущими данных. Для диапазона АМС подканал может включать в себя одну ячейку в 6 последовательных символах OFDM, две ячейки в трех последовательных символах OFDM или три ячейки в двух последовательных символах OFDM.

Абонентской станции можно назначить один или более сегментов (слотов) для передачи данных по нисходящей линии связи. Сегмент является минимальным блоком распределения данных. Для нисходящей линии связи FUSC сегмент - это один подканал (с 48 поднесущими данных) в одном символе OFDM. Для нисходящей линии связи PUSC сегмент - это один подканал (с 24 поднесущими данных) в двух символах OFDM. Для диапазона АМС, интервал времени - это 8, 16 или 24 поднесущих данных в 6, 3 или 2 символах OFDM соответственно.

Фиг.3, 4 и 5 показывают три формата пилот-сигнала, которые могут использоваться для посылки пилот-сигнала. Также могут быть определены и другие форматы пилот-сигнала. Например, для диапазона АМС поднесущие пилот-сигнала могут быть разнесены по символам OFDM вместо того, чтобы находиться в том же самом местоположении, как показано на Фиг.5. Если используется множество передающих антенн для передачи, то в этом случае могут использоваться одинаковые или различные форматы пилот-сигнала для множества передающих антенн. Сегменты, подканалы и пилотные сигналы для FUSC, PUSC и диапазона АМС описываются в вышеупомянутых документах IEEE 802.16.

Базовая станция может передавать данные непосредственно абонентской станции, используя структуру 200 кадра на Фиг.2. Абонентская станция может выполнить обнаружение кадра и синхронизацию, основываясь на преамбуле, и получить параметры из FCH. Абонентская станция может затем обработать DL-MAP, чтобы получить DL-MAP сообщение, которое может указывать пакет нисходящей линии связи в сегментах, назначенных абонентской станции. Тогда абонентская станция сможет обработать пакет нисходящей линии связи, чтобы восстановить данные, переданные абонентской станции. Чтобы восстановить данные, абонентская станция может прежде всего получить оценку канала для поднесущих частот данных в пакете нисходящей линии связи, основанную на пилот-сигнале, переданном на поднесущих пилот-сигнала. Местоположение поднесущих данных и пилот-сигнала может зависеть от того, были ли данные переданы, используя FUSC, PUSC или диапазон АМС. Абонентская станция может затем выполнить обнаружение поднесущих данных, основываясь на оценке канала. Поднесущие пилот-сигнала, таким образом, несут важную информацию, используемую абонентской станцией, чтобы восстановить данные.

Как показано на Фиг.1, базовая станция может передавать данные к абонентской станции через одну или более ретрансляционных станций. Система может поддерживать прозрачный режим и непрозрачный режим. Таблица 1 перечисляет некоторые характеристики прозрачного и непрозрачного режимов, которые подробно описываются в вышеупомянутом документе IEEE 802.16.

Таблица 1
Режим Описание
Прозрачный режим Базовая станция планирует передачу на нисходящей линии связи, генерирует сообщения назначения и координирует повторную передачу ретрансляционными станциями.Ретрансляционная станция ретранслирует данные, принятые от базовой станции, но не передает преамбулу, FCH или МАР.Абонентская станция принимает сообщения назначения от базовой станции и принимает данные от ретрансляционной станции.
Непрозрачный режим Базовая станция планирует передачу для первого скачка.Ретрансляционная станция может запланировать повторную передачу для последующего скачка и генерировать сообщения назначения. Ретрансляционная станция ретранслирует данные, полученные от базовой станции, и передает преамбулу, FCH и МАР.Абонентская станция принимает сообщения назначения и данные от ретрансляционной станции.

Фиг.6 показывает структуру кадра для многоскачковой ретрансляции в прозрачном режиме. Верхняя часть Фиг.6 показывает кадр 610 для базовой станции, а нижняя часть Фиг.6 показывает кадр 620 для ретрансляционной станции. Ниже описываются только подкадры нисходящей линии связи кадров 610 и 620.

Для кадра 610 подкадр нисходящей линии связи может быть разделен на зону 612 доступа нисходящей линии связи и добавочную прозрачную зону 614. Каждая зона может включать в себя любое количество символов OFDM, которые могут конфигурироваться и определяться базовой станцией. В примере, показанном на Фиг.6, зона 612 доступа нисходящей линии связи включает в себя символы OFDM от к до к+10 и добавочную прозрачную зону 614, которая включает в себя символы OFDM от к+11 до к+17. Базовая станция может передавать преамбулу, FCH, DL-МАР, UL-MAP, R-MAP и пакеты нисходящей линии связи в зоне 612 доступа нисходящей линии связи, например, подобно способу, описанному выше для фиг.2. R-MAP может переносить R-MAP сообщение, которое может передать назначенное размещение для ретрансляционной станции в добавочной прозрачной зоне 614. Базовая станция может передавать или может не передавать сообщение во время добавочной прозрачной зоны 614.

Для кадра 620 подкадр нисходящей линии связи также может также быть разделен на зону 622 доступа нисходящей линии связи и факультативную прозрачную зону 624, которые согласованы по времени с зоной 612 доступа нисходящей линии связи и факультативной прозрачной зоной 614 кадра 610. Зона 622 доступа нисходящей линии связи и факультативная прозрачная зона 624 разделяются интервалом перехода прием/передача (R-RTG), который задается целым числом символов OFDM. Ретрансляционная станция может получить преамбулу, FCH, DL-МАР, UL-MAP, R-MAP и пакеты нисходящей линии связи от базовой станции во время зоны 622 доступа нисходящей линии связи. Ретрансляционная станция может игнорировать пакет №6 нисходящей линии связи, который перекрывает R-RTG и может быть предназначен для абонентской станции. Ретрансляционная станция может ретранслировать некоторые или все данные, полученные от базовой станции в факультативной прозрачной зоне 624, как указано в R-MAP сообщении.

В прозрачном режиме базовая станция может передать сообщение DL-МАР, которое передает пакет нисходящей линии связи, предназначенный для каждой обслуживаемой абонентской станции. Каждая абонентская станция может принять сообщение DL-МАР от базовой станции и может обработать предназначенный пакет нисходящей линии связи, который может быть передан базовой станцией или ретрансляционной станцией. Абонентская станция может, таким образом, принимать преамбулу, FCH и DL-MAP сообщение от базовой станции, но может и принимать данные от ретрансляционной станции. Ретрансляционная станция может принимать данные от базовой станции и ретранслировать данные, как указано базовой станцией.

Фиг.7 показывает структуру кадра для многоскачковой ретрансляции в непрозрачном режиме. Верхняя часть Фиг.7 показывает кадр 710 для базовой станции и нижняя часть Фиг.7 показывает кадр 720 для ретрансляционной станции. Ниже описываются только подкадры нисходящей линии связи кадров 710 и 720.

Для кадра 710 подкадр нисходящей линии связи может быть разделен на зону 712 доступа нисходящей линии связи и зону 714 ретрансляции нисходящей линии связи. Каждая зона может включать в себя любое количество символов OFDM, которые могут конфигурироваться и определяться базовой станцией. Базовая станция может передавать преамбулу, FCH, DL-МАР, UL-MAP, R-MAP и пакеты нисходящей линии связи в зоне 712 доступа нисходящей линии связи непосредственно абонентским станциям. Базовая станция может передавать FCH ретрансляции (R-FCH), R-MAP и пакеты нисходящей линии связи в зоне 714 ретрансляции нисходящей линии связи, к ретрансляционной станции.

Для кадра 720 подкадр нисходящей линии связи также может быть разделен на зону 722 доступа нисходящей линии связи и зону 724 ретрансляции нисходящей линии связи, которые согласованы по времени с зоной 712 доступа нисходящей линии связи и зоной 714 ретрансляции нисходящей линии связи. Ретрансляционная станция может принимать R-FCH, R-MAP и пакеты нисходящей линии связи от базовой станции во время зоны 724 ретрансляции нисходящей линии связи. Ретрансляционная станция может передавать преамбулу, FCH, DL-MAP, UL-map и пакеты нисходящей линии связи для некоторых или всех данных, принятых от базовой станции в зоне 722 доступа нисходящей линии связи, из следующего кадра. Существует, таким образом, задержка в один кадр для данных, ретранслируемых ретрансляционной станцией.

В непрозрачном режиме базовая станция может послать R-MAP сообщение, которое может передать пакет нисходящей линии связи для каждой ретрансляционной станции в зоне 714 ретрансляции нисходящей линии связи. Ретрансляционная станция может принимать данные от базовой станции, как указано R-MAP сообщением. Ретрансляционная станция может передать преамбулу, FCH, DL-МАР, UL-MAP, и пакеты нисходящей линии связи, содержащие данные, принятые от базовой станции в зоне доступа нисходящей линии связи для абонентских станций. DL-MAP сообщение может передавать пакет нисходящей линии связи, назначенный ретрансляционной станцией каждой абонентской станции. Каждая абонентская станция может принять преамбулу, FSH, DL-MAP сообщение и данные от ретрансляционной станции и может не требовать приема от базовой станции.

Фиг.8 показывает структуру кадра для трех скачков в непрозрачном режиме. Верхняя часть Фиг.8 показывает кадр 810 для базовой станции, середина показывает кадр 820 для первой ретрансляционной станции (RS1) и нижняя часть Фиг.8 показывает кадр 830 для второй ретрансляционной станции (RS2).

Для кадра 810 подкадр нисходящей линии связи может быть разделен на зону 812 доступа нисходящей линии связи и зону 816 ретрансляции нисходящей линии связи. Каждая зона может включать в себя любое количество символов OFDM. Базовая станция может передавать преамбулу, FCH, DL-MAP, UL-map и пакеты нисходящей линии связи в зоне 812 доступа нисходящей линии связи непосредственно на абонентские станции. Базовая станция может передавать R-FCH, R-MAP и пакеты нисходящей линии связи в зоне 816 ретрансляции нисходящей линии связи на первую ретрансляционную станцию.

Для кадра 820 подкадр нисходящей линии связи может быть разделен на зону 820 доступа нисходящей линии связи и зоны 820 и 826 ретрансляции нисходящей линии связи. Зона 822 доступа нисходящей линии связи и зона 824 ретрансляции нисходящей линии связи согласованы по времени с зоной 812 доступа нисходящей линии связи кадра 810. Зона 826 ретрансляции нисходящей линии связи согласованы по времени с зоной 816 ретрансляции нисходящей линии связи кадра 810. Первая ретрансляционная станция может принимать R-FCH, R-MAP и пакеты нисходящей линии связи от базовой станции во время зоны 826 ретрансляции. Первая ретрансляционная станция может передавать преамбулу, DL-MAP, UL-map и пакеты нисходящей линии связи для части данных, принятых из базовой станции, к абонентским станциям в зоне 822 доступа нисходящей линии связи следующего кадра. Данные, отосланные первой ретрансляционной станцией в зоне 822 доступа нисходящей линии связи, могут предназначаться для абонентских станций, которые не нуждаются во второй ретрансляционной станции. Первая ретрансляционная станция может также ретранслировать часть данных, принятых от базовой станции ко второй ретрансляционной станции в зоне 824 ретрансляции нисходящей линии связи следующего кадра.

Для кадра 830 подкадр нисходящей линии связи может быть разделен на зону 832 доступа нисходящей линии связи и зону 834 ретрансляции нисходящей линии связи. Зона 832 доступа нисходящей линии связи и зона 834 ретрансляции нисходящей линии связи согласованы по времени с зоной 822 доступа нисходящей линии связи и зоной 824 ретрансляции нисходящей линии связи кадра 820. Вторая ретрансляционная станция может принимать данные от первой ретрансляционной станции в зоне 834 ретрансляции нисходящей линии связи. Вторая ретрансляционная станция может передавать преамбулу, DL-MAP, UL-MAP и пакеты нисходящей линии связи для данных, принятых от первой ретрансляционной станции, к абонентским станциям в зоне 832 доступа нисходящей линии связи следующего кадра.

Фиг.9 показывает другую структуру кадра для трех скачков в непрозрачном режиме. Верхняя часть Фиг.9 показывает кадр 910 для базовой станции, средняя часть показывает кадр 920 для первой ретрансляционной станции, и нижняя часть Фиг.9 показывает кадр 930 для второй ретрансляционной станции.

Подкадр нисходящей линии связи кадра 910 может быть разделен на зону 912 доступа нисходящей линии связи и зону 916 ретрансляции нисходящей линии связи. Базовая станция может передавать служебные сигналы и данные в зонах 912 и 916, как описано выше для зон 812 и 816 в Фиг.8. Подкадр нисходящей линии связи кадра 920 может быть разбит на зону 922 доступа нисходящей линии связи и зоны 924 и 926 ретрансляции нисходящей линии связи. Первая ретрансляционная станция может принимать данные в зоне 926 и может передавать служебные сигналы и данные в зонах 922 и 924, как описывалось выше для зон 822, 824 и 826 в Фиг.8.

Для кадра 930 подкадр нисходящей линии связи может быть разделен на зону 932 доступа нисходящей линии связи и зоны 934 и 936 ретрансляции нисходящей линии связи. Вторая ретрансляционная станция может принимать данные от первой ретрансляционной станции в зоне 934 ретрансляции нисходящей линии связи. Вторая ретрансляционная станция может передавать преамбулу, FCH, DL-МАР, UL-MAP и пакеты нисходящей линии связи для данных, принятых от первой ретрансляционной станции, к абонентским станциям в зонах 932 и 936 из следующего кадра.

Фиг.8 и 9 показывают две структуры кадра, которые поддерживают три скачка через две ретрансляционные станции. Для этих структур кадра существует задержка в один кадр для данных, ретранслируемых первой ретрансляционной станцией, и задержка в один кадр для данных, ретранслируемых второй ретрансляционной станцией. Более чем два скачка могут поддерживаться другой структурой кадра. Более чем три скачка также могут поддерживаться, например, большим числом зон ретрансляции нисходящей линии связи. В общем, могут существовать отдельные зоны связи от базовой станции к абонентской станции (BS-SS), связи от ретрансляционной станции к ретрансляционной станции (RS-RS) и связи между ретрансляционной станцией и абонентской станцией (RS-SS).

Для BS-SS связи абонентская станция может принимать пилот-сигнал, переданный базовой станцией, и может использовать этот пилот-сигнал для выполнения оценки канала и сообщения характеристик канала. Однако когда ретрансляционная станция передает сигнал абонентской станции, базовая станция не отправляет пилот-сигнал. Ретрансляционная станция может самостоятельно генерировать пилот-сигнал для абонентской станции.

В одном аспекте для RS-RS или RS-SS связи ретрансляционная станция может принимать данные и первый пилот-сигнал от предшествующей станции и может ретранслировать данные и передавать второй пилот-сигнал к последующей станции. Первый пилот-сигнал позволяет ретрансляционной станции восстановить данные от предшествующей станции. Второй пилот-сигнал позволяет последующей станции восстановить ретранслируемые данные от ретрансляционной станции. Первый и второй пилот-сигналы могут передаваться теми же самыми или различными способами, в зависимости от различных факторов, таких как число скачков между базовой станцией и абонентской станцией, порядок ретрансляционных станций в многоскачковой ретрансляционной связи и т.д. Каждый пилот-сигнал может быть передан в соответствии с форматом пилот-сигнала, который указывает, как должен передаваться пилот-сигнал. Формат пилот-сигнала может рассматриваться как структура пилот-сигнала, схема пилот-сигнала и т.д.

Фиг.10 показывает схему передачи данных и пилот-сигнала в 2-скачковой ретрансляционной связи. Базовая станция 110 может передавать данные и пилот-сигнал на ретрансляционную станцию 120, например, в зоне 612 доступа нисходящей линии связи на Фиг.6 или зоне 714 ретрансляции нисходящей линии связи на Фиг.7. Базовая станция 110 может передавать пилот-сигнал, используя любой из форматов пилот-сигнала, показанных на Фиг.3, 4 и 5 или используя какие-либо другие форматы для пакетов нисходящей линии связи, отосланных на ретрансляционную станцию 120. Поскольку данные и пилот-сигнал в этих пакетах нисходящей линии связи предназначаются для ретрансляционной станции 120, а не для абонентской станции 130, пилот-сигнал может передаваться, используя формат пилот-сигнала, не поддерживаемый абонентской станцией 130.

Ретрансляционная станция может ретранслировать данные и может передавать пилот-сигнал абонентской станции 130, например, в добавочной прозрачной зоне 624 на Фиг.6 или зоне 722 доступа нисходящей линии связи на Фиг.7. Ретрансляционная станция 120 может передавать пилот-сигнал, используя формат пилот-сигнала, поддерживаемый абонентской станцией 130, например, используя формат пилот-сигнала, показанный на Фиг.3, 4 или 5, в зависимости от того, ретранслируются ли данные, используя FUSC, PUSC или диапазон АМС соответственно. Это позволяет абонентской станции 130 принимать ретранслированные данные и пилот-сигнал от ретрансляционной станции 120 тем же способом, как если бы данные и пилот-сигнал были переданы базовой станцией 110. Абонентской станции 110 нет необходимости знать, приходят ли данные и пилот-сигнал от базовой станции 110 или ретрансляционной станции 120.

Фиг.11 показывает схему передачи данных и пилот-сигнала в трехскачковой ретрансляционной связи. Базовая станция 110 может передавать данные и пилот-сигнал на ретрансляционную станцию 122, например, в зоне 816 ретрансляции нисходящей линии связи на Фиг.8 или в зоне 916 ретрансляции нисходящей линии связи на Фиг.9. Базовая станция может передавать пилот-сигнал, используя любой формат пилот-сигнала. Ретрансляционная станция 122 может ретранслировать данные и может передать пилот-сигнал ретрансляционной станции 124, например, в зоне 824 ретрансляции нисходящей линии связи на Фиг.8 или в зоне 924 ретрансляции нисходящей линии связи на Фиг.9. Ретрансляционная станция 122 может также передать пилот-сигнал, используя любой формат пилот-сигнала. Ретрансляционная станция 124 может ретранслировать данные и может передать пилот-сигнал абонентской станции 132, например, в зоне 824 ретрансляции нисходящей линии связи на Фиг.8 или в зоне 932 доступа нисходящей линии связи на Фиг.9. Ретрансляционная станция 124 может передать пилот-сигнал, используя формат пилот-сигнала, поддерживаемый абонентской станцией 130.

Как показано на Фиг.10 и 11, предшествующая станция (например, базовая станция или р