Двигатель внутреннего сгорания с искровым зажиганием

Иллюстрации

Показать все

Изобретение относится к двигателю внутреннего сгорания с искровым зажиганием (ДВС). ДВС содержит механизм регулированных фаз газораспределения, механизм переменной степени сжатия и дроссельную заслонку. Механизм регулированных фаз газораспределения выполнен с возможностью регулирования установки момента закрытия впускного клапана. Механизм переменной степени сжатия выполнен с возможностью изменения степени механического сжатия. При отрицательном давлении во впускном канале ДВС, меньшем, чем требуемое отрицательное давление, степень открывания дроссельной заслонки устанавливается меньшей. При меньшей степени открывания дроссельной заслонки во впускном канале устанавливается требуемое или большее отрицательное давление. При установке требуемого или большего отрицательного давления во впускном канале установка момента закрытия впускного клапана смещается в направлении, приближающемся к нижней мертвой точке впуска. Объем всасываемого воздуха, соответствующий нагрузке двигателя, подается в камеру сгорания в соответствии со степенью открывания дроссельной заслонки. При этом степень механического сжатия устанавливается меньшей для понижения давления в конце сжатия. Технический результат заключается в обеспечении возможности формирования большого отрицательного давления во впускном канале двигателя во время работы ДВС на низких нагрузках. 9 з.п. ф-лы, 13 ил.

Реферат

Область техники

Настоящее изобретение относится к двигателю внутреннего сгорания с искровым зажиганием.

Уровень техники

В данной области техники известен двигатель внутреннего сгорания с искровым зажиганием, оснащенный механизмом переменной степени сжатия, способным изменять степень механического сжатия, и механизмом регулируемых фаз газораспределения, способным регулировать установку момента закрытия впускного клапана, выполняющий действие наддува посредством компрессора наддува во время работы двигателя на средней нагрузке и во время работы двигателя на высокой нагрузке, и увеличения степени механического сжатия и задержки установки момента закрытия впускного клапана, в то время как нагрузка двигателя становится более низкой в состоянии, удерживающем степень фактического сжатия постоянной, во время работы двигателя на средней и высокой нагрузке (см., например, публикацию заявки на патент Японии № 2004-218522).

В этом отношении, в двигателе внутреннего сгорания, раскрытом в публикации заявки на патент Японии № 2004-218522, во время работы двигателя на низкой нагрузке, степень механического сжатия устанавливается большей, установка момента закрытия впускного клапана задерживается и больше не выполняется никакой наддув. При задержке установки момента закрытия впускного клапана в области работы двигателя на низких нагрузках этим способом, чтобы сделать объем всасываемого воздуха, подаваемого в камеру сгорания, целевым объемом всасываемого воздуха, необходимо устанавливать степень открывания дроссельной заслонки большей до известной степени. Таким образом, если степень открывания дроссельной заслонки велика во время работы двигателя на низких нагрузках, отрицательное давление, сформированное во впускном канале двигателя на стороне ниже по потоку от дроссельной заслонки (например, сглаживающего ресивера), не является таким большим.

С другой стороны, например, усилитель тормозов, бачок для управления очисткой и другие устройства, использующие отрицательное давление (в дальнейшем указываемые ссылкой как «использующие отрицательное давление устройства»), обычно приводятся в действие с использованием отрицательного давления, сформированного во впускном канале двигателя. По этой причине, если достаточное отрицательное давление не формируется внутри впускного канала двигателя во время работы двигателя на низких нагрузках, как пояснено выше, больше невозможно надлежащим образом эксплуатировать эти использующие отрицательное давление устройства. В частности, усилитель тормозов требует относительно большого отрицательного давления для формирования достаточной тормозной силы, таким образом, становится необходимым формирование большого отрицательного давления во впускном канале двигателя.

В этом отношении, как пояснено выше, в двигателе внутреннего сгорания, раскрытом в публикации заявки на патент Японии № 2004-218522, невозможно формировать большое отрицательное давление во впускном канале двигателя, по меньшей мере, во время работы двигателя на низких нагрузках, а потому невозможно надлежащим образом эксплуатировать использующие отрицательное давление устройства.

Краткое описание изобретения

Настоящее изобретение было разработано принимая во внимание вышеприведенную проблему, и задачей изобретения является создание двигателя внутреннего сгорания, увеличивающего степень механического сжатия и задерживающего установку момента закрытия впускного клапана во время работы двигателя на низких нагрузках, который может надлежащим образом эксплуатировать использующие отрицательное давление устройства без изменения режима работы двигателя.

Настоящее изобретение предлагает, в качестве средства для решения вышеприведенной проблемы, двигатель внутреннего сгорания с искровым зажиганием, раскрытый в формуле изобретения.

Согласно первому аспекту настоящего изобретения двигатель внутреннего сгорания с искровым зажиганием оснащен механизмом регулируемых фаз газораспределения, способным управлять установкой момента закрытия впускного клапана, и механизмом переменной степени сжатия, способным изменять степень механического сжатия, при этом когда отрицательное давление во впускном канале двигателя является меньшим, чем требуемое отрицательное давление, степень открывания дроссельной заслонки устанавливается меньшей, так что отрицательное давление во впускном канале двигателя становится требуемым отрицательным давлением или большим, а установка момента закрытия впускного клапана перемещается в направлении, приближающемся к нижней мертвой точке впуска, так что объем всасываемого воздуха, соответствующий нагрузке двигателя, подается в камеру сгорания в соответствии со степенью открывания дроссельной заслонки, и также степень механического сжатия устанавливается меньшей для понижения давления в конце сжатия.

В этом аспекте, если есть потребность в отрицательном давлении, степень открывания дроссельной заслонки устанавливается меньшей, и, в соответствии с этим, регулируется установка момента закрытия впускного клапана. Если степень открывания дроссельной заслонки сделана меньшей, отрицательное давление во впускном канале двигателя увеличивается. Если установка момента закрытия впускного клапана регулируется в соответствии со степенью открывания дроссельной заслонки, объем всасываемого воздуха, соответствующий нагрузке двигателя, может подаваться в камеру сгорания, даже если степень дроссельной заслонки установлена меньшей.

В третьем аспекте настоящего изобретения степень механического сжатия в случае, когда отрицательное давление во впускном канале двигателя становится требуемым отрицательным давлением или большим вследствие уменьшения степени открывания дроссельной заслонки, устанавливается меньшей, чем в случае, когда отрицательное давление во впускном канале двигателя является меньшим, чем требуемое отрицательное давление.

В четвертом аспекте настоящего изобретения степень механического сжатия в случае, когда отрицательное давление во впускном канале двигателя становится требуемым отрицательным давлением или большим вследствие уменьшения степени открывания дроссельной заслонки, устанавливается так, что температура в конце сжатия становится, по существу, такой же, как температура в конце сжатия в случае, когда отрицательное давление во впускном канале двигателя является меньшим, чем требуемое отрицательное давление.

В пятом аспекте настоящего изобретения, когда отрицательное давление во впускном канале двигателя является требуемым отрицательным давлением или большим, степень расширения имеет значение 20 или более во время работы двигателя на низких нагрузках.

В шестом аспекте настоящего изобретения степень фактического сжатия во время работы двигателя на низких нагрузках делается, по существу, такой же степенью сжатия, как во время работы двигателя на средних и высоких нагрузках.

В седьмом аспекте настоящего изобретения, в котором, когда отрицательное давление во впускном канале является требуемым отрицательным давлением или большим, установка момента закрытия впускного клапана вынуждается смещаться в направлении от нижней мертвой точки впуска до предельной установки момента закрытия, способной регулировать объем всасываемого воздуха, подаваемого в камеру сгорания, наряду со снижением нагрузки двигателя.

В восьмом аспекте настоящего изобретения в области, где нагрузка выше, чем нагрузка двигателя, когда установка момента закрытия впускного клапана достигает предельной установки момента закрытия, объем всасываемого воздуха, подаваемого в камеру сгорания, регулируется не дроссельной заслонкой, а изменением установки момента закрытия впускного клапана.

В девятом аспекте настоящего изобретения в области, где нагрузка выше, чем нагрузка двигателя, когда установка момента закрытия впускного клапана достигает предельной установки момента закрытия, дроссельная заслонка удерживается в полностью открытом состоянии.

В десятом аспекте настоящего изобретения в области, где нагрузка ниже, чем нагрузка двигателя, когда установка момента закрытия впускного клапана достигает предельной установки момента закрытия, объем всасываемого воздуха, подаваемого в камеру сгорания, регулируется дроссельной заслонкой.

В одиннадцатом аспекте настоящего изобретения, когда отрицательное давление во впускном канале двигателя является требуемым отрицательным давлением или большим, степень механического расширения устанавливается максимальной степенью механического расширения во время работы двигателя на низких нагрузках.

Далее, настоящее изобретение будет описано со ссылкой на прилагаемые чертежи и предпочтительные варианты его осуществления.

Краткое описание чертежей

Фиг. 1 - общий вид двигателя внутреннего сгорания с искровым зажиганием;

Фиг. 2 - вид в перспективе с разнесением деталей механизма переменной степени сжатия;

Фиг. 3A и 3B - схематично проиллюстрированные виды сбоку в поперечном разрезе двигателя внутреннего сгорания;

Фиг. 4 - вид, показывающий механизм регулируемых фаз газораспределения;

Фиг. 5 - вид, показывающий величину подъема впускного клапана и выпускного клапана;

Фиг. 6A-6C - виды, иллюстрирующие степень механического сжатия, степень фактического сжатия и степень расширения;

Фиг. 7 - вид, иллюстрирующий зависимость теоретического теплового коэффициента полезного действия от степени расширения;

Фиг. 8A и 8B - виды, иллюстрирующие обычный цикл и цикл со сверхвысокой степенью расширения;

Фиг. 9 - вид, иллюстрирующий изменения степени механического сжатия и т.д., в соответствии с нагрузкой двигателя;

Фиг. 10A и 10B - виды, иллюстрирующие зависимость между степенью открывания дроссельной заслонки и установкой момента закрытия впускного клапана, и температурой в конце сжатия;

Фиг. 11 - вид, иллюстрирующий изменения степени открывания дросселя и т.д., когда есть потребность в отрицательном давлении;

Фиг. 12 - блок-схема последовательности операций способа, иллюстрирующая процедуру управления для управления формированием отрицательного давления; и

Фиг. 13A-13C - виды, иллюстрирующие целевую степень открывания дросселя и т.д.

Наилучший способ реализации изобретения

Далее, варианты осуществления настоящего изобретения будут пояснены со ссылкой на чертежи. Следует отметить, что одинаковые или подобные компоненты на чертежах обозначены одинаковыми ссылочными позициями. Фиг. 1 является видом сбоку в поперечном разрезе двигателя внутреннего сгорания с искровым зажиганием.

На фиг. 1 ссылочной позицией 1 обозначен картер двигателя, 2 - блок цилиндров, 3 - головка цилиндра, 4 - поршень, 5 - камера сгорания, 6 - свеча зажигания, скомпонованная вверху и центре камеры 5 сгорания, 7 - впускной клапан, 8 - впускной канал, 9 - выпускной клапан и 10 - выпускной канал. Впускной канал 8 присоединен через впускной патрубок 11 к сглаживающему ресиверу 12, наряду с тем, что каждый впускной патрубок 11 оснащен топливной форсункой 13 для впрыска топлива по направлению к соответствующему впускному каналу 8. Следует отметить, что каждая топливная форсунка 13 может быть скомпонована в каждой камере 5 сгорания вместо присоединения к каждому впускному патрубку 11.

Сглаживающий ресивер 12 присоединен через впускной канал 14 к воздушному фильтру 15, причем впускной канал 14 оснащен, внутри него, дроссельной заслонкой 17, приводимой в действие исполнительным механизмом 16, и датчиком 18 количества всасываемого воздуха, например, использующим термоэлемент. Сглаживающий ресивер 12 присоединен к проводящей отрицательное давление трубке 19, которая присоединена к усилителю 20 тормозов. Усилитель 20 тормозов присоединен к тормозной педали 21, и внутри него предусмотрен датчик 22 отрицательного давления 22 для определения отрицательного давления в усилителе тормозов. Кроме того, сглаживающий ресивер 12 оснащен внутри датчиком 23 давления для определения давления в сглаживающем ресивере 12. С другой стороны, выпускной канал 10 присоединен через выпускной коллектор 24 к корпусу каталитического нейтрализатора 25 отработавших газов, например трехкомпонентному нейтрализатору. Выхлопной коллектор 24 снабжен внутри него датчиком 26 соотношения компонентов топливно-воздушной смеси.

Кроме того, в варианте осуществления, показанном на фиг. 1, соединительная деталь картера 1 двигателя и блока 2 цилиндров оснащена механизмом A переменной степени сжатия, способным изменять относительные положения картера 1 двигателя и блока 2 цилиндров в осевом направлении цилиндра, с тем чтобы изменять объем камеры 5 сгорания, когда поршень 4 расположен в верхней мертвой точке сжатия. Двигатель внутреннего сгорания дополнительно оснащен механизмом B регулируемых фаз газораспределения, способным изменять установку момента закрытия впускного клапана 7, с тем чтобы изменять установку времени начала действия фактического сжатия.

Электронный блок 30 управления составлен из цифрового компьютера, оснащенного компонентами, соединенными друг с другом через двунаправленную шину 31, такими как ПЗУ 32 (постоянное запоминающее устройство), ОЗУ 33 (оперативное запоминающее устройство), ЦП 34 (микропроцессор), порт 35 ввода и порт 36 вывода. Выходной сигнал датчика 18 количества всасываемого воздуха и выходной сигнал датчика 26 соотношения компонентов топливно-воздушной смеси вводятся через соответствующие аналого-цифровые преобразователи 37 в порт 35 ввода. Кроме того, педаль 40 акселератора присоединена к датчику 41 нагрузки, формирующему выходное напряжение, пропорциональное величине нажатия педали 40 акселератора. Выходное напряжение датчика 41 нагрузки вводится через соответствующий аналого-цифровой преобразователь 37 в порт 35 ввода. Кроме того, порт 35 ввода присоединен к датчику 42 поворота коленчатого вала, формирующему выходной импульс каждый раз, когда коленчатый вал поворачивается, например, на 30°. С другой стороны, порт 36 вывода присоединен через соответствующие схемы возбуждения к свече 6 зажигания, топливные форсунки 13, и приводному двигателю 16 дроссельной заслонки, механизму A переменной степени сжатия и механизму B регулируемых фаз газораспределения.

Фиг. 2 представляет собой вид в перспективе с разнесением деталей механизма A переменной степени сжатия, показанного на фиг. 1, наряду с тем, что фиг. 3A и фиг. 3B - схематично проиллюстрированные виды сбоку в поперечном разрезе двигателя внутреннего сгорания. Со ссылкой на фиг. 2, в нижней части двух боковых стенок блока 2 цилиндров сформировано множество выступающих частей 50, отделенных друг от друга некоторым расстоянием. Каждая выступающая часть 50 сформирована с отверстием 51 вставки кулачка круглого поперечного сечения. С другой стороны, верхняя поверхность картера 1 двигателя сформирована с множеством выступающих частей 52, отделенных друг от друга некоторым расстоянием и помещенных между соответствующими выступающими частями 50. Эти выступающие части 52 также сформированы с отверстиями 53 вставки кулачков круглого поперечного сечения.

Как показано на фиг. 2, предусмотрена пара распределительных валов 54, 55. Каждый из распределительных валов 54, 55 имеет дисковые кулачки 56, закрепленные на нем, способные с возможностью вращения вставляться в отверстия 51 вставки кулачков в каждом другом положении. Эти дисковые кулачки 56 являются соосными с осями вращения распределительных валов 54, 55. С другой стороны, между дисковыми кулачками 56, как показано штриховкой на фиг. 3A и 3B, проходят эксцентриковые валы 57, скомпонованные эксцентрически по отношению к осям вращения распределительных валов 54, 55. Каждый эксцентриковый вал 57 имеет другие дисковые кулачки 58, с возможностью вращения эксцентрически присоединенные к нему. Как показано на фиг. 2, эти дисковые кулачки 58 скомпонованы между дисковыми кулачками 56. Эти дисковые кулачки 58 с возможностью вращения вставлены в соответствующие отверстия 53 вставки кулачков.

Когда дисковые кулачки, прикрепленные к дисковым кулачкам 54, 55, вращаются в противоположных направлениях, как показано стрелками сплошных линий на фиг. 3A, из состояния, показанного на фиг. 3A, эксцентриковые валы 57 перемещаются по направлению к нижнему центру, так что дисковые кулачки 58 вращаются в противоположных направлениях от дисковых кулачков 56 в отверстиях 53 вставки кулачков, как показано стрелками пунктирных линий на фиг. 3A. Как показано на фиг. 3B, когда эксцентриковые валы 57 перемещаются по направлению к нижнему центру, центры дисковых кулачков 58 перемещаются под эксцентриковые валы 57.

Как будет понятно из сравнения фиг. 3A и 3B, относительные положения картера 1 двигателя и блока 2 цилиндров определяются расстоянием между центрами дисковых кулачков 56 и центрами дисковых кулачков 58. Чем больше расстояние между центрами дисковых кулачков 56 и центрами дисковых кулачков 58, тем дальше блок 2 цилиндров от картера 1 двигателя. Если блок 2 цилиндров смещается от картера 1 двигателя, объем камеры 5 сгорания, когда поршень 4 расположен в верхней мертвой точке сжатия, возрастает, поэтому посредством вынуждения распределительных валов 54, 55 вращаться объем камеры 5 сгорания, когда поршень 4 расположен в верхней мертвой точке сжатия, может изменяться.

Как показано на фиг. 2, чтобы заставить распределительные валы 54, 55 вращаться в противоположных направлениях, вал приводного электродвигателя 59 оснащен парой червячных передач 61, 62 с противоположными направлениями резьбы. Шестерни 63, 64, входящие в зацепление с этими червячными передачами 61, 62, прикреплены к концам распределительных валов 54, 55 соответственно. В этом варианте осуществления приводной электродвигатель 59 может приводиться в движение для изменения объема камеры 5 сгорания, когда поршень 4 расположен в верхней мертвой точке сжатия, на широком диапазоне. Следует отметить, что механизм A переменной степени сжатия, показанный на фиг. 1- 3B, является примерным. Может использоваться любой тип механизма переменной степени сжатия.

С другой стороны, кроме того, фиг. 4 показывает механизм B регулируемых фаз газораспределения, прикрепленный к концу распределительного вала 70 для приведения в действие впускного клапана 7 на фиг. 1. Как показано на фиг. 4, механизм B регулируемых фаз газораспределения оснащен зубчатым шкивом 71, вращаемым коленчатым валом двигателя через зубчатый ремень в направлении стрелки, цилиндрическим корпусом 72, вращающимся вместе с зубчатым шкивом 71, валом 73 вращения, способным вращаться вместе с распределительным валом 70 и вращаться относительно цилиндрического корпуса 72, множеством перемычек 74, проходящих от внутренней окружности цилиндрического корпуса 72 к внешней окружности вала 73 вращения, и лопастями 75, проходящими между перемычками 74 от внешней окружности вала 73 вращения к внутренней окружности цилиндрического корпуса 72, две стороны лопастей 75 образованы гидравлическими камерами 76 использования опережения и гидравлическими камерами 77 использования запаздывания.

Подача рабочей жидкости на масляной основе в гидравлические камеры 76, 77 регулируется клапаном 85 управления подачей рабочей жидкости. Этот клапан 85 управления подачей рабочей жидкости оснащен гидравлическими каналами 78, 79, присоединенными к гидравлическим камерам 76, 77, каналом 81 питания для подачи рабочей жидкости на масляной основе, выпускаемой из гидравлического насоса 80, парой дренажных окон 82, 83, золотниковым клапаном 84 для управления соединением и разъединением окон 78, 79, 81, 82, 83.

Для продвижения вперед фазы кулачков распределительного вала 70 золотниковый клапан 84 вынуждается перемещаться вправо на фиг. 4, рабочая жидкость на масляной основе, подаваемая из канала 81 питания, подается через гидравлический канал 78 в гидравлические камеры 76 использования опережения, а рабочая жидкость на масляной основе в гидравлических камерах 77 использования запаздывания сливается из дренажного канала 83. В это время вал 73 вращения вращается относительно цилиндрического корпуса 72 в направлении стрелки.

В противоположность этому, для задержки фазы кулачков распределительного вала 70, золотниковый клапан 84 перемещается влево на фиг. 4, рабочая жидкость на масляной основе, подаваемая из канала 81 питания, подается через гидравлический канал 79 в гидравлические камеры 76 использования запаздывания, а рабочая жидкость на масляной основе в гидравлических камерах 77 использования опережения сливается из дренажного канала 82. В это время вал 73 вращения вращается относительно цилиндрического корпуса 72 в направлении, противоположном направлению стрелки.

Когда вал 73 вращения вращается относительно цилиндрического корпуса 72, если золотниковый клапан 84 возвращается в нейтральное положение, показанное на фиг. 4, действие для относительного вращения вала 73 вращения заканчивается, и вал 73 вращения тогда удерживается в положении относительного вращения. Поэтому можно использовать механизм B регулируемых фаз газораспределения, с тем чтобы продвигать вперед или задерживать фазу кулачка распределительного вала 70 точно на требуемую величину.

На фиг. 5, сплошная линия показывает случай, когда фаза кулачков распределительного вала 70 максимально продвигается вперед механизмом B регулируемых фаз газораспределения, а пунктирная линия показывает случай, когда фаза кулачков распределительного вала 70 максимально задерживается. Поэтому период открывания впускного клапана 70 может свободно устанавливаться между периодом, показанным сплошной линией, и периодом, показанным пунктирной линией, на фиг. 5, и, таким образом, установка момента закрытия впускного клапана может устанавливаться в заданный угол поворота коленчатого вала в пределах диапазона, указанного стрелкой C на фиг. 5.

Следует отметить, что механизм B регулируемых фаз газораспределения, показанный на фиг. 1 и 4, является примерным. Также можно использовать различные типы механизма регулируемых фаз газораспределения, такой как механизм регулируемых фаз газораспределения, способный изменять установку момента закрытия впускного клапана с установкой его момента открытия, поддерживаемой постоянной. Кроме того, хотя механизм B регулируемых фаз газораспределения используется для изменения установки момента начала действия фактического сжатия в настоящем изобретении, также можно использовать различные типы механизмов изменения установки момента действия фактического сжатия, способных изменять установку момента начала действия фактического сжатия, иных чем механизм регулируемых фаз газораспределения.

Далее, значение терминов, используемых в настоящей заявке, будет пояснено со ссылкой на фиг. 6A-6C. Следует отметить, что фиг. 6A, 6B и 6C показывают, для пояснительных целей, двигатель с объемом камер сгорания в 50 мл и объемом хода поршня в 500 мл. На фиг. 6A, 6B и 6C, объем камеры сгорания показывает объем камеры сгорания, когда поршень находится в верхней мертвой точке сжатия.

Фиг. 6A поясняет степень механического сжатия. Степень механического сжатия является значением, определяемым механически по объему хода поршня во время хода сжатия и объему камеры сгорания. Эта степень механического сжатия выражается как (объем камеры сгорания + объем хода)/объем камеры сгорания. В примере, показанном на фиг. 6A, степень механического сжатия становится (50 мл + 500 мл) / 50 мл = 11.

Фиг. 6B поясняет степень фактического сжатия. Эта степень фактического сжатия является значением, определяемым по объему камеры сгорания и фактическим объемом хода поршня, от того, когда фактически начинается действие сжатия, до того, когда поршень достигает верхней мертвой точки. Эта степень фактического сжатия выражается как (объем камеры сгорания + фактический объем хода)/объем камеры сгорания. То есть, как показано на фиг. 6B, даже если поршень начинает подниматься в ходе сжатия, никакого действия сжатия не выполняется, в то время как впускной клапан открыт. Фактическое действие сжатия начинается после того, как закрывается впускной клапан. Поэтому степень фактического сжатия выражается, как приведено выше, с использованием фактического объема хода. В примере, показанном на фиг. 6B, степень фактического сжатия становится (50 мл + 450 мл)/50 мл = 10.

Фиг. 6C поясняет степень расширения. Степень расширения является значением, определяемым по объему хода поршня во время хода расширения и объему камеры сгорания. Эта степень расширения выражается как (объем камеры сгорания + объем хода)/объем камеры сгорания. В примере, показанном на фиг. 6C, эта степень расширения становится (50 мл + 500 мл)/50 мл = 11.

Теперь, основные признаки настоящего изобретения будут пояснены со ссылкой на фиг. 7, 8A и 8B. Следует отметить, что фиг. 7 показывает зависимость между теоретическим тепловым коэффициентом полезного действия и степенью расширения, а фиг. 8A и 8B показывают сравнение между обычным циклом и циклом сверхвысокого расширения, избирательно используемым в соответствии с нагрузкой в настоящем изобретении.

Фиг. 8A показывает обычный цикл, в котором впускной клапан закрывается около нижней мертвой точки, и действие сжатия поршня начинается, по существу, почти от нижней мертвой точки сжатия. В примере, показанном на этой фиг. 8A, также, таким же образом, как примеры, показанные на фиг. 6A, 6B и 6C, объем камеры сгорания сделан 50 мл, а объем хода поршня сделан 500 мл. Как будет понятно по фиг. 8A, в обычном цикле, степень механического сжатия имеет значение (50 мл + 500 мл)/50 мл = 11, степень фактического сжатия также имеет значение около 11, а степень расширения также становится (50 мл + 500 мл)/50 мл = 11. То есть в обычном двигателе внутреннего сгорания, степень механического сжатия и степень фактического сжатия, а также степень расширения, становятся, по существу, равными.

Сплошная линия на фиг. 7 показывает изменение теоретического теплового коэффициента полезного действия в случае, когда степень фактического сжатия и степень расширения являются, по существу, равными, то есть в обычном цикле. В этом случае определяется, что чем больше степень расширения, то есть чем выше степень фактического сжатия, тем выше теоретический тепловой коэффициент полезного действия. Поэтому, в обычном цикле, для подъема теоретического теплового коэффициента полезного действия, степень фактического сжатия должна устанавливаться более высокой. Однако, вследствие ограничений на возникновение детонации во время работы двигателя на высоких нагрузках, степень фактического сжатия может подниматься даже на максимуме только до приблизительно 12, соответственно, в обычном цикле, теоретический тепловой коэффициент полезного действия не может делаться достаточно высоким.

С другой стороны, при этой ситуации, изобретатели проводили строгое различие между степенью механического сжатия и степенью фактического сжатия, и изучали теоретический тепловой коэффициент полезного действия, и, как результат, обнаружили, что в теоретическом коэффициенте полезного действия доминирующим является степень расширения, и теоретический коэффициент полезного действия вообще не находится под сильным влиянием степени фактического сжатия. То есть, если растет степень фактического сжатия, растет взрывная сила; но сжатие требует большой энергии, соответственно, даже если растет степень фактического сжатия, теоретический тепловой коэффициент полезного действия почти совсем не будет расти.

В противоположность этому, если растет степень расширения, чем больший период, в течение которого действует сила, прижимающая поршень во время хода расширения, тем больше время, в которое поршень выдает силу вращения на коленчатый вал. Поэтому, чем большим делается степень расширения, тем выше становится теоретический тепловой коэффициент полезного действия. Пунктирная линия ε=10 на фиг. 7 показывает теоретический тепловой коэффициент полезного действия в случае фиксации степени фактического сжатия на 10 и подъема степени расширения в таком состоянии. Узнано, что величина подъема теоретического теплового коэффициента полезного действия, при подъеме степени расширения в состоянии, когда степень фактического сжатия поддерживается в низком значении вышеприведенным образом, а величина подъема теоретического теплового коэффициента полезного действия в случае, когда степень фактического сжатия увеличивается наряду со степенью расширения, как показано сплошной линией по фиг. 7, не будет отличаться так сильно.

Если степень фактического сжатия удерживается на низком значении таким образом, детонация происходить не будет, так что при подъеме степени расширения в состоянии, когда степень фактического сжатия удерживается на низком значении, появление детонации может предотвращаться, а теоретический тепловой коэффициент полезного действия может значительно подниматься. Фиг. 8B показывает пример случая при использовании механизма A переменной степени сжатия и механизма B регулируемых фаз газораспределения для удерживания степени фактического сжатия на низком значении и подъема степени расширения.

Как показано на фиг. 8B, в этом примере, механизм A переменной степени сжатия используется для понижения объема камеры сгорания с 50 мл до 20 мл. С другой стороны, механизм B регулируемых фаз газораспределения используется для задерживания установки момента закрытия впускного клапана до тех пор, пока фактический объем хода поршня не изменяется с 500 мл до 200 мл. Как результат, в этом примере, степень фактического сжатия становится (20 мл + 200 мл)/20 мл = 11, а степень расширения становится (20 мл + 500 мл)/20 мл = 26. В обычном цикле, показанном на фиг. 8A, как пояснено выше, степень фактического сжатия имеет значение приблизительно 11, и степень расширения имеет значение 11. По сравнению с этим случаем, в случае, показанном на фиг. 8B, изучено, что только степень расширения поднимается до 26. Это является причиной того, что называется «цикл сверхвысокой степени расширения». Как пояснено выше, вообще говоря, в двигателе внутреннего сгорания, чем ниже нагрузка двигателя, тем хуже тепловой коэффициент полезного действия, поэтому для улучшения теплового коэффициента полезного действия во время работы транспортного средства, то есть для улучшения расхода топлива, необходимо улучшать тепловой коэффициент полезного действия во время работы двигателя на низких нагрузках. С другой стороны, в цикле сверхвысокой степени расширения, показанном на фиг. 8B, фактический объем хода поршня во время хода сжатия устанавливается меньшим, так что объем всасываемого воздуха, который может всасываться в камеру 5 сгорания, становится меньшим, поэтому цикл сверхвысокой степени расширения может применяться, только когда нагрузка двигателя относительно низка. Поэтому в настоящем изобретении во время работы двигателя на низких нагрузках устанавливается цикл сверхвысокой степени расширения, показанный на фиг. 8B, а во время работы двигателя на высоких нагрузках, устанавливается обычный цикл, показанный на фиг. 8A. Это является основным признаком настоящего изобретения.

Теперь, со ссылкой на фиг. 9, будет пояснено регулирование хода технологического процесса в целом.

Фиг. 9 показывает изменения степени механического сжатия, степени расширения, установки времени закрытия впускного клапана 7, степени фактического сжатия, количества всасываемого воздуха, степени открывания дроссельной заслонки 17 и насосных потерь согласно нагрузке двигателя. Следует отметить, что, в вариантах осуществления согласно настоящему изобретению, для предоставления возможности трехкомпонентному нейтрализатору в каталитическом нейтрализаторе 25 отработавших газов одновременно сокращать несгоревшие HC, CO и NOx в выхлопном газе, традиционно, среднее соотношение компонентов воздушно-топливной смеси в камере 5 сгорания регулируется с обратной связью в стехиометрическое соотношение компонентов воздушно-топливной смеси на основании выходного сигнала датчика 26 соотношения компонентов воздушно-топливной смеси.

Как пояснено выше, во время работы двигателя на больших нагрузках, выполняется обычный цикл, показанный на фиг. 8A. Поэтому, как показано на фиг. 9, в это время, степень механического сжатия устанавливается низкой, и, как показано сплошной линией на фиг. 9, установка момента закрытия впускного клапана 7 продвигается вперед. Кроме того, в это время, степень открывания дроссельной заслонки 17 удерживается полностью открытой или по существу полностью открытой, так что насосные потери становятся нулевыми.

С другой стороны, как показано на фиг. 9, наряду с уменьшением нагрузки двигателя, степень механического сжатия повышается, так что также повышается степень расширения. Кроме того, в это время, степень фактического сжатия удерживается, по существу, постоянной, как показано сплошной линией на фиг. 9, посредством задержки установки времени закрытия впускного клапана 7 по мере того, как нагрузка двигателя становится ниже. Следует отметить, что в это время также дроссельная заслонка 17 удерживается в полностью открытом или по существу полностью открытом состоянии, поэтому количество всасываемого воздуха, подаваемое в камеру 5 сгорания, регулируется не дроссельной заслонкой 17, а посредством изменения установки момента закрытия впускного клапана 7. В это время насосные потери становятся нулевыми.

Таким образом, когда нагрузка двигателя становится ниже от состояния работы двигателя на высоких нагрузках, степень механического сжатия увеличивается наряду с уменьшением количества всасываемого воздуха при, по существу, постоянной степени фактического сжатия. То есть объем камеры 5 сгорания, когда поршень 4 достигает верхней мертвой точки сжатия, уменьшается пропорционально уменьшению количества всасываемого воздуха. Поэтому объем камеры 5 сгорания, когда поршень 4 достигает верхней мертвой точки сжатия, изменяется пропорционально количеству всасываемого воздуха. Следует отметить, что, в это время, соотношение компонентов топливно-воздушной смеси в камере 5 сгорания становится стехиометрическим соотношением компонентов топливно-воздушной смеси; поэтому объем камеры 5 сгорания, когда поршень достигает верхней мертвой точки сжатия, изменяется пропорционально количеству топлива.

Если нагрузка двигателя становится гораздо ниже, степень механического сжатия дополнительно повышается. Если степень механического сжатия достигает предельной степени механического сжатия, служащей в качестве верхнего конструктивного предела камеры 5 сгорания, в области, где нагрузка ниже, чем нагрузка L1 двигателя, когда степень механического сжатия достигает предельной степени механического сжатия, степень механического сжатия удерживается на предельной степени механического сжатия. Поэтому, во время работы двигателя на низких нагрузках, степень механического сжатия становится максимальной, и степень расширения также становится максимальной. Другими словами, в настоящем изобретении, во время работы двигателя на низких нагрузках, степень механического сжатия делается максимальной, так что получается максимальная степень расширения. Кроме того, в это время, степень фактического сжатия удерживается на, по существу, такой же степени фактического сжатия, как во время работы двигателя на средних и высоких нагрузках.

С другой стороны, как показано сплошными линиями на фиг. 9, установка момента закрытия впускного клапана 7, задерживается наряду с падением нагрузки двигателя до предельной установки времени закрытия, при которой количество всасываемого воздуха, подаваемого в камеру 5 сгорания, может регулироваться изменением установки времени закрытия впускного клапана 7. В области, где нагрузка ниже, чем нагрузка L2 двигателя, когда установка момента закрытия впускного клапана 7 достигает предельной установки момента закрытия, установка момента закрытия впускного клапана 7 удерживается на предельной установке момента закрытия. Если установка момента закрытия впускного клапана 7 удерживается на предельной установке момента закрытия, необходимо регулировать количество всасываемого воздуха некоторой другой разновидностью способа, поскольку установка мо