Способ осуществления поиска ячейки в беспроводной системе связи

Иллюстрации

Показать все

Изобретение относится к беспроводной связи и может быть использовано для поиска ячейки в беспроводной системе связи. Технический результат - повышение надежности поиска ячейки. Для этого способ поиска ячейки включает прием сигнала первичной синхронизации (primary synchronization signal, PSS), содержащего код первичной синхронизации (primary synchronization code, PSC), и прием сигнала вторичной синхронизации (secondary synchronization signal, SSS), содержащего первый код вторичной синхронизации (secondary synchronization code, SSC) и второй SSC. Первый SSC и второй SSC соответственно скремблируют с использованием первого скремблирующего кода и второго скремблирующего кода, и первый скремблирующий код и второй скремблирующий код связаны с PSC. Качество детектирования сигналов синхронизации может быть улучшено, и поиск ячейки может выполняться более надежно. 3 н. и 11 з.п. ф-лы, 19 ил.

Реферат

Область техники

[1] Настоящее изобретение относится к беспроводным системам связи и, в частности, к способу для осуществления поиска ячейки в беспроводной системе связи.

Предшествующий уровень техники

[2] Системы широкополосного множественного доступа с кодовым разделением (Wide code division multiple access, WCDMA) Партнерского проекта 3-го поколения (3rd generation partnership project, 3GPP) используют всего 512 длинных псевдошумовых (pseudo-noise, PN) скремблирующих кодов для идентификации базовых станций (base stations, BS). В качестве скремблирующего кода нисходящего канала каждая базовая станция (BS) использует различный длинный псевдошумовой (PN) скремблирующий код.

[3] Когда питание подается на пользовательское оборудование (user equipment, UE), пользовательское оборудование (UE) выполняет синхронизацию ячейки в нисходящем направлении и приобретает идентификатор (ID) длинного псевдошумового (PN) скремблирующего кода ячейки. Такой процесс обычно называется поиском ячейки. Поиск ячейки - процедура, посредством которой пользовательское оборудование (UE) приобретает временную и частотную синхронизацию с ячейкой и определяет идентичность ячейки. Начальная ячейка определяется в соответствии с местоположением пользовательского оборудования (UE) во время, когда подается питание. Обычно начальная ячейка указывает ячейку базовой станции (BS), соответствующую наибольшей одной из компонент сигнала всех базовых станций (BS), которые включаются в нисходящий сигнал, принимаемый пользовательским оборудованием (UE).

[4] Для осуществления поиска ячейки система WCDMA делит 512 длинных псевдошумовых (PN) скремблирующих кодов на 64 кодовые группы и использует нисходящий канал, включая канал первичной синхронизации (primary synchronization channel, P-SCH) и канал вторичной синхронизации (secondary synchronization channel, S-SCH). Канал первичной синхронизации (P-SCH) используется для получения пользовательским оборудованием (UE) синхронизации слотов. Канал вторичной синхронизации (S-SCH) используется для получения пользовательским оборудованием (UE) синхронизации кадров и скремблирующей кодовой группы.

[5] Обычно поиск ячейки классифицируется на начальный поиск ячейки, который изначально выполняется при включении питания пользовательского оборудования (UE), и неначальный поиск, который выполняет передачу обслуживания (handover) или измерение соседней ячейки.

[6] В системе WCDMA поиск ячейки осуществляется за три этапа. На первом этапе пользовательское оборудование (UE) принимает синхронизацию слотов с использованием канала первичной синхронизации (P-SCH), включая код первичной синхронизации (primary synchronization code, PSC). Кадр включает 15 слотов, и каждая базовая станция (BS) передает кадр путем включения кода первичной синхронизации PSC. Здесь тот же код первичной синхронизации (PSC) используется для 15 слотов, и все базовые станции (BS) используют тот же код первичной синхронизации (PSC). Пользовательское оборудование (UE) принимает синхронизацию слотов с использованием согласованного фильтра, подходящего для кода первичной синхронизации PSC. На втором этапе длинная псевдошумовая (PN) скремблирующая кодовая группа и кадровая синхронизация принимаются с использованием синхронизации слотов и также с использованием канала вторичной синхронизации (S-SCH), включая код вторичной синхронизации (secondary synchronization code, SSC). На третьем этапе с использованием коррелятора кода общего пилотного канала на основе кадровой синхронизации и длинной псевдошумовой (PN) скремблирующей кодовой группы пользовательское оборудование (UE) определяет идентификатор (ID) длинного псевдошумового (PN) скремблирующего кода, соответствующего длинному псевдошумовому (PN) скремблирующему коду, используемому начальной ячейкой. То есть, поскольку 8 длинных псевдошумовых (PN) скремблирующих кодов отображаются в одну скремблирующую кодовую группу длинных псевдошумовых (PN) кодов, пользовательское оборудование (UE) вычисляет значения корреляции всех 8 длинных псевдошумовых (PN) скремблирующих кодов, принадлежащих кодовой группе пользовательского оборудования (UE). На основе результата вычисления пользовательское оборудование (UE) определяет идентификатор (ID) длинного псевдошумового (PN) скремблирующего кода начальной ячейки.

[7] Поскольку система WCDMA - асинхронная система, только один код первичной синхронизации (PSC) используется в канале первичной синхронизации (P-SCH). Однако, учитывая, что беспроводные системы связи следующего поколения должны поддерживать как синхронный, так и асинхронный режимы, необходимо использовать множество кодов первичной синхронизации (PSC).

[8] Если происходит ошибка во время определения канала вторичной синхронизации (S-SCH), происходит задержка, когда пользовательское оборудование (UE) выполняет поиск ячейки. Поэтому существует необходимость улучшения характеристик определения канала в процедуре поиска ячейки.

Раскрытие изобретения

Техническая проблема

[9] Способ для улучшения характеристик определения изыскивается путем выполнения скремблирования таким образом, что различные скремблирующие коды используются для сигнала вторичной синхронизации (secondary synchronization signal, SSS).

[10] Также изыскивается способ для выполнения надежного поиска ячейки путем улучшения характеристик определения по сигналу вторичной синхронизации (secondary synchronization signal, SSS).

[11] Также изыскивается способ для передачи сигналов синхронизации путем улучшения характеристик определения по сигналам синхронизации.

Техническое решение

[12] В одном аспекте обеспечивается способ осуществления поиска ячейки в беспроводной системе связи. Способ включает прием сигнала первичной синхронизации (primary synchronization signal, PSS), содержащего код первичной синхронизации (primary synchronization code, PSC), приобретение уникального идентификатора от сигнала первичной синхронизации (PSS), прием сигнала вторичной синхронизации (secondary synchronization signal, SSS), который связан с группой идентификации ячейки, содержащего первый код вторичной синхронизации (SSC) и второй код вторичной синхронизации (SSC), и приобретение уникального идентификатора, который определяется уникальным идентификатором в группе идентификации ячейки, где сигнал вторичной синхронизации (SSS) включает первый сигнал вторичной синхронизации (SSS) и второй сигнал вторичной синхронизации (SSS), первый код вторичной синхронизации (SSC) и второй код вторичной синхронизации (SSC) используются в первом сигнале вторичной синхронизации (SSS), и второй код вторичной синхронизации (SSC) и первый код вторичной синхронизации (SSC) используются во втором сигнале вторичной синхронизации (SSS), где упомянутый первый код вторичной синхронизации (SSC) и упомянутый второй код вторичной синхронизации (SSC) соответственно скремблируют двумя различными скремблирующими кодами.

[13] Упомянутый первый код вторичной синхронизации (SSC) упомянутого первого сигнала вторичной синхронизации (SSS) скремблируют путем использования упомянутого первого скремблирующего кода, упомянутый второй код вторичной синхронизации (SSC) упомянутого первого сигнала вторичной синхронизации (SSS) скремблируют путем использования упомянутого второго скремблирующего кода, упомянутый первый код вторичной синхронизации (SSC) упомянутого второго сигнала вторичной синхронизации (SSS) скремблируют путем использования упомянутого второго скремблирующего кода, и упомянутый второй код вторичной синхронизации (SSC) упомянутого второго сигнала вторичной синхронизации (SSS) скремблируют путем использования упомянутого первого скремблирующего кода.

[14] Упомянутый первый код вторичной синхронизации (SSC) и упомянутый второй код вторичной синхронизации (SSC) определяются двумя различными циклическими сдвигами m-последовательности, генерируемой генерирующим полиномом x5+x2+1. Упомянутый первый скремблирующий код и упомянутый второй скремблирующий код определяются двумя различными циклическими сдвигами m-последовательности, генерируемой генерирующим полиномом х53+1.

[15] В другом аспекте обеспечивается передачи сигналов синхронизации в беспроводной системе связи. Упомянутый способ включает передачу (PSS), содержащего (PSC), передачу (SSS), содержащего первый (SSC) и второй (SSC); и передачу второго (SSS), содержащего упомянутый первый (SSC) и упомянутый второй (SSC), причем упомянутый первый (SSC) и упомянутый второй (SSC) соответственно скремблируют путем использования первого скремблирующего кода и второго скремблирующего кода, причем места первого и второго кодов вторичной синхронизации (SSC) первого (SSS) меняются местами с местами первого и второго кодов вторичной синхронизации (SSC) второго (SSS).

[16] В еще одном аспекте обеспечивается способ получения сигналов синхронизации в беспроводной системе связи. Упомянутый способ включает определение (PSC) с использованием (PSS), передаваемому от базовой станции, а также определение первого (SSC) и второго (SSC) с использованием (SSS), передаваемому от базовой станции, в котором (SSS) включает первый (SSS) и второй (SSS), первый (SSC) и второй (SSC) используются в первом (SSS), а второй (SSC) и первый (SSC) используются во втором (SSS), в котором первый (SSC) и второй (SSC) скремблируют с использованием различных скремблирующих кодов.

Полезный результат

[17] Поиск ячейки может выполняться более надежно, и могут предотвращаться задержки. Кроме того, с увеличением количества доступных последовательностей количество информации, передаваемой сигналами синхронизации, и пропускная способность пользовательского оборудования (UE) может быть увеличена.

Краткое описание чертежей

[18] Фиг.1 показывает структуру беспроводной системы связи.

[19] Фиг.2 показывает пример структуры радиокадра.

[20] Фиг.3 показывает пример физического отображения двух кодов вторичной синхронизации (SSC) на сигнал вторичной синхронизации (SSS).

[21] Фиг.4 показывает другой пример физического отображения двух кодов вторичной синхронизации (SSC) на сигнал вторичной синхронизации (SSS).

[22] Фиг.5 показывает пример отображения двух кодов вторичной синхронизации (SSC) на сигнал вторичной синхронизации (SSS).

[23] Фиг.6 показывает другой пример отображения двух кодов вторичной синхронизации (SSC) на сигнал вторичной синхронизации (SSS).

[24] Фиг.7 показывает структуру сигнала вторичной синхронизации (SSS) в соответствии с вариантом осуществления настоящего изобретения.

[25] Фиг.8 показывает структуру сигнала вторичной синхронизации (SSS) в соответствии с другим вариантом осуществления настоящего изобретения.

[26] Фиг.9 показывает структуру сигнала вторичной синхронизации (SSS) в соответствии с другим вариантом осуществления настоящего изобретения.

[27] Фиг.10 показывает структуру сигнала вторичной синхронизации (SSS) в соответствии с другим вариантом осуществления настоящего изобретения.

[28] Фиг.11 показывает структуру сигнала вторичной синхронизации (SSS) в соответствии с другим вариантом осуществления настоящего изобретения.

[29] Фиг.12 показывает структуру сигнала вторичной синхронизации (SSS) для кода первичной синхронизации (PSC) 1.

[30] Фиг.13 показывает структуру сигнала вторичной синхронизации (SSS) для кода первичной синхронизации (PSC) 2.

[31] Фиг.14 показывает структуру сигнала вторичной синхронизации (SSS) для кода первичной синхронизации (PSC) 3.

[32] Фиг.15 показывает структуру сигнала вторичной синхронизации (SSS) для кода первичной синхронизации (PSC) 1.

[33] Фиг.16 показывает структуру сигнала вторичной синхронизации (SSS) для кода первичной синхронизации (PSC) 2.

[34] Фиг.17 показывает структуру сигнала вторичной синхронизации (SSS) для кода первичной синхронизации (PSC) 3.

[35] Фиг.18 - график, изображающий кумулятивную функцию распределения (cumulative distribution function, CDF) взаимной корреляции для всех возможных коллизий в двух сотах.

[36] Фиг.19 - схема, изображающая поиск ячейки в соответствии с вариантом осуществления настоящего изобретения.

Принцип работы для изобретения

[37] Фиг.1 изображает структуру беспроводной системы связи. Беспроводная система связи может быть широко использована для предоставления различных услуг связи, таких как речевая, пакетная передача данных и т.д.

[38] Ссылаясь на Фиг.1, беспроводная система связи включает пользовательское оборудование 10 (UE) и базовую станцию 20 (BS). Упомянутое пользовательское оборудование 10 пользователя (UE) может быть фиксированным или подвижным и может называться другим термином, таким как мобильная станция (mobile station, MS), терминал пользователя (user terminal, UT), абонентская станция (subscriber station, SS), беспроводное устройство и т.д. Базовая станция 20 (BS) обычно является фиксированной станцией, которая связывается с пользовательским оборудованием 10 пользователя (UE) и может называться другим термином, таким как node-B, базовая приемопередающая система (base transceiver system, BTS), точка доступа и т.д. В пределах зоны покрытия базовой станции 20 (BS) могут находиться одна или более ячеек.

[39] Упомянутая беспроводная система связи может быть системой на основе технологии ортогонального частотного разделения мультиплексирования (orthogonal frequency division multiplexing - OFDM)/ технологии множественного доступа с ортогональным частотным мультиплексированием (orthogonal frequency division multiple access, OFDMA). Технология OFDM использует множество ортогональных поднесущих. Кроме того, технология OFDM использует ортогональность между обратным быстрым преобразованием Фурье (inverse fast Fourier transform, IFFT) и быстрым преобразованием Фурье (fast Fourier transform, FFT). Передатчик передает данные путем выполнения преобразования IFFT. Приемник восстанавливает исходные данные путем выполнения преобразования над принятым сигналом. Упомянутый передатчик использует преобразование IFFT для объединения множества поднесущих, и упомянутый приемник использует преобразование FFT для разделения множества поднесущих.

[40]

[41] I. Генерация последовательности

[42] В соответствии с вариантом осуществления настоящего изобретения псевдошумовая (pseudo-noise, PN) последовательность используется как последовательность, применяемая к сигналу вторичной синхронизации (SSS). Упомянутая псевдошумовая (PN) последовательность может быть воспроизведена и имеет характеристики, схожие со случайной последовательностью. Псевдошумовая (PN) последовательность характеризуется следующим образом. (1) Период повторения достаточно длинный. Если последовательность имеет бесконечно длинный период повторения, то последовательность является случайной последовательностью. (2) Количество нулей 0 близко к количеству единиц 1 в одном периоде. (3) Часть, имеющая длину серии 1, равна 1/2, часть, имеющая длину серии 2, равна 1/4, часть, имеющая длину серии 3, равна 1/8, и т.д. Здесь длина серии определяется как количество непрерывных идентичных символов. (4) Взаимная корреляция между последовательностями за один период значительно мала. (5) Вся последовательность не может быть воспроизведена с использованием небольших частей последовательности. (6) Воспроизведение возможно с использованием надлежащего алгоритма воспроизведения.

[43] Псевдошумовая (PN) последовательность включает m-последовательность, gold последовательность, Kasami последовательность и т.д. Для ясности m-последовательность будет рассмотрена как пример. Кроме вышеупомянутых характеристик m-последовательность имеет дополнительные характеристики, в которых боковые лепестки периодической автокорреляции равны -1.

[44] Пример генерирующего полинома для генерации m-последовательности ck может быть выражен следующей формулой.

[45] Математическое выражение 1

[Формула 1] ck52+1 больше, чем GF(2),

[46] где GF обозначает поле Галуа (Galois Field) и GF(2) обозначает двоичный сигнал.

[47] Максимальная длина последовательности, генерируемой Формулой 1, составляет 25-1=31. В этом случае в соответствии с состоянием генерации всего 31 последовательность может генерироваться. Это совпадает с максимальным количеством последовательностей (т.е. 31), которое может быть, генерируемых с использованием циклического сдвига после произвольной m-последовательности, генерируемой по Формуле 1. Это означает, что максимально 31 частей информации может передаваться. Даже если информация простая, более 31 части информации не может передаваться.

[48] В соответствии с другим вариантом осуществления настоящего изобретения, если m-последовательность определяется как d(n), набор S1 последовательностей для всех доступных последовательностей может быть выражен как S1={dm(k)|m - индекс последовательности}, где m=0,1,…,N-1 и k=0,1,…,N-1. N это N=2n-1, где n - максимальная степень. Например, в случае когда генерируется генерирующим полином по Формуле 1, n=5 и N=31.

[49] Новая последовательность gm(k) определяется формулой gm(k)=dm(N-1-k), m=0,1,…N-1, k=0,1,…,N-1. Набор S2 последовательностей определяется как S2={gm(k)|m - индекс последовательности}. Набор S3 последовательностей может определяться как S3={S1,S2}. Характеристики m-последовательности сохраняются в S1 и S2. Свойство случайной последовательности поддерживается между S1 и S2. Поэтому последовательность, имеющая хорошие корреляционные свойства, может генерироваться в соответствующем наборе последовательностей, и количество доступных последовательностей может увеличиваться без использования дополнительной памяти или без увеличения накладных расходов.

[50] В частности, m-последовательность может генерироваться с помощью генерирующего полинома n-й степени, как показано ниже.

[51] Математическое выражение 2

[Формула 2] a0xn+a1xn-1+…+an-11

[52] где k=0,1,…,n-1, и ak = от 0 до 1.

[53] С использованием определения последовательности gm(k) упомянутая m-последовательность может преобразовываться в одну из m-последовательностей, генерируемых, как показано ниже.

[54] Математическое выражение 3

[Формула 3] an-1xn-0+an-2xn-1+…+a0xn-n=an-1xn+an-2xn-l+…+а01

[55] где k=0,1,…,n-1 и ak=от 0 до 1. Это означает, что коэффициенты генерирующего полинома для генерации последовательности меняются местами по сравнению с Формулой 2. Это также означает, что упомянутые последовательности, генерируемые Формулой 2, меняются местами в порядке. В этом случае говорят, что две формулы находятся в обратном отношении. Обратное отношение также выполняется, когда степень генерирующего полинома обратная (здесь степень полинома изменяется на n-k). При использовании m-последовательностей генерирующий полином может выбираться для выполнения обратного отношения.

[56] Например, если n=5, генерирующий полином для генерации m-последовательностей может быть выражен, как показано ниже.

[57] Математическое выражение 4

[Формула 4] (1) x5+x2+1

(2) x5+x3+1

(3) х5321+1

(4) x5+x4+x3+x2+1

(5) х5421+1

(6) х5431+1

[58] В этом случае (1) и (2), (3) и (4) и (5) и (6) находятся в парном отношении, которое удовлетворяет обратному отношению, выраженному Формулами 2 и 3. Упомянутые m-последовательности могут выбираться для выполнения обратного отношения.

[59] Когда используется значительно длинная последовательность, упомянутая последовательность может делиться на несколько частей путем различного определения начального сдвига последовательности. В этом случае каждая часть последовательности может использоваться в обратном порядке.

[60] Кроме того, когда используется значительно длинная последовательность, упомянутая длинная последовательность может быть обратной и затем упомянутая обратная последовательность может делиться на несколько частей путем различного определения начального сдвига последовательности.

[61] Вышеупомянутая последовательность может использоваться в нескольких каналах. Чем больше количество доступных последовательностей, тем выше пропускная способность единиц пользовательского оборудования (UE).

[62] В варианте осуществления вышеупомянутая последовательность используется в сигнале синхронизации. Далее, упомянутая последовательность используется в коде первичной синхронизации (primary synchronization code, PSC) для сигнала первичной синхронизации (primary synchronization signal, PSS) или в коде вторичной синхронизации (secondary synchronization code, SSC) для сигнала вторичной синхронизации (secondary synchronization signal, SSS). Кроме того, упомянутая последовательность используется в скремблирующем коде. В этом случае упомянутая последовательность может выбираться так, что код вторичной синхронизации (SSC) и скремблирующий код удовлетворяют обратному отношению.

[63] В другом варианте осуществления вышеупомянутая последовательность используется в преамбуле случайного доступа. Упомянутая преамбула случайного доступа используется для запроса радиоресурсов в восходящем направлении. Один индекс последовательности соответствует одной возможности. Пользовательское оборудование (UE) случайно выбирает какой-либо один из наборов последовательностей и таким образом информирует базовую станцию (BS) о существовании упомянутого пользовательского оборудования (UE) или выполняет такую операцию, как запрос планирования или запрос полосы. Процедура случайного доступа - процедура, основанная на соперничестве. Таким образом, среди единиц пользовательского оборудования (UE) могут происходить разногласия. Для уменьшения разногласий среди единиц пользовательского оборудования (UE) в процедуре случайного доступа количество преамбул случайного доступа в наборе должно быть достаточно велико. Например, если преамбулы случайного доступа конфигурируются с использованием Формулы 1, то существует 31 возможность. Если преамбулы случайного доступа конфигурируются с использованием определения поледовательности S3, то существует 62 возможности.

[64] В еще одном варианте осуществления вышеупомянутая последовательность может использоваться для передачи индикатора качества канала (channel quality indicator, CQI) или сигнала подтверждения (acknowledgment, ACK)/ сигнала негативного подтверждения (negative-acknowledgement, NACK). Когда используется последовательность Формулы 1, всего 31 индикатор качества канала (CQI) или сигнал ACK/NACK (>4 битов) может передаваться. Когда используется последовательность S3, всего 62 индикатора качества канала (CQI) или сигналов ACK/NACK (>5 битов) может передаваться.

[65] В еще одном варианте осуществления вышеупомянутая последовательность может использоваться с использованием базовой последовательности для опорного сигнала. Опорный сигнал может классифицироваться на опорный сигнал демодуляции для демодуляции данных или зондирующий опорный сигнал для планирования в восходящем направлении. Опорный сигнал должен иметь большое количество доступных последовательностей для обеспечения планирования ячеек и координации. Например, предположим, что всего требуется 170 последовательностей в качестве опорного сигнала в нисходящем направлении. Затем, когда полоса 1,25 МГц используется как опорная, количество поднесущих, занимаемых опорным сигналом, равно 120 в пределах OFDM-символа, длиной 5 мс. Если используется m-последовательность, то всего 127 последовательностей может генерироваться с использованием полинома 7-й степени. При использовании последовательности S3 всего 252 последовательности могут генерироваться. Предположим, что опорный сигнал в восходящем направлении назначается одному ресурсному блоку, включая 12 поднесущих. Затем, когда используется m-последовательность, всего 15 последовательностей может генерироваться с использованием полинома 4-й степени. При использовании последовательности S3 может генерироваться всего 30 последовательностей.

[66]

[67] II. Сигнал синхронизации

[68] Теперь будет описан сигнал синхронизации. Технические свойства настоящего изобретения могут легко применяться к преамбуле случайного доступа или другим сигналам управления обычными специалистами в данной области техники.

[69] Фиг.2 показывает пример структуры радиокадра.

[70] Ссылаясь на Фиг.2, радиокадр включает 10 субкадров. Один субкадр включает два слота. Один слот включает множество OFDM-символов во временной области. Хотя один слот включает 7 OFDM-символов на Фиг.2, количество OFDM-символов, включаемых в один слот, может изменяться в зависимости от структуры циклического префикса (cyclic prefix, CP).

[71] Структура радиокадра есть только с целью примера. Таким образом, количество субкадров и количество слотов, включаемых в каждый субкадр, может изменяться различными способами.

[72] Сигнал первичной синхронизации (PSS) передается в последнем OFDM-символе в каждом из 0-го слота и 10-го слота. Тот же код первичной синхронизации (PSC) используется двумя сигналами первичной синхронизации (PSS). Сигнал первичной синхронизации (PSS) используется для получения синхронизации OFDM-символа (или синхронизации слота) и связан с уникальным идентификатором в группе идентификации ячейки. Код первичной синхронизации (PSC) может генерироваться из Zadoff-Chu (ZC) последовательности. По меньшей мере, один код первичной синхронизации (PSC) существует в беспроводной системе связи.

[73] Упомянутый сигнал первичной синхронизации (PSS) содержит код первичной синхронизации (PSC). Когда резервируются три кода первичной синхронизации (PSC), базовая станция (BS) выбирает один из трех кодов первичной синхронизации (PSC) и передает выбранный код первичной синхронизации (PSC) в последнем OFDM-символе 0-го слота и 10-го слота как сигнал первичной синхронизации (PSS).

[74] Сигнал вторичной синхронизации (SSS) передается в OFDM-символе, который располагается сразу перед упомянутым OFDM-символом для сигнала первичной синхронизации (PSS). Это означает, что сигнал вторичной синхронизации (SSS) и сигнал первичной синхронизации (PSS) передаются в сопредельных (или последовательных) OFDM-символах. Сигнал вторичной синхронизации (SSS) используется для получения синхронизации кадров и соединен с группой идентификации ячейки. Идентификатор ячейки может уникально определяться группой идентификации ячейки, полученной от сигнала вторичной синхронизации (SSS), и упомянутый уникальный идентификатор принимается от сигнала первичной синхронизации (PSS). Пользовательское оборудование (UE) может получать идентификатор ячейки с использованием сигнала первичной синхронизации (PSS) и сигнала вторичной синхронизации (SSS).

[75] Один сигнал вторичной синхронизации (SSS) содержит два кода вторичной синхронизации (SSC). Один код вторичной синхронизации (SSC) может использовать псевдошумовую (PN) последовательность (т.е. m-последовательность). Например, если один сигнал вторичной синхронизации (SSS) включает 64 поднесущие, то две псевдошумовые (PN) последовательности, имеющие длину 31, отображаются в один сигнал вторичной синхронизации (SSS).

[76] Местоположение или количество OFDM-символов, в которых сигнал первичной синхронизации (PSS) и сигнал вторичной синхронизации (SSS) располагаются в слоте, показано на Фиг.2 только как пример результата, и таким образом может изменяться в зависимости от системы.

[77] Фиг.3 изображает пример физического отображения двух кодов вторичной синхронизации (SSC) на сигнал вторичной синхронизации (SSS).

[78] Ссылаясь на Фиг.3, если количество поднесущих, включенных в сигнал вторичной синхронизации (SSS), равно N, длина первого кода вторичной синхронизации (SSC) 1 и длина второго кода вторичной синхронизации (SSC) 2 равны N/2. Логическое выражение указывает код вторичной синхронизации (SSC) в использовании. Физическое выражение указывает поднесущие, на которые код вторичной синхронизации (SSC) отображается, когда код вторичной синхронизации (SSC) передается в сигнале вторичной синхронизации (SSS). S1(n) обозначает n-й элемент первого кода вторичной синхронизации (SSC) 1. S2(n) обозначает n-й элемент второго кода вторичной синхронизации (SSC) 2. Первый код вторичной синхронизации (SSC) 1 и второй код вторичной синхронизации (SSC) 2 чередуются друг с другом и отображаются в физические поднесущие в конфигурации типа гребня. Такой способ отображения называется распределенным отображением.

[79] Фиг.4 изображает другой пример физического отображения двух кодов вторичной синхронизации (SSC) на сигнал вторичной синхронизации (SSS).

[80] Ссылаясь на Фиг.4, количество поднесущих, включенных в сигнал вторичной синхронизации (SSS), равно N. Длина первого кода вторичной синхронизации (SSC) 1 и длина второго кода вторичной синхронизации (SSC) 2 равны N/2. Логическое выражение указывает код вторичной синхронизации (SSC) в использовании. Физическое выражение указывает поднесущие, на которые код вторичной синхронизации (SSC) отображается, когда код вторичной синхронизации (SSC) передается в сигнале вторичной синхронизации (SSS). S1(n) обозначает n-й элемент первого кода вторичной синхронизации (SSC) 1. S2(n) обозначает n-й элемент второго кода вторичной синхронизации (SSC) 2. Первый код вторичной синхронизации (SSC) 1 и второй код вторичной синхронизации (SSC) 2 отображаются в локально концентрированные физические поднесущие. Такой способ отображения называется локализованным отображением.

[81] Если количество поднесущих в сигнале вторичной синхронизации (SSS) равно 62 и длина псевдошумового (PN) кода равна 31, тогда один код вторичной синхронизации (SSC) имеет всего 31 индекс. Если первый код вторичной синхронизации (SSC) 1 может иметь индексы от 0 до 30 и второй код вторичной синхронизации (SSC) 2 может иметь индексы от 0 до 30, тогда всего 961 (т.е. 31×31=961) часть информации может доставляться.

[82]

[83] III. Отображение кода вторичной синхронизации (SSC) на сигнал вторичной синхронизации (SSS)

[84] Фиг.5 изображает пример отображения двух кодов вторичной синхронизации (SSC) на сигнал вторичной синхронизации (SSS).

[85] Ссылаясь на Фиг.5, поскольку два сигнала вторичной синхронизации (SSS) передаются в радиокадре, как показано на Фиг.2, как первый сигнал вторичной синхронизации (SSS), назначаемый 0-му слоту, так и второй сигнал вторичной синхронизации (SSS), назначаемый 10-му слоту, используют объединение первого кода вторичной синхронизации (SSC) 1 и второго кода вторичной синхронизации (SSC) 2. В этом случае местоположения первого кода вторичной синхронизации (SSC) 1 и второго кода вторичной синхронизации (SSC) 2 меняются местами друг с другом в частотной области. То есть, когда объединение (код вторичной синхронизации (SSC) 1, код вторичной синхронизации (SSC) 2) используется в первом сигнале вторичной синхронизации (SSS), второй сигнал вторичной синхронизации (SSS) меняет первый код вторичной синхронизации (SSC) 1 и второй код вторичной синхронизации (SSC) 2 друг с другом и таким образом использует объединение (код вторичной синхронизации (SSC) 2, код вторичной синхронизации (SSC) 1).

[86] Для определения сигналов вторичной синхронизации (SSS) может быть заранее установлен интервал между первым сигналом вторичной синхронизации (SSS) и вторым сигналом вторичной синхронизации (SSS). Мультикадровое усреднение может выполняться в соответствии со структурой циклического префикса (СР). Мультикадровое усреднение - операция, в которой множество сигналов вторичной синхронизации (SSS) принимаются с использованием множества радиокадров и затем значения, принимаемые от соответствующих сигналов вторичной синхронизации (SSS), усредняются. Если структура циклического префикса (СР) неизвестна, то мультикадровое усреднение выполняется для всех структур циклического префикса (СР). Структура перемещения кодов вторичной синхронизации (SSC) выгодна, когда приемник определяет сигналы вторичной синхронизации (SSS) путем выполнения мультикадрового усреднения. В этой структуре первый сигнал вторичной синхронизации (SSS) и второй сигнал вторичной синхронизации (SSS) используют то же объединение кодов вторичной синхронизации (SSC), и нет изменения, кроме местоположений кодов вторичной синхронизации (SSC). Таким образом, когда усреднение выполняется, второй сигнал вторичной синхронизации (SSS) просто перемещается и интегрирует коды вторичной синхронизации (SSC). С другой стороны, когда используется структура без перемещения кодов вторичной синхронизации (SSC), даже если выполняется когерентное детектирование с использованием сигнала первичной синхронизации (PSS), некогерентное объединение должно выполняться, когда усредняются результаты детектирования. Однако, когда выполняется когерентное детектирование с использованием сигнала первичной синхронизации (PSS), может ожидаться улучшение характеристик, поскольку оптимальное объединение с максимальным соотношением (maximal ratio combining, MRC), т.е. когерентное объединение, может выполняться, когда коды вторичной синхронизации (SSC) интегрируются. Хорошо известно, что объединение с максимальным соотношением (MRC) - оптимальное объединение. Обычно существует выигрыш в отношении сигнал/шум (SNR) порядка 3 дБ при когерентном объединении по сравнению с некогерентным объединением.

[87] Хотя первый код вторичной синхронизации (SSC) 1 и второй код вторичной синхронизации (SSC) 2 перемещаются в первом сигнале вторичной синхронизации (SSS) и втором сигнале вторичной синхронизации (SSS) в частотной области, это только с целью иллюстрации. Таким образом, первый код вторичной синхронизации (SSC) 1 и второй код вторичной синхронизации (SSC) 2 могут перемещаться во временной области или кодовой области.

[88] Фиг.6 изображает другой пример отображения двух кодов вторичной синхронизации (SSC) на сигнал вторичной синхронизации (SSS). Здесь используется двоичная фазовая модуляция (binary phase shift keying, BPSK). Двоичная фазовая модуляция (BPSK) - это М-ичная фазовая модуляция (phase shift keying, PSK) при М=2. При двоичной фазовой модуляции (BPSK) весь или некоторые части радиосигнала модулируются значениями +1 или -1. С использованием М-ичной фазовой модуляции (М-PSK) дополнительная информация может передаваться без влияния на характеристики определения последовательности, используемой в настоящее время.

[89] Ссылаясь на Фиг.6, как первый сигнал вторичной синхронизации (SSS), так и второй сигнал вторичной синхронизации (SSS) используют объединение первого кода вторичной синхронизации (SSC) 1 и второго кода вторичной синхронизации (SSC) 2, осуществляется модуляция всех частей первого сигнала вторичной синхронизации (SSS) значением +1, осуществляется модуляция первого кода вторичной синхронизации (SSC) 1 второго сигнала вторичной синхронизации (SSS) значением +1, и осуществляется модуляция второго кода вторичной синхронизации (SSC) 2 второго сигнала вторичной синхронизации (SSS) значением -1. То есть модуляция может выполняться путем изменения фаз между кодами вторичной синхронизации (SSC), используемыми в одном канале синхронизации (SCH), или может выполняться путем изменения фаз между двумя каналами синхронизации (SCH). Это называется дифференциальной модуляцией.

[90] Обычно для определения последовательностей, которые имеют упомянутую модуляцию, сигнал (т.е. опорный сигнал или код первичной синхронизации (PSC)) требуется для фазовой опоры. То есть требуется когерентное детектирование. Однако когда дифференциальная модуляция выполняется для определения границ кадров в одном сигнале вторичной синхронизации (SSS), возможны как когерентное детектирование, так и некогерентное детектирование.

[91]

[92] IV. Скремблирование сигнала вторичной синхронизации (SSS)

[93] Теперь будет рассмотрено скремблирование сигнала вторичной синхронизации (SSS) с использованием скремблирующего кода, связанного с кодом первичной синхронизации (PSC).

[94] Сигнал вторичной синхронизации (SSS) скремблируют с использованием скремблирующего кода. Упомянутый скремблирующий код - двоичная последовательность, связанная с кодом первичной синхронизации (PSC), и отображается и один к одному в код первичной синхронизации (PSC). Другими словами, скремблирующий код зависит от кода первичной синхронизации (PSC).

[95] Скремблирование сигнала вторичной синхронизации (SSS) используется для решения неясности, вызываемой от детектирования кода вторичной синхронизации (SSC). Например, предположим, что объединение кода вторичной синхронизации (SSC), используемое в сигнале вторичной синхронизации (SSS) ячейки А, равно (код вторичной синхронизации (SSC) 1, код вторичной синхронизации (SSC) 2)=(a,b), и объединение кода вторичной синхронизации (SSC), используемое в сигнале вторичной синхронизации (SSS) ячейки В, равно (код вторичной синхронизации (SSC) 1, код вторичной синхронизации (SSC) 2)=(c,d). В этом случае если пользовательское оборудование (UE), принадлежащее ячейке А, принимает неправильное объединение кода вторичной синхронизации (SSC), то есть (код вторичной синхронизации (SSC) 1, код вторичной синхронизации (SSC) 2)=(a,d), то это называется дву