Антимикробная линза

Иллюстрации

Показать все

Изобретение относится к области медицины. Контактная линза, содержащая, по меньшей мере, одно соединение ионизуемого антимикробного металла и полимер, полученный из реакционной смеси, содержащей, по меньшей мере, один гидрофобный компонент и гидрофильные компоненты в концентрации, обеспечивающей показатель гидрофильности, по меньшей мере, 44. Изобретение обеспечивает допустимое движение на глазу у, по меньшей мере, приблизительно 90% пациентов после, по меньшей мере, примерно часа ношения. 27 з.п. ф-лы, 5 табл.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Данное изобретение касается антимикробных линз, а также способов их получения и применения.

УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ

Контактные линзы коммерчески применяются для улучшения зрения с 1950-ых. Первые контактные линзы были изготовлены из твердых материалов. Они использовались пациентом в часы работы и извлекались для чистки. Современное развитие в данной области дало начало мягким контактным линзам, которые можно носить непрерывно в течение нескольких дней или больше без извлечения для чистки. Хотя многие пациенты предпочитают эти линзы из-за их улучшенного комфорта, эти линзы могут вызывать некоторые реакции, вредные для пользователя. Продолжительное применение данных линз может способствовать росту бактерий или других микробов, в частности Pseudomonas aeruginosa, на поверхностях мягких контактных линз. Накопление бактерий и других микробов может вызывать вредные побочные эффекты, такие как острое покраснение глаз от контактных линз и подобные. Хотя проблема бактерий и других микробов наиболее часто связана с продолжительным использованием мягких контактных линз, накопление бактерий и других микробов также имеет место у пользователей твердых контактных линз.

Были описаны медицинские устройства, изготавливаемые из водопоглощающего полимерного материала с медицинским соединением, имеющим низкую растворимость в водных растворах, таким как антисептическое или радионепроницаемое соединение.

Также были описаны медицинские устройства, включая контактные линзы, содержащие восстановленное или металлическое серебро.

Однако сохраняется необходимость в контактных линзах, которые подавляют рост бактерий или других микробов и/или адгезию бактерий или других микробов на поверхности контактных линз. Кроме того, существует необходимость в получении контактных линз, которые не способствуют адгезии и/или росту бактерий или других микробов на поверхности контактных линз. Также существует необходимость в получении контактных линз, которые подавляют вредные реакции, связанные с ростом бактерий или других микробов.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Настоящее изобретение касается контактных линз, содержащих, по меньшей мере, одну соль металла и полимер, полученный из реакционной смеси, содержащей, по меньшей мере, один гидрофобный компонент и гидрофильные компоненты в концентрации, обеспечивающей показатель гидрофильности, по меньшей мере, приблизительно 42.

Настоящее изобретение дополнительно касается контактных линз, содержащих, по меньшей мере, одно соединение ионизуемого антимикробного металла и полимер, полученный из реакционной смеси, содержащей, по меньшей мере, один гидрофобный компонент и гидрофильные компоненты в концентрации, обеспечивающей показатель гидрофильности, по меньшей мере, приблизительно 42.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение касается антимикробных линз, содержащих, состоящих по существу из, или состоящих из соли металла, которые демонстрируют допустимое движение на глазу, как описано ниже. Применяемый здесь термин "антимикробные линзы" означает линзы, которые демонстрируют одно или несколько из следующих свойств, подавление адгезии бактерий или других микробов на линзах, подавление роста или размножения бактерий или других микробов на линзах и умерщвление бактерий или других микробов на поверхности линз или в области, окружающей линзы. В данном изобретении адгезия бактерий или других микробов на линзах, рост бактерий или других микробов на линзах и присутствие бактерий или других микробов на поверхности линз вместе называются "микробным заселением". Предпочтительно линзы данного изобретения демонстрируют снижение жизнеспособных бактерий или других микробов до, по меньшей мере, приблизительно 0,5 log и, в некоторых вариантах осуществления, по меньшей мере, приблизительно до 1,0 log (≥90% подавление). Такие бактерии или другие микробы включают в себя организмы, обнаруженные в глазах, в частности Pseudomonas aeruginosa, Acanthamoeba species, Staphyloccus. aureus, E. coli, Staphyloccus epidermidis, Serratia marcesens и fusarium solani, но не ограничиваются ими.

Применяемый здесь термин "соединение ионизуемого антимикробного металла" означает любое соединение, содержащее антимикробный катион металла, способный диссоциировать от данного соединения и вымываться из глазного устройства, и связывающий компонент, способный обратимо связывать упомянутый антимикробный катион металла. Данный антимикробный катион металла может быть выбран среди положительно заряженных металлов М, определенных ниже. Связывающий компонент может быть выбран среди лигандов, цеолитов и отрицательно заряженных ионов Х, определенных ниже. Подходящие примеры цеолитов представляют собой алюмосиликаты, такие как описано в ЕР 1050314 и US2003-0043341. Подходящие примеры лигандов включают в себя реакционно-способные лиганды, которые могут быть полимеризованы в полимер линзы, такие как описано в US2003-0044447, и лиганды, которые, когда связываются с антимикробным катионом металла, образуют плохорастворимый комплекс.

Применяемый здесь термин "соль металла" означает любую молекулу, имеющую общую формулу [М]а[Х]b, где Х содержит любой отрицательно заряженный ион, а≥1, b≥1, а М представляет собой любой положительно заряженный металл, выбранный из Al+3, Co+2, Co+3, Ca+2, Mg+2, Ni+2, Ti+2, Ti+3, Ti+4, V+2, V+3, V+5, Sr+2, Fe+2, Fe+3, Au+2, Au+3, Au+1, Pd+2, Pd+4, Pt+2, Pt+4, Cu+1, Cu+2, Mn+2, Mn+3, Mn+4, Zn+2, их комбинаций и подобного, но не ограниченный ими. Примеры Х включают в себя СО3-2, NO3-1, PO4-3, Cl-1, I-1, Br-1, S-2, O-2, их комбинации и подобное, но не ограничиваются ими. Кроме того, в некоторых вариантах осуществления Х включает в себя отрицательно заряженные ионы, содержащие СО3-2, SO4-2, CH3CO2-1, PO4-3, Cl-1, I-1, Br-1, S-2 и O-2, их комбинации и подобные, такие как С1-5-алкилСО2-1. В других вариантах осуществления Х включает в себя СО3-2, SO4-2, Cl-1, I-1 и Br-1 и их смеси. Используемый здесь термин "соли металлов" не включает в себя цеолиты, описанные в WО03/011351. Эта патентная заявка и все другие заявки, патенты и публикации, цитированные здесь, включены сюда посредством ссылки во всей полноте. В одном варианте осуществления а равно 1, 2 или 3. В одном варианте осуществления b равно 1, 2 или 3. В одном варианте осуществления ионы металлов представляют собой Mg+2, Zn+2, Cu+1, Cu+2, Au+2, Au+3, Au+1, Pd+2, Pd+4, Pt+2, Pt+4, Ag+2 и Ag+1 и их смеси. В другом варианте осуществления ион металла содержит Zn+2, Cu+1, Cu+2, Ag+2, Ag+1 и их смеси. В другом варианте осуществления ион металла содержит Ag+1. В другом варианте осуществления ион металла представляет собой Ag+1. Примеры подходящих солей металлов включают в себя сульфид марганца, оксид цинка, сульфид цинка, сульфид меди и фосфат меди, но не ограничиваются ими. Примеры солей серебра включают в себя сульфат серебра, иодат серебра, карбонат серебра, фосфат серебра, сульфид серебра, хлорид серебра, бромид серебра, иодид серебра и оксид серебра, но не ограничиваются ими. В одном варианте осуществления соли серебра представляют собой иодид серебра, хлорид серебра и бромид серебра. В другом варианте осуществления соль серебра содержит иодид серебра.

Линзы данного изобретения представляют собой глазные линзы (подробное описание этих линз следует), и прозрачность данных линз заботит потребителей. Для получения линз, имеющих прозрачность, подходящую для глазных целей, желательно, чтобы диаметр частиц соли металла был меньше чем приблизительно десять микрон (10 мкм), в некоторых вариантах осуществления меньше чем приблизительно 5 мкм и в некоторых вариантах осуществления равен или меньше чем приблизительно 200 нм.

Количество металла в линзах измеряют в расчете на полную массу линз. Когда металлом является серебро, предпочтительное количество серебра составляет от приблизительно 0,00001 мас.% (0,1 ч./млн) до приблизительно 10,0 мас.%, предпочтительно от приблизительно 0,0001 мас.% (1 ч./млн) до приблизительно 1,0 мас.%, наиболее предпочтительно от приблизительно 0,001 мас.% (10 ч./млн) до приблизительно 0,1 мас.% в расчете на сухую массу линзы. Что касается добавления солей металлов, молекулярная масса солей металлов определяет преобразование мас.% иона металла в соль металла. Предпочтительное количество соли серебра составляет от приблизительно 0,00003 мас.% (0,3 ч./млн) до приблизительно 30,0 мас.%, предпочтительно от приблизительно 0,0003 мас.% (3 ч./млн) до приблизительно 3,0 мас.%, наиболее предпочтительно от приблизительно 0,003 мас.% (30 ч./млн) до приблизительно 0,3 мас.% в расчете на сухую массу линзы.

Применяемый здесь термин "линза" относится к глазному устройству, которое находится в или на глазу. Эти устройства могут обеспечивать оптическую коррекцию, уход за раной, доставку лекарства, диагностическую функцию, косметическое усовершенствование или эффект или комбинацию этих свойств. Термин "линза" включает в себя мягкие контактные линзы, твердые контактные линзы, внутриглазные линзы, поверхностные линзы, глазные вставки и оптические вставки, но не ограничивается ими. Линзы данного изобретения являются оптически чистыми с оптической прозрачностью, сравнимой с такими линзами, как линзы, изготовленные из этафилкона А.

Применяемый здесь термин "допустимое движение на глазу" означает наблюдаемое движение в, по меньшей мере, тесте подъема Джозефсона после, по меньшей мере, одного часа ношения, в некоторых вариантах осуществления после, по меньшей мере, приблизительно 4 часов ношения и в других вариантах осуществления после, по меньшей мере, приблизительно 8 часов ношения. В тесте подъема Джозефсона движение измеряют после, по меньшей мере, минимум 30 минут осадки линзы посредством оценки сопротивления движению линзы при легком давлении пальца на нижнее веко в то время, как пациент смотрит прямо вперед. Тест подъема Джозефсона подробно описан в Contact Lens Practice, Chapman & Hall, 1994, edited by M. Ruben and M. Guillon, pgs. 589-99. Любое наблюдаемое движение указывает на допустимое движение на глазу.

Было обнаружено, что, когда определенная популяция носителей контактных линз носит силиконовые гидрогельные контактные линзы, содержащие, по меньшей мере, одну антимикробную соль металла, данные линзы не демонстрируют какого-либо движения на глазу при использовании теста подъема Джозефсона, в частности после нескольких часов ношения. Заявители с удивлением обнаружили, что, когда данный состав имеет показатель гидрофильности больше чем приблизительно 42, и в некоторых вариантах осуществления больше чем приблизительно 44, и в других вариантах осуществления больше чем приблизительно 45, данные линзы демонстрируют допустимое движение на глазу, когда оцениваются с применением теста подъема Джозефсона, по существу, у всех пациентов. Также было обнаружено, что, по существу, все пациенты демонстрировали наблюдаемое движение на глазу при испытании движения линзы при пристальном и поверхностном взгляде. В этих оценках пациентов просили моргать и смотреть вперед или вверх. Вертикальное движение линзы после моргания субъективно оценивали, используя следующую шкалу: -2 = неприемлемо, нет наблюдаемого движения, -1 = минимальное, но допустимое движение, 0 = оптимальное движение, +1 = среднее, но допустимое движение, +2= избыточное движение, неприемлемо. В одном варианте осуществления было обнаружено, что линзы настоящего изобретения имеют оценки в, по меньшей мере, одном из испытаний пристального или поверхностного взгляда, по меньшей мере, -1, и в некоторых вариантах осуществления от -1 до 0.

Показатель гидрофильности представляет собой сумму относительных гидрофильных вкладов каждого из гидрофильных компонентов в мономерной смеси и может быть вычислен следующим образом. Гидрофильный вклад представляет собой увеличение содержания воды в конечном полимере, обеспечиваемое каждым компонентом, который является, по меньшей мере, настолько гидрофильным, как 2-гидроксиэтилметакрилат (ГЭМА). Гидрофильный вклад может быть вычислен путем приготовления ряда составов с 0, 0,5, 1 и 2 мас.% гидрофильного компонента, гидрофильный вклад которого определяется. В каждом составе количество ГЭМА уменьшается на количество добавляемого гидрофильного компонента. Базовый состав, применяемый для измерений, следующий

28 мас.% SiМАК

31 мас.% мПДМС 1000 (коммерчески доступно от Gelest)

24 мас.% ДМА

8 мас.% 2-гидроксиэтилметакрилата,

1,5 мас.% ТЭГДМА

7 мас.% ПВП (360000) и

0,5 мас.% СGI 819 (коммерчески доступно от Ciba Specialty Chemicals).

Например, если определяют гидрофильный вклад метакриловой кислоты (МАК), данные четырех составов будут:

1 2 3 4
SiМАК 28 28 28 28
МПДМС 31 31 31 31
ДМА 24 24 24 24
ГЭМА 8 7,5 7 6
МАК 0 0,5 1 2
ТЭГДМА 1,5 1,5 1,5 1,5
ПВП 7 7 7 7
СGI 819 0,5 0,5 0,5 0,5

Каждый состав смешивается в 3,7-диметил-3-октаноле с отношением реакционно-способный компонент:разбавитель 75:25 и затвердевает в формах контактных линз (Zeonor передний изгиб, полипропиленовый задний изгиб) под видимым светом (лампочки Philips TL-03) в атмосфере азота (<0,5% О2) @ 45°±5°С в течение приблизительно 30 минут. Полученные линзы освобождаются из форм, и растворитель обменивается, как описано в примерах, в процедуре 2. Содержание воды для каждого состава измеряют, как здесь описано. Содержание воды откладывают на графике как функцию измеряемого гидрофильного компонента (в этом случае метакриловой кислоты), и наклон полученной линии представляет собой гидрофильный вклад. Так для метакриловой кислоты гидрофильный вклад равняется 6. Гидрофильные вклады, измеренные с помощью вышеописанного способа, для ДМА и ПВП составляют 1 и 2 соответственно.

В этих примерах ГЭМА использовали в качестве изменяемого гидрофильного компонента, и, таким образом, его показатель гидрофильности не может быть измерен с применением вышеописанного способа. Однако содержание воды в гомополимера ГЭМА, полученном с 1,5 мас.% сшивающего агента, составляет приблизительно 40%. Гидрофильный вклад, приписанный ГЭМА, равен 0,4.

Показатель гидрофильности представляет собой сумму произведений концентрации гидрофильного компонента и его гидрофильного вклада. Для базового состава, описанного выше, содержащего 24 мас.% ДМА, 8 мас.% ГЭМА и 7 мас.% ПВП, показатель гидрофильности составляет (1×24)+(0,4×8)+(2×7)=41,2.

Полимерные и макромерные компоненты также могут давать вклад в гидрофильность полученного полимера. Гидрофильный вклад гидрофильных полимеров и макромеров, которые являются нереакционно-способными (такие как ПВП) или имеют только одну реакционно-способную группу и содержат любую гидрофильную функцию, измеряют и вычисляют, как описано выше. Для многофункциональных гидрофильных компонентов гидрофильный вклад может быть установлен, используя монофункциональный эквивалент и последующую процедуру, описанную выше.

Линзы настоящего изобретения могут включать в себя почти любые другие компоненты до тех пор, пока гидрофильные компоненты присутствуют в количествах, достаточных для обеспечения указанных здесь показателей гидрофильности.

Реакционно-способные смеси настоящего изобретения содержат, по меньшей мере, один гидрофильный компонент в концентрациях, достаточных для обеспечения описанных здесь показателей гидрофильности. Этими гидрофильными компонентами являются компоненты, которые, когда смешиваются при 25°С в отношении 1:1 по объему с нейтральной буферизованной водой (рН приблизительно 7,0), образуют гомогенный раствор. Любые из гидрофильных мономеров, известных как пригодные для получения гидрогелей, могут быть использованы.

Один класс подходящих гидрофильных мономеров включает в себя акрил- или винилсодержащие мономеры. Такие гидрофильные мономеры сами могут использоваться в качестве сшивающих агентов, однако, когда используют гидрофильные мономеры, имеющие больше чем одну полимеризуемую функциональную группу, их концентрация должна быть ограничена, как обсуждается ниже, чтобы обеспечить контактные линзы, имеющие желаемый модуль. Термин мономеры "винильного типа" или "винилсодержащие" относится к мономерам, содержащим винильную группу (-СН=СН2) и обычно высоко реакционно-способным. Известно, что такие гидрофильные винилсодержащие мономеры сравнительно легко полимеризуются. Гидрофильные винилсодержащие мономеры, которые могут быть внедрены в силиконовые гидрогели настоящего изобретения, включают в себя такие мономеры, как N-виниламиды, N-виниллактамы (например, N-винилпирролидон или NВП), N-винил-N-метилацетамид, N-винил-N-этилацетамид, N-винил-N-этилформамид, N-винилформамид. В одном варианте осуществления гидрофильные винилсодержащие мономеры содержат NВП, N-винил-N-метилацетамид или их смеси.

Мономеры "акрилового типа" или "акрилсодержащие" представляют собой мономеры, содержащие акриловую группу: (СН2=СRСОХ), где R обозначает Н или СН3, а Х обозначает О или N, которые также известны как легко полимеризующиеся, такие как N,N-диметилакриламид (ДМА), 2-гидроксиэтилметакрилат (ГЭМА), глицеринметакрилат, 2-гидроксиэтилметакриламид, полиэтиленгликольмонометакрилат, метакриловая кислота и акриловая кислота.

Другие гидрофильные мономеры, которые могут применяться в данном изобретении, включают в себя полиоксиэтиленполиолы, имеющие одну или несколько терминальных гидроксильных групп, замещенных функциональной группой, содержащей полимеризуемую двойную связь. Примеры включают в себя полиэтиленгликоль, этоксилированный алкилглюкозид и этоксилированный бисфенол А, прореагировавшие с одним или несколькими мольными эквивалентами оканчивающей группы, такой как изоцианатоэтилметакрилат ("ИЭМ"), метакриловый ангидрид, метакрилоилхлорид, винилбензоилхлорид или подобные, с получением полиэтиленполиола, имеющего одну или несколько терминальных полимеризуемых олефиновых групп, связанных с полиэтиленполиолом через связывающие фрагменты, такие как карбаматные или сложные эфирные группы.

Еще дополнительные примеры представляют собой гидрофильные винилкарбонатные или винилкарбаматные мономеры, описанные в патенте США № 5070215, и гидрофильные оксазолоновые мономеры, описанные в патенте США №4910277. Другие подходящие гидрофильные мономеры будут очевидны специалистам в данной области техники.

В одном варианте осуществления гидрофильный мономер содержит, по меньшей мере, одно соединение из ДМА, ГЭМА, глицеринметакрилата, 2-гидроксиэтилметакриламида, NВП, N-винил-N-метилакриламида, N-метил-N-винилацетамида, полиэтиленгликольмонометакрилата, метакриловой кислоты и акриловой кислоты. В одном варианте осуществления гидрофильный мономер содержит ДМА.

Примеры гидрофильных компонентов, которые применимы для настоящего изобретения, включают в себя ГЭМА, NВП, ДМА, акриловую кислоту, N-винил-N-метилацетамид, глицеринметакрилат, 2-гидроксиэтилметакриламид, N-винил-N-метилакриламид, полиэтиленгликольмонометакрилат, метакриловую кислоту, полимеры и сополимеры, содержащие любые из вышеприведенных, и их комбинации, но не ограничиваются ими. В одном варианте осуществления полученные линзы являются неионными. В этом варианте осуществления примеры подходящих гидрофильных компонентов включают в себя ГЭМА, NВП, ДМА, N-винил-N-метилацетамид, глицеринметакрилат, 2-гидроксиэтилметакриламид, N-винил-N-метилакриламид, полиэтиленгликольмонометакрилат, полимеры и сополимеры, содержащие любые из вышеприведенных, и их комбинации.

Неограничивающие примеры подходящих составов мягких контактных линз включают в себя полимеры и сополимеры поли(мет)акрилатов, включая силикон(мет)акрилаты; поли(мет)акриламиды, поливинилкарбонаты, поливинилкарбаматы, поливиниламиды, поливиниллактамы, полиуретаны, поливиниловые спирты и их комбинации, и подобные, но не ограничиваясь ими.

Реакционные смеси также содержат, по меньшей мере, один гидрофобный компонент. Данные гидрофобные компоненты представляют собой гидрофобные компоненты, которые, когда смешиваются при 25°С в отношении 1:1 по объему с нейтральной буферизованной водой (рН приблизительно 7,0), образуют несмешивающуюся смесь.

Примеры подходящих гидрофобных компонентов включают в себя силиконсодержащие компоненты, фторсодержащие компоненты, компоненты, содержащие алифатические углеводородные группы, имеющие, по меньшей мере, 3 углерода, их комбинации и подобные.

Термин "компонент" включает в себя мономеры, макромеры и преполимеры. "Мономер" относится к соединениям с низкой молекулярной массой, которые могут полимеризоваться в соединения с высокой молекулярной массой, полимеры, макромеры или преполимеры. Используемый здесь термин "макромер" относится к полимеризуемому соединению с высокой молекулярной массой. Преполимеры представляют собой частично полимеризованные мономеры или мономеры, которые способны к дополнительной полимеризации.

Подходящие фторсодержащие компоненты включают в себя, по меньшей мере, две и в некоторых вариантах осуществления, по меньшей мере, 3 фторсодержащих группы, и в некоторых вариантах осуществления от 3 до 100 атомов фтора.

"Силиконсодержащий компонент" представляет собой компонент, который содержит, по меньшей мере, одно звено [-Si-O-] в мономере, макромере или преполимере. Предпочтительно весь Si и присоединенный О присутствуют в силиконсодержащем компоненте в количестве больше чем приблизительно 20 мас.% и более предпочтительно больше чем 30 мас.% от общей молекулярной массы силиконсодержащего компонента. Подходящие силиконсодержащие компоненты предпочтительно содержат полимеризуемые функциональные группы, такие как акрилатные, метакрилатные, акриламидные, метакриламидные, винильные, N-виниллактамные, N-виниламидные и стирольные функциональные группы. Примеры силиконсодержащих компонентов, которые являются пригодными в данном изобретении, могут быть найдены в патентах США № 3808178; 4120570; 4136250; 4153641; 4740533; 5034461 и 5070215, и ЕР080539. Эти ссылки описывают много примеров олефиновых силиконсодержащих компонентов.

Подходящие силиконсодержащие компоненты включают в себя соединения с формулой I

где

R1 независимо выбирают из одновалентных реакционно-способных групп, одновалентных алкильных групп или одновалентных арильных групп, причем любая из вышеуказанных может дополнительно содержать функцию, выбранную из гидрокси, амино, окса, карбокси, алкилкарбокси, алкокси, амидо, карбамат, карбонат, галоген или их комбинаций; и одновалентных силоксановых цепей, содержащих 1-100 Si-O повторяющихся звеньев, которые могут дополнительно содержать функцию, выбранную из алкил, гидрокси, амино, окса, карбокси, алкилкарбокси, алкокси, амидо, карбамат, галоген или их комбинаций;

где b = от 0 до 500, причем понятно, что, когда b отличается от 0, b является распределением, имеющим вид, равный установленной величине;

где, по меньшей мере, один R1 содержит одновалентную реакционно-способную группу и в некоторых вариантах осуществления от одного до 3 R1 содержат одновалентные реакционно-способные группы.

Используемые здесь "одновалентные реакционно-способные группы" означают группы, которые могут подвергаться радикальной и/или катионной полимеризации. Неограничивающие примеры радикально-реакционно-способных групп включают в себя (мет)акрилаты, стирилы, винилы, винилэфиры, С1-6алкил(мет)акрилаты, (мет)акриламиды, С1-6алкил(мет)акриламиды, N-виниллактамы, N-виниламиды, С2-12алкенилы, С2-12алкенилфенилы, С2-12алкенилнафтилы, С2-6алкенилфенилС1-6алкилы, О-винилкарбаматы и О-винилкарбонаты. Неограничивающие примеры катионо-реакционно-способных групп включают в себя винилэфирные или эпоксидные группы и их смеси. В одном варианте осуществления радикально-реакционно-способные группы содержат (мет)акрилат, акрилокси, (мет)акриламид и их смеси.

Подходящие одновалентные алкильные и арильные группы включают в себя незамещенные одновалентные С116 алкильные группы, С614 арильные группы, такие как замещенный и незамещенный метил, этил, пропил, бутил, 2-гидроксипропил, пропоксипропил, полиэтиленоксипропил, их комбинации и подобные.

В одном варианте осуществления b равно нулю, один R1 является одновалентной реакционно-способной группой и, по меньшей мере, 3 R1 выбирают из одновалентных алкильных групп, имеющих от одного до 16 атомов углерода, и в другом варианте осуществления из одновалентных алкильных групп, имеющих от одного до 6 атомов углерода. Неограничивающие примеры силиконовых компонентов этого варианта осуществления включают в себя сложный эфир 2-метил-, 2-гидрокси-3-[3-[1,3,3,3-тетраметил-1-[(триметилсилил)окси]дисилоксанил]пропокси]пропила ("SiММА"), 2-гидрокси-3-метакрилоксипропилоксипропил-трис(триметилсилокси)силан, 3-метакрилоксипропилтрис(триметилсилокси)силан ("ТRIS"), 3-метакрилоксипропилбис(триметилсилокси)метилсилан, 3-метакрилоксипропилпентаметилдисилоксан и их комбинации.

В другом варианте осуществления b равно от 2 до 20, от 3 до 15 или в некоторых вариантах осуществления от 3 до 10; по меньшей мере, один терминальный R1 содержит одновалентную реакционно-способную группу, и остальные R1 выбирают из одновалентных алкильных групп, имеющих от 1 до 16 атомов углерода, и в другом варианте осуществления из одновалентных алкильных групп, имеющих от 1 до 6 атомов углерода. В еще другом варианте осуществления b равно от 3 до 15, один терминальный R1 содержит одновалентную реакционно-способную группу, другой терминальный R1 содержит одновалентную алкильную группу, имеющую от 1 до 6 атомов углерода, и остальные R1 содержат одновалентную алкильную группу, имеющую от 1 до 3 атомов углерода. Неограничивающие примеры силиконовых компонентов этого варианта осуществления включают в себя полидиалкилсилоксаны, такие как (моно-(2-гидрокси-3-метакрилоксипропил)пропиловый простой эфир, завершенный полидиметилсилоксаном (400-1000 ММ) ("ОН-мПДМС"), монометакрилоксипропил, завершенный моно-н-бутилом, завершенный полидиметилсилоксанами (800-1000 ММ) ("мПДМС").

В других вариантах осуществления b равно от 5 до 400 или от 10 до 300, оба терминальных R1 содержат одновалентные реакционно-способные группы, и остальные R1 независимо выбирают из одновалентных алкильных групп, имеющих от 1 до 18 атомов углерода, которые могут иметь простые эфирные соединения между атомами углерода и могут дополнительно содержать галоген.

В другом варианте осуществления от одного до четырех R1 содержат винилкарбонат или карбамат формулы:

Формула II

где: Y обозначает О-, S- или NН-;

R обозначает водород или метил; d равно 1, 2, 3 или 4; и q равно 0 или 1.

Силиконсодержащие винилкарбонатные или винилкарабаматные мономеры, в частности, включают в себя: 1,3-бис[4-(винилоксикарбонилокси)бут-1-ил]тетраметилдисилоксан; 3-(винилоксикарбонилтио)пропил-[трис(триметилсилокси)силан]; 3-[трис(триметилсилокси)силил]пропилаллилкарбамат; 3-[трис(триметилсилокси)силил]пропилвинилкарбамат; триметилсилилэтилвинилкарбонат; триметилсилилметилвинилкарбонат и

Когда желательны биомедицинские устройства с модулем ниже приблизительно 200, только одна R1 будет содержать одновалентную реакционно-способную группу и не больше чем две из остальных R1 групп будут содержать одновалентные силоксановые группы.

В одном варианте осуществления, когда желательна силиконовая гидрогельная линза, линза настоящего изобретения будет изготавливаться из реакционной смеси, содержащей, по меньшей мере, приблизительно 20 и предпочтительно приблизительно от 20 до 70 мас.% силиконсодержащих компонентов в расчете на полную массу реакционных мономерных компонентов, из которых состоит полимер.

Другой класс силиконсодержащих компонентов включает в себя полиуретановые макромеры со следующими формулами:

Формулы IV-VI

(*D*A*D*G)a*D*D*E1;

E(*D*G*D*A)a *D*G*D*E1 или;

E(*D*A*D*G)a*D*A*D*E1

где:

D обозначает алкильный бирадикал, алкильный циклоалкильный бирадикал, циклоалкильный бирадикал, арильный бирадикал или алкиларильный бирадикал, имеющий от 6 до 30 атомов углерода,

G обозначает алкильный бирадикал, циклоалкильный бирадикал, алкильный циклоалкильный бирадикал, арильный бирадикал или алкиларильный бирадикал, имеющий от 1 до 40 атомов углерода и который может содержать простые эфирные, тио или амино связи в основной цепи;

* обозначает уретановые или уреидо связи;

а составляет, по меньшей мере, 1;

А обозначает двухвалентный полимерный радикал с формулой:

Формула VII

R11 независимо обозначает алкильную или фторзамещенную алкильную группу, имеющую от 1 до 10 атомов углерода, которая может содержать простые эфирные связи между атомами углерода; у равно, по меньшей мере, 1; и р обеспечивает массу фрагмента от 400 до 10000; каждый из Е и Е1 независимо обозначает полимеризуемый ненасыщенный органический радикал, представленный формулой:

Формула VIII

где: R12 обозначает водород или метил; R13 обозначает водород, алкильный радикал, имеющий от 1 до 6 атомов углерода, или -СО-Y-R15 радикал, где Y обозначает -О-, -S- или -NН-; R14 обозначает двухвалентный радикал, имеющий от 1 до 12 атомов углерода; Х обозначает -СО- или -ОСО-; Z обозначает -О- или -NН-; Ar обозначает ароматический радикал, имеющий от 6 до 30 атомов углерода; w равно от 0 до 6; х равно 0 или 1; у равно 0 или 1; и z равно 0 или 1.

Предпочтительным силиконсодержащим компонентом является полиуретановый макромер, выраженный следующей формулой:

Формула IХ

где R16 обозначает бирадикал диизоцианата после удаления изоцианатной группы, такой как бирадикал изофорондиизоцианата. Другим подходящим силиконсодержащим макромером является соединение с формулой Х (в которой х+у представляет собой число в диапазоне от 10 до 30), полученное по реакции простого фторэфира, гидрокси-терминированного полидиметилсилоксана, изофорондиизоцианата и изоцианатоэтилметакрилата.

Формула Х

Другие силиконсодержащие компоненты, подходящие для использования в данном изобретении, включают в себя компоненты, описанные в WО 96/31792, такие как макромеры, содержащие полисилоксановые, полиалкиленовые простые эфирные, диизоцианатные, полифторированные углеводородные, полифторированные простые эфирные и полисахаридные группы. Патенты США № 5321108; 5387662 и 5539016 описывают полисилоксаны с полярной фторированной привитой или боковой группой, имеющей атом водорода, прикрепленный к терминальному дифторзамещенному атому углерода. US 2002/0016383 описывает гидрофильные силоксанилметакрилаты, содержащие простые эфирные или силоксанильные связи и сшиваемые мономеры, содержащие полиэфирные и полисилоксанильные группы. Любой из вышеуказанных полисилоксанов также может использоваться в качестве силиконсодержащего компонента данного изобретения.

Другие компоненты, такие как реакционно-способные и нереакционно-способные смачивающие агенты, описанные в US-2003-0162862, US05/06640, US2006-0072069, WО2006/039276, также могут быть включены. Когда применяют смачивающие агенты, также может быть желательно включить совмещающий компонент. Подходящие совмещающие компоненты включают в себя компоненты, которые удовлетворяют тесту совместимости, описанному в US-2003-0162862. Любые из силиконовых компонентов, описанных выше, могут быть превращены в совмещающие компоненты путем внедрения совмещающих групп, таких как гидроксильные группы, в их структуру. В некоторых вариантах осуществления отношение Si к ОН составляет меньше чем приблизительно 15:1 и в других вариантах осуществления от приблизительно 1:1 до приблизительно 10:1. Неограничивающие примеры совмещающих компонентов включают в себя (моно-(2-гидрокси-3-метакрилоксипропил)пропиловый простой эфир, терминированный полидиметилсилоксаном (400-1000 ММ)), "OH-мПДМС", 2-метил-, 2-гидрокси-3-[3-[1,3,3,3-тетраметил-1-[(триметилсилил)окси]дисилоксанил]пропокси]пропиловый сложный эфир "SiMMA", 2-гидрокси-3-метакрилоксипропилоксипропил-трис(триметилсилокси)силан, бис-3-метакрилокси-2-гидроксипропилоксипропилполидиметилсилоксан, их комбинации и подобные.

Альтернативно реакционная смесь может содержать преполимер, как описано в патенте США 6846892 или WО2003/003073.

Катализатор полимеризации может быть включен в реакционную смесь. Инициаторы полимеризации включают в себя такие соединения, как лаурилпероксид, бензоилпероксид, изопропилперкарбонат, азобисизобутиронитрил и подобные, которые генерируют свободные радикалы при умеренно повышенных температурах, и фотоинициирующие системы, такие как ароматические альфа-гидроксикетоны, алкоксиоксибензоины, ацетофеноны, ацилфосфиноксиды, бисацилфосфиноксиды и третичный амин плюс дикетон, их смеси и подобные. Иллюстрирующими примерами фотоинициаторов являются 1-гидроксициклогексилфенилкетон, 2-гидрокси-2-метил-1-фенил-пропан-1-он, бис(2,6-диметоксибензоил)-2,4,4-триметилфенилфосфиноксид (DМВАРО), бис(2,4,6-триметилбензоил)фенилфосфиноксид (Irgacure 819), 2,4,6-триметилбензилдифенилфосфиноксид и 2,4,6-триметилбензоилдифенилфосфиноксид, бензоинметиловый сложный эфир и комбинация камфорохинона и этил 4-(N,N-диметиламин)бензоата. Коммерчески доступные системы инициаторов видимого света включают в себя Irgacure 819, Irgacure 1700, Irgacure 1800, Irgacure 819, Irgacure 1850 (все от Ciba Specialty Chemicals) и инициатор Lucirin TPO (доступный от ВАSF). Коммерчески доступные УФ фотоинициаторы включают в себя Darocur 1173 и Darocur 2959 (Ciba Specialty Chemicals). Эти и другие фотоинициаторы, которые могут быть использованы, описаны в Volume III, Photoinitiators for Free Radical Cationic & Anionic Photopolymerization, 2th Edition by J.V. Crivello&K.Dietliker; edited by G. Bradley; John Wiley and Sons; New York; 1989. Инициатор применяют в реакционной смеси в эффективных количествах, чтобы инициировать фотополимеризацию реакционной смеси, например, от приблизительно 0,1 до приблизительно 2 частей по массе на 100 частей реакционного мономера. Полимеризация реакционной смеси может быть инициирована, используя подходящий выбор нагрева или видимого или ультрафиолетового света, или другого средства в зависимости от применяемого инициатора полимеризации. Альтернативно инициация может выполняться без фотоинициатора, используя, например, электронный пучок. Однако когда используют фотоинициатор, предпочтительными инициаторами являются бисацилфосфиноксиды, такие как бис(2,4,6-триметилбензоил)фенилфосфиноксид (Irgacure 819®) или комбинация 1-гидроксициклогексилфенилкетона и бис(2,6-диметоксибензоил)-2,4,4-триметилфенилфосфиноксида (DМВАРО), и в другом варианте осуществления способ инициации полимеризации выполняют путем активации видимым светом. Предпочтительным инициатором является бис(2,4,6-триметилбензоил)фенилфосфиноксид (Irgacure 819®).

Реакционные компоненты могут смешиваться неразбавленными, образуя ксерогель, или могут смешиваться с, по меньшей мере, одним разбавителем. Подходящие разбавители для обычных и силиконовых гидрогельных контактных линз хорошо известны, и может применяться любой разбавитель, про который известно, что он является подходящим.

Реакционная смесь настоящего изобретения может отверждаться с помощью любого известного способа формования реакционной смеси в производстве контактных линз, включая центробежное литье и статическое литье. Способы центробежного литья описаны в патентах США № 3408429 и 3660545, а способы статического литья описаны в патентах США № 4113224 и 4197266. В одном варианте осуществления контактные линзы данного изобретения форму