Статический смеситель
Иллюстрации
Показать всеИзобретение относится к смешиванию текучих компонентов и может использоваться, в частности, при переработке сжиженного природного газа, в автомобилестроении и в химической реакционной технике. Смесительный элемент содержит входное отверстие для компонентов с первым поперечным сечением, расположенным в плоскости, перпендикулярной направлению основного потока во входном отверстии, и выходное отверстие для смеси со вторым поперечным сечением, расположенным в плоскости, перпендикулярной направлению основного потока в выходном отверстии. Смесительный элемент имеет форму поперечного сечения, непрерывно увеличивающуюся от первого поперечного сечения ко второму поперечному сечению. В смесительном элементе потокоразделяющие пластины расположены таким образом, что возможна точная подгонка смесительного элемента в непрерывно расширяющемся проводящем текучую среду средстве. Технический результат состоит в сохранении равномерного распределения текучей среды при транспортировке ее через непрерывно расширяющийся участок трубопровода. 5 н. и 8 з.п. ф-лы, 14 ил.
Реферат
Изобретение касается смесительного элемента для статического смесителя согласно ограничительной части пункта 1 формулы изобретения, применений такого смесительного элемента, а также статического смесителя со смесительным элементом такого типа. Статические смесители используются для смешивания двух или более текучих компонентов, в частности газожидкостных смесей. В частности, смесительный элемент должен применяться в проводящем текучую среду средстве, выполненном в виде диффузорной секции. Смесительный элемент, по меньшей мере, способствует поддержанию равномерного состояния смеси в диффузоре, благодаря своей конструктивной форме противодействуя возможным эффектам разделения смеси и/или осуществляя равномерное перемешивание компонентов, протекающих через диффузорную секцию. Статический смеситель включает в себя, таким образом, проводящее текучую среду средство с входным отверстием для компонентов первого диаметра и выходным отверстием для смеси второго диаметра, при этом проводящее текучую среду средство имеет ход диаметра, по существу непрерывно возрастающий от первого диаметра ко второму диаметру, а также по меньшей мере один смесительный элемент, установленный в диффузорной секции. Проводящее текучую среду средство может быть выполнено, в частности, в виде, по существу, непрерывно расширяющегося трубопровода.
Из уровня техники согласно EP-А-918146 известно размещение встроенных элементов в корпусе смесителя, расширяющемся в виде диффузора. Эти встроенные элементы образованы из концентричных боковых поверхностей, имеющих форму усеченного конуса. Вершины конусов располагаются по меньшей мере приблизительно в одной точке, а входные поперечные сечения каждого встроенного элемента своими краями задают поверхность, которая имеет сужающуюся против направления потока форму. Благодаря встроенным элементам газы, протекающие через диффузор, в случае EP-A-918146 это вредные вещества, равномернее направляются в подсоединенный катализатор.
В устройстве для снижения вредных веществ согласно EP-А-918146 при прохождении газа наступают так называемые краевые эффекты, обозначаемые также как каналообразование. Эти краевые эффекты вызываются краевыми потоками, из-за которых происходит замедление потока относительно середины. Эти краевые потоки возникают главным образом в результате эффектов трения на внутренней стенке диффузора. При расширении в конусе в результате тормозного эффекта, вызванного вышеназванными эффектами трения, может произойти снижение скорости в пристенной зоне, что может даже привести к тому, что каплеобразная или пузырчатая фаза, то есть дисперсная фаза, в частности жидкотекучие компоненты, уже не смогут удерживаться во взвешенном состоянии сплошной фазой, в частности газом, и будут выделяться.
Газожидкостные смеси такого рода используются, например, в качестве охлаждающего средства при переработке сжиженного природного газа. Это охлаждающее средство состоит из различных газообразных и жидкотекучих компонентов, причем процент содержания охватывает, в частности, легколетучие алифатические углеводороды, предпочтительно метан, этан, пропан и/или бутан. Для охлаждения охлаждающее средство вводится в теплообменник, который, как правило, выполнен как многотрубный теплообменник. Теплообменник рассчитан на охлаждающую способность, которая требует гомогенной смеси охлаждающих средств, иначе охлаждающая способность не может использоваться оптимальным образом. Следовательно, если происходит сепарирование смеси охлаждающих средств, то, возможно, уже не может достигаться желаемая охлаждающая способность и не могут поддерживаться требуемые производственные мощности. Поэтому до сих пор для теплообменника соответственно необходимо было рассчитывать параметры с запасом.
До сих пор решению проблемы, связанной с статическими смесителями, препятствовал тот факт, что серийно выпускаемые статические смесители не могли быть приспособлены к, по существу, непрерывно расширяющемуся участку трубопровода.
Как выход предлагалось использовать статический смеситель из двух цилиндрических смесительных элементов, при этом один из этих смесительных элементов соответственно имеет диаметр подводящего трубопровода, то есть магистрального трубопровода, а второй смесительный элемент имеет диаметр впуска теплообменника. Измерения на статическом смесителе такого рода показали, что и в этом случае газообразные и жидкотекучие компоненты распределяются неравномерно. Участок смешивания рассчитан для этой цели слишком коротким, к тому же при такой системе смешивания имеет место резкий переход в месте, в котором цилиндрический смесительный элемент с диаметром подводящего трубопровода примыкает к смесительному элементу с диаметром впуска теплообменника. В настоящем случае оба смесительных элемента выполнены предпочтительно одинаковой длины, таким образом, переход располагается посредине.
Задачей изобретения является создание смесительного элемента для статического смесителя, посредством которого многофазный поток текучей среды, в частности поток газа, нагруженный капельками жидкости, или поток жидкости, нагруженный пузырьками газа, перемешиваясь, может транспортироваться через, по существу, непрерывно расширяющийся участок трубопровода с сохранением равномерного распределения текучей среды.
Поставленная задача решается посредством смесительного элемента, определенного в пункте 1 формулы изобретения. Смесительный элемент для установки в проводящем текучую среду средстве, которое может быть выполнено, в частности, в виде камеры или корпуса резервуара, имеет входное отверстие для по меньшей мере двух компонентов с первым поперечным сечением, расположенным в плоскости, лежащей по существу перпендикулярно направлению основного потока во входном отверстии, и выходное отверстие для смеси со вторым поперечным сечением, расположенным в плоскости, лежащей по существу перпендикулярно направлению основного потока в выходном отверстии, при этом смесительный элемент имеет форму поперечного сечения, по существу непрерывно увеличивающуюся от первого поперечного сечения ко второму поперечному сечению. В смесительном элементе потокоразделяющие пластины расположены таким образом, что возможна точная подгонка смесительного элемента в по существу непрерывно расширяющемся проводящем текучую среду средстве. Смесительный элемент установлен по меньшей мере частично в области между входным отверстием и выходным отверстием. Благодаря точной подгонке достигается то, что краевые потоки отклоняются от внутренней стенки проводящего текучую среду средства в направлении основного потока и совместно с основным потоком с по меньшей мере приблизительно равным распределением по скорости направляются через рассматриваемое проходное поперечное сечение через диффузор, а также то, что текучая среда с более высокой скоростью потока, чем выровненный поток, течет от центральной зоны поперечного сечения в направлении пристенной зоны, благодаря чему происходит поперечное перемешивание и, следовательно, улучшение смешивания текучих компонентов. Потокоразделяющие пластины имеют проточные каналы, которые выполнены, в частности, в виде диффузора, предпочтительно с открытыми перекрещивающимися проточными каналами, которые раскрыты, например, в СН 547 120. В смесительном элементе такого типа, по меньшей мере, в части поперечного сечения, предусмотрены встроенные элементы или пластины, посредством которых компоненты способны отклоняться таким образом, что посредством перекрещивающихся путей потока могут образовываться сдвигающие потоки, вследствие чего при наложении потоков возникают непрерывные завихрения, благодаря чему достигается непрерывное перемешивание смеси и одновременное течение в направлении выхода смесителя.
В предпочтительной форме исполнения смесительный элемент имеет по меньшей мере две пластины из тонкостенного материала. В простейшем случае пластина такого типа может быть образована из плоских, тонкостенных металлических листов, таким образом подогнанных к расширяющемуся поперечному сечению проводящего текучую среду средства, что отдельные пластины в каждом поперечном сечении предстают в виде параллельных друг другу секущих плоскостей, однако расстояние между секущими плоскостями пластин непрерывно увеличивается в направлении потока. Такие расширяющиеся, плоские пластины удерживаются в своем положении с помощью набора крепежных средств, снабженных зажимными или штекерными соединительными элементами. По меньшей мере в зоне входного сечения, то есть входного отверстия статического смесителя, а также в зоне выходного сечения, то есть выходного отверстия статического смесителя, существует возможность крепления для каждой пластины. Поэтому поверхность, заданная между двумя соседними пластинами и проводящем текучую среду средством, расположенная по существу перпендикулярно направлению основного потока, увеличивается подобно диффузору. Смесь, протекающая между двумя отдельными пластинами, проходит в этом случае по существу узкий канал, расширяющийся в соответствии с увеличением поперечного сечения смесителя.
Такая пластина может иметь складчатую, развертывающуюся в плоскость структуру из тонкостенного листового материала, при этом складчатость может быть выполнена, в частности, в виде желобков (гофров). Пластина может иметь образующие открытые каналы структуры, в частности, могут быть выполнены складчатые, волнообразные или зигзагообразные структуры. Альтернативно или в комбинации с этим могут быть использованы также структуры, образующие закрытые каналы, как, например, ячеистые или трубчатые структуры. В частности, по меньшей мере одна пластина может иметь по меньшей мере один проточный канал. Структуры состоят из металлического материала, предпочтительно может применяться листовой металл и/или сталь и/или стальной сплав, что не в последнюю очередь зависит от температуры, давления и/или природы протекающей среды. Могут применяться также высокожаропрочные стали, если этого требует температура транспортируемой среды. Транспортировка и перемешивание коррозионных смесей требует применения коррозионностойких сталей, а также керамики, кремниевых соединений, карбона и/или покрытий, содержащих политетрафторэтилен (PTFE), эпоксидную смолу, Halar, TNi-сплавы и/или карбидные слои и/или гальванические покрытия, в частности покрытия, нанесенные путем хромирования или никелирования. Если смесь содержит также доли твердого вещества, например пыль, то предъявляются высокие требования к стойкости к царапанию встроенных деталей смесительных элементов. С помощью стойкого к царапанию покрытия пластин смесительного элемента и/или проводящего текучую среду средства повышается срок службы статического смесителя. В отдельном случае может быть предпочтительным нанесение устойчивого к загрязнению слоя. Для использования в холодильных или морозильных установках статический смеситель изготовляют из материала 304 L, и/или SS 316, и/или 904 L, и/или дуплекса, и/или 1.4878, которые при высоких температурах отличаются незначительным короблением, коррозионностойкостью и вязкостью в холодном состоянии. Для статических смесителей, не испытывающих большую температурную нагрузку, используются синтетические материалы, например полипропилен, поливинилиденфторид (PVDF) или полиэтилен. Другое применение смесительного элемента согласно одному из пунктов формулы изобретения может быть предусмотрено в статическом смесителе, в котором может протекать химическая реакция. Для осуществления химической реакции должно достигаться быстрое и равномерное смешивание текучих компонентов, приводимых в контакт друг с другом. Для этой цели можно либо сами направляющие поток пластины изготовить из каталитического материала, либо нанести каталитический материал на пластины, выполненные предпочтительно из материала, не имеющего разрывов, например, из листовой стали, или из ткани, или из трикотажа, или из, например, частично пористого материала. В другом примере применения пластина, которая может быть выполнена согласно одному из предшествующих примеров исполнения, может содержать средство для захвата микроорганизмов, например бактерий.
Статический смеситель согласно другому примеру исполнения оснащен проводящими текучую среду средствами с плоскими на отдельных участках боковыми поверхностями, в частности с прямоугольными или квадратными поперечными сечениями, задающими трапецеидальные боковые поверхности, которые в итоге составляют в своей совокупности проводящее текучую среду средство. Статический смеситель такого типа содержит по меньшей мере один смесительный элемент согласно одному из предшествующих примеров исполнения.
Зависимые пункты 2-8 формулы изобретения касаются предпочтительных вариантов исполнения смесительного элемента согласно изобретению. Возможности применения смесительного элемента согласно изобретению, в частности в статическом смесителе, являются соответственно предметом пунктов 9 и 10 формулы изобретения.
По меньшей мере одна пластина смесительного элемента содержит поверхностно расширяющуюся структуру, в частности проточный канал. В последующем тексте вместо пластины с поверхностно расширяющейся структурой используется пластина с зигзагообразным профилем. Такие поверхностно расширяющиеся структуры содержат волнообразные профили, желобчатые профили, профили с выступами любой геометрии и/или угловым положением относительно направления потока. Зигзагообразный профиль, при взгляде в направлении площади поперечного сечения канальной структуры, состоит из последовательности ребер. Каждое из этих ребер в трехмерной пластине в смесительном элементе задает линию от входного поперечного сечения до концевого поперечного сечения. В простейшем случае под линией понимается прямая, однако это может быть любая, в частности, периодически повторяющаяся кривая. Такая пластина с ребрами кривой формы может применяться, например, в смесительном элементе для проводящего текучую среду средства с изменением направления основного потока, благодаря чему происходит изменение направления протекающей смеси наряду с расширением поперечного сечения потока.
В случае пластины с симметричным профилем, например зигзагообразным профилем, между двумя соседними ребрами располагается открытый канал, стенки которого образованы по меньшей мере двумя плоскими и/или следующими изгибу ребер профильными поверхностями. В этом примере применения канал имеет V-образное поперечное сечение, поскольку нижняя граница канала также образована ребром, идущим в противоположном направлении. Таким образом, в этом примере исполнения соседние профильные поверхности расположены под острым углом друг к другу, составляющим менее 180°.
Согласно примеру исполнения ребра соседних пластин оказываются линейно наложенными друг на друга так, что две соседние пластины с ребрами, указывающими в противоположные направления, оказываются наложенными друг на друга. В этом случае между двумя соседними пластинами образуются закрытые каналы, по которым перемещается протекающая смесь. Согласно этому примеру исполнения компоненты смеси от входного отверстия в смеситель до выходного отверстия остаются в том же канале, который расширяется подобно диффузору, в соответствии с расширением проводящего текучую среду средства в направлении основного потока. Расстояние между двумя соседними пластинами увеличивается от поперечного сечения входного отверстия к поперечному сечению выходного отверстия, в соответствии с расширением проводящего текучую среду средства перпендикулярно направлению основного потока. Каждая пластина может быть изготовлена из плоского листового материала, сложенного таким образом, что высота ребер и расстояние между двумя соседними ребрами увеличиваются в направлении расширяющегося, то есть сконструированного подобно диффузору, смесительного элемента. При этом ребра соседних пластин оказываются наложенными друг на друга, вследствие чего происходит линейное касание соседних пластин по общему ребру. Благодаря этой системе образуется проточный канал, поперечное сечение которого непрерывно увеличивается от входного отверстия к выходному отверстию, если должно быть охвачено все поперечное сечение диффузора. Пластины могут быть выполнены из по меньшей мере двух плоских и/или следующих изгибу ребер профильных поверхностей и/или сами профильные поверхности имеют дополнительное структурирование, которое выполнено в виде волнообразных или зигзагообразных выступов или ламелей и может содержать серию открытых каналов, проходящих между выступами или ламелями. Структурирование такого типа раскрыто, например, в СН 547 120. Согласно другому примеру исполнения можно также таким образом скомбинировать пластины с профильной поверхностью с пластинами с поверхностно расширяющейся структурой, чтобы плоская пластина и пластина с поверхностно расширяющимися структурами попеременно следовали друг за другом. Благодаря этому образуются закрытые каналы, ограниченные с одной стороны плоской пластиной, а с другой стороны пластиной с поверхностно расширяющейся структурой.
В смесительном элементе согласно предпочтительному примеру исполнения проточные каналы соседних пластин выполнены открыто перекрещиваясь и/или подобно диффузору. Благодаря этой системе достигается особо быстрое и хорошее перемешивание смешиваемых компонентов. Согласно следующему варианту для лучшего перемешивания может быть предусмотрено, чтобы происходило не линейное касание двух соседних пластин с поверхностно расширяющимися структурами, а чтобы ребра соседних пластин соприкасались лишь точечным образом. Это точечное касание достигается благодаря тому, что две соседние пластины расположены под углом друг к другу. Благодаря этому возможно, что ребро, принадлежащее первой пластине, имеет лишь точечное касание с некоторым числом соответствующих ребер соседней пластины. Существенное преимущество этого примера исполнения обосновывается тем, что протекающая среда течет не всегда в одном и том же канале, как в показанных выше вариантах, а в каждый момент времени находится в другом канале, то есть непрерывно меняет канал. В этом случае протекающая среда отклоняется существенно сильнее, чем в предшествующих примерах, что приводит к дополнительному улучшению перемешивания. Альтернативно этому могут быть скомбинированы также две соседние пластины с разными профилями, которые для улучшения перемешивания также установлены под углом от 0 до 180° относительно друг друга.
Согласно следующему примеру исполнения каждая пластина образует полое тело с поверхностно расширяющимися структурами, в частности, имеет желобчатую, зубчатую или волнистую поверхность. Согласно этому ребра поверхностно расширяющихся структур задают граничную поверхность, которую можно представить как полое тело, имеющее, в частности, коническую форму. Поверхностно расширяющиеся структуры наклонены к направлению потока под углом от 0 до 180°. Несколько таких полых тел могут быть вставлены одно в другое. Углы поверхностно расширяющихся структур двух соседних пластин, выполненных как полые тела, предпочтительно различаются, таким образом, поток может многократно отклоняться посредством поверхностно расширяющихся структур.
Проточный канал ограничен по меньшей мере двумя профильными поверхностями, при этом каждые две соседние профильные поверхности одной пластины образуют общее ребро. В частности, проточные каналы с плоскими профильными поверхностями изготовляются с небольшими затратами и простым способом. Ребра одной пластины задают граничную поверхность, выполненную плоской и/или по меньшей мере на отдельных участках конической. Если пластина имеет несколько ребер, которые совместно задают такую граничную поверхность, то посредством плоских профильных поверхностей может быть простым образом получена, например, плоская или коническая граничная поверхность, поскольку необходимые параметры легко настроить и проверить. Форма граничной поверхности имеет значение, в частности, в том случае, если для изготовления смесительного элемента требуется большое количество установленных одна над другой пластин, при которых ребра соседних пластин имеют, по меньшей мере, точечное касание.
В смесительном элементе ребрами пластины задана граничная поверхность, выполненная плоской и/или по меньшей мере на отдельных участках конической. В качестве граничной поверхности обозначается при этом соединительная поверхность всех ребер. Большинство из вышеназванных примеров исполнения пластин с поверхностно расширяющимися структурами имеют плоские граничные поверхности, таким образом, соседние пластины имеют по одной такой плоской граничной поверхности. В случае пластины без поверхностно расширяющихся структур граничная поверхность совпадает с поверхностью пластины. Согласно следующему примеру исполнения граничная поверхность может представлять собой также любым образом изогнутую в пространстве поверхность. В случае пластины с поверхностно расширяющейся структурой ребра поверхностно расширяющихся структур также задают изогнутую в пространстве поверхность. Для статического смесителя с коническим расширением проводящего текучую среду средства пригодно применение пластины с конической граничной поверхностью, так что, пластины имеют граничные поверхности, образованные конически между пластинами.
Согласно предпочтительному примеру исполнения ребра, принадлежащие одной пластине смесительного элемента, выполнены с наклоном относительно друг друга под углом α в пределах от 0 до 120°, в частности от 60 до 90°. Перекрещивающиеся ребра соседних пластин предпочтительно образуют с направлением основного потока противоположно направленный, равный по величине угол α/2.
Поперечное сечение смесительного элемента расширяется от первого поперечного сечения ко второму поперечному сечению, в частности, конически, при этом, в частности, диаметр выходного поперечного сечения относительно диаметра входного поперечного сечения увеличивается в 2-5 раз, что эквивалентно увеличению поперечного сечения в 4-25 раз. В предпочтительном исполнении смесительный элемент расширяется от первого поперечного сечения ко второму поперечному сечению коническим образом, в частности, диаметр входного поперечного сечения расширяется в 2-5 раз. Поскольку проводящее текучую среду средство в этом примере исполнения также расширяется конусным образом, то предотвращается резкий переход от поперечного сечения подвода ввода, оканчивающегося во входном отверстии, то есть в большинстве случаев магистрального трубопровода, к поперечному сечению выходного отверстия. Выходное отверстие может быть выполнено как входное отверстие в теплообменник или реактор. В этот реактор смесь должна поступать уже в значительной мере гомогенной. В частности, газообразные, текучие и/или твердые компоненты смеси удерживаются во взвешенном состоянии. Состояние смеси посредством смесительного элемента или смесительных элементов прямо сохраняется в конусе - который в противном случае в качестве диффузора способствовал бы разделению смеси. В большинстве случаев достигается даже улучшение перемешивания компонентов, в частности, с помощью смесительных элементов с перекрещивающимися проточными каналами, в результате чего компоненты могут гомогенно распределяться по любому поперечному сечению конуса вниз по течению от входного поперечного сечения. Кроме того, коническая форма дает значительные преимущества для установки пластин, поскольку коническая форма проводящего текучую среду средства действует как центрирующее средство для установки конического смесительного элемента. Благодаря тому, что смесительный элемент пригнан в коническое проводящее текучую среду средство, для установки требуется лишь минимальные затраты на сварку. Смесительные элементы выполнены предпочтительно подобно диффузору, это значит, что смесительные элементы подогнаны к расширяющемуся поперечному сечению, то есть, в частности, сами имеют коническую форму. Подгонка осуществляется вследствие конической формы смесительного элемента путем позиционирования смесительного элемента или смесительных элементов в конусе, благодаря чему однозначно задается положение смесительного элемента в коническом продводящем текучую среду средстве.
Пластины должны, если возможно, примыкать непосредственно к проводящему текучую среду средству, то есть к внутренней стенке смесителя. При линейном касании в качестве линий пересечения плоской пластины или пластины с поверхностно расширяющейся структурой, в частности, составленной из плоских сегментов поверхностно расширяющейся структуры, такой, как зигзагообразный профиль, с конической внутренней стенкой получаются конические сечения, то есть в зависимости от наклона пластины к конусу, эллиптические, параболические или гиперболические ограничительные линии. Каждая из описанных выше пластин может быть развернута в плоскость, поэтому с помощью чертежных программ из желаемого положения пластины в смесителе может быть сформирована развертка. Эти развертки содержат, наряду с ограничительными линиями пластины, также линии сгиба, таким образом, и в тех случаях, когда каждый угол имеет разную величину и, следовательно, необходимы весьма сложные гибочные операции, возможно экономичное изготовление пластин.
Возможный способ изготовления смесителя включает в себя следующие этапы: изготовление проводящего текучую среду средства с входным отверстием с первым поперечным сечением и выходным отверстием со вторым поперечным сечением, при этом проводящее текучую среду средство имеет форму поперечного сечения, непрерывно увеличивающуюся от первого поперечного сечения ко второму поперечному сечению. Следующим этапом является изготовление смесительного элемента. Смесительный элемент содержит большое количество пластин, которые предварительно изготовляются по отдельности и посредством соединительных средств собираются в смесительный элемент. Если поверхностные структуры пластин имеют возможность разворачиваться в плоскость, то изготовление упрощается, поскольку развертка каждой пластины с помощью режущих средств может быть вырезана из плоского пластинчатого исходного материала и затем с помощью гибочных средств сложена для получения поверхностной структуры. Это изготовление пригодно, в частности, для пластин из металлической заготовки. Пластины из синтетического материала в их сложенной форме изготовляют методом экструзии или методом литья под давлением и дополнительно разрезают на форму, которая требуется для образования расширяющегося, то есть, в частности, конического, смесительного элемента. На следующем этапе собранные в смесительный элемент пластины позиционируют в смесителе. Если смесительный элемент посажен в коническое проводящее текучую среду средство уже в собранном состоянии, то требуются лишь минимальные затраты на сварку. В коническом смесителе происходит центрирование пластин с помощью конуса, так что установка пластин, сложенных из развертки, может происходить также непосредственно в проводящее текучую среду средство, поскольку позиционирование пластин происходит благодаря самой конической форме проводящего текучую среду средства, а ориентирование пластин относительно друг друга предварительно задано. Альтернативно этому весь смесительный элемент может быть также изготовлен методом литья под давлением или в одноразовой форме.
При использовании конструкции пластин, соответствующей перекрестной канальной структуре, возможно образование мертвых пространств, поскольку пластина на входном поперечном сечении пути потока блокированы угловой ориентацией части пластины, смежной с внутренней стенкой. Поэтому после изготовления каналы на корпусной стороне проверяются и по необходимости открываются. Пристенный зазор между смесительными элементами и внутренней стенкой корпуса составляет не более 2% от соответствующего поперечного сечения, в частности не более 1% от соответствующего поперечного сечения, особо предпочтительно не более 0,5% от соответствующего поперечного сечения, так что так называемого «эффекта каналообразования» бесспорно не происходит.
Пристенный зазор до проводящего текучую среду средства должен быть выполнен меньше нормального расстояния между двумя соседними граничными поверхностями, в частности, меньше, чем высота проточного канала поверхностно расширяющейся структуры. За высоту проточного канала принимается нормальное расстояние между двумя граничными поверхностями, заданными между ребрами поверхностно расширяющейся структуры. В частности, пристенный зазор должен составлять максимально половину высоты проточного канала.
При легких разделениях смеси в зоне входного отверстия текучая фаза по так называемому «подъемнику» направляется снова в центр и распределяется в смесителе по поперечному сечению. Подъемником называется при этом встроенный элемент, закрепленный на внутренней стенке проводящего текучую среду средства, в частности приваренный к внутренней стенке проводящего текучую среду средства. Этот встроенный элемент предназначен для того, чтобы отводить компоненты, скопившиеся в самом низкорасположенном месте проводящего текучую среду средства, назад в смесительный элемент. Встроенный элемент должен представлять при этом особые варианты исполнения, такие, как, например, профиль, наклонная площадка, плита или тому подобное.
Согласно любому из названных выше решений, наряду с хорошим эффектом распределения и/или эффектом перемешивания создается лишь небольшая потеря напора.
В предпочтительной системе смесительные элементы, встроенные в трубчатый участок с постоянным поперечным сечением, и смесительные элементы согласно любому из предшествующих примеров исполнения, могут быть скомбинированы между собой. Для достижения улучшенного эффекта перемешивания обычный смесительный элемент находится в трубчатом участке перед входом в статический смеситель с проводящим текучую среду средством с расширяющимся поперечным сечением. Согласно любому из предшествующих примеров исполнения два соседних смесительных элемента могут быть установлены относительно друг друга с поворотом на 0-90°, в частности от 60 до 90°. Благодаря такому повороту достигается дополнительное отклонение потока, что оказалось предпочтительным, в частности, для названных примеров исполнения с канальным течением, имеющемся по меньшей мере на отдельных участках.
Система смесительного элемента может быть осуществлена выше по потоку от теплообменника, в частности, на входном участке теплообменника. С расширяющимся смесительным элементом поток при увеличении среднего поперечного сечения в направлении потока равномерно распределяется по расширенному поперечному сечению, а также обеспечивается гомогенность потока по всему поперечному сечению.
Применение смесительного элемента осуществляется в способе обезазотирования отработанных газов, для распределения отработанных газов по поверхности катализатора, в способе производства СПГ (сжиженного природного газа), в частности, для подачи газожидкостной смеси в качестве охлаждающего вещества для переработки СПГ в теплообменное устройство. Теплообменное устройство может содержать, в частности, теплообменник, предпочтительно выполненный в виде пучка труб теплообменник.
Для обезазотирования отработанных газов жидкий карбамид выпаривают и смешивают с потоком газа. И выпаривание, и смешивание могут происходить одновременно в статическом смесителе. Благодаря комбинированному проведению способа существует необходимость вводить карбамидо-газовую смесь для дальнейшей переработки в последующую стадию процесса уже в смешанном состоянии. Следующая возможность применения заключается в том, чтобы выпаривать жидкости в статическом смесителе с расширяющимся поперечным сечением и одновременно перемешивать. В частности, в установках с небольшой предоставляемой площадью является предпочтительным применение смесителя такого типа, чтобы поддерживать смесь при расширении до больших диаметров во взвешенном состоянии.
При переработке природного газа охлаждающее вещество должно быть охлаждено для последующего применения. Охлаждающее вещество состоит из различных, газообразных и текучих, составных частей, при этом большую долю составляют метан и этан. Смесь из газообразного и текучего охлаждающего вещества подводится обычно в трубопроводе к теплообменнику, в частности, выполненному в виде пучка труб теплообменнику, где она затем охлаждается по многопроходной системе. Входное устройство такого теплообменника имеет, как правило, размер от DN 1500 до DN 2400 (от 1,5 до 2,4 м), что означает, что смесь в трубопроводе от в основном DN 600 (0,6 м) должна расширяться через конус во впуск выполненного в виде пучка труб теплообменника. Для того чтобы теплообменник мог достигать своей полной мощности, газообразные и текучие составные части должны равномерно смешиваться по поперечному сечению и равными долями подводиться к отдельным трубам. Теплообменник рассчитан в основном на газожидкостную смесь, это означает, что газожидкостная смесь должна иметь равномерное распределение по входному поперечному сечению в теплообменник.
Другая возможность применения смесительного элемента в автомобилестроении касается впуска отработавших газов двигателя в катализатор для каталитического отделения вредных веществ, в частности угарных газов (Nox), и связывание их путем каталитической реакции на поверхности катализатора. Поскольку в автомобилях, в частности в грузовых автомобилях, предоставляемая для статического смесителя в выхлопной трубе площадь относительно мала, то статические смесители с описанным выше расширяющимся поперечным сечением имеют большое преимущество для таких целей, поскольку не требуется дополнительного конструктивного пространства. В системе выпуска отработавших газов, в которой отработавшие газы из относительно небольшой выхлопной трубы выходят в больший по объему корпус катализатора, также возникает проблема расслоения отработавших газов и текучих и/или твердых компонентов. Для того чтобы катализатор не изнашивался односторонне, необходимо полное выпаривание и одновременно хорошая гомогенизация, которая может быть достигнута с помощью статического смесителя согласно одному из названных выше примеров исполнения при незначительных падениях напора.
Другое возможное применение смесительного элемента согласно одному из предшествующих примеров исполнения заключается в химической реакционной технологии для осуществления каталитических и/или биогенных реакций, в частности, при расширяющихся поперечных сечениях для впуска одно- или многофазной текучей смеси в реактор. Газообразные и текучие компоненты часто должны быть диспергированы перед реактором. После образования пузырькового слоя и равномерного распределения компонентов поток часто расширяется, поскольку поток с диаметром, увеличенным по сравнению с диаметром трубопровода, поступает в реактор, содержащий катализатор. Статический смеситель используется для того, чтобы поддерживать гомогенность смеси. Незначительный эффект замедления в статическом смесителе по сравнению с резким переходом поперечного сечения от трубопровода к входному поперечному сечению в корпус реактора способствует тому, что пузырьки сливаются менее быстро.
Другое применение статического смесителя предлагается в области сжижения газа. При сжижении газа различные газовые потоки смешиваются и вводятся в многотрубную систему. В предусмотренном случае применения газ смешивается в трубе DN 600 (0,6 м) и затем должен равномерно распределиться по различным трубам в диаметре корпуса DN 12000 (12 м). В уровне техники, известном на момент подачи зая