Бетон с низким содержанием цемента
Иллюстрации
Показать всеИзобретение относится к области строительных растворов, более конкретно к бетонам с низким содержанием цемента, а также к способам получения такого бетона. Смесь содержит в массовых долях от 0,4 до 4% материалов в диапазоне размеров ультратонких частиц; от 1 до 6% портландцемента; от 8 до 25% материалов в диапазоне размеров тонких частиц; от 25 до 50% материалов в диапазоне средних размеров частиц; от 25 до 55% материалов в диапазоне более крупных размеров частиц. Премикс вяжущего содержит портландцемент, массовая доля которого составляет менее чем 50%, тонкие частицы, включающие частицы, в которых D10 и D90 составляют от 1 до 100 мкм, ультратонкие частицы, включающие частицы с D90 менее чем 1 мкм. В других вариантах изобретения описываются композиции, объекты, а также способы получения композиций с использованием указанных смесей. Изобретение развито в зависимых пунктах формулы изобретения. Технический результат - снижение расхода цемента при сохранении свойств бетона. 12 н. и 25 з.п. ф-лы, 6 ил., 2 табл.
Реферат
Область техники, к которой относится изобретение
Изобретением является бетон с низким содержанием портландцемента, а также способы получения такого бетона и композиции, применимые для осуществления этих способов.
Уровень техники
Технологические разработки в области бетонов за последние несколько лет привели к созданию передовых цементных составов, открывающих возможность получения сверхвысококачественных бетонов, в особенности в плане прочности на сжатие. Эти составы в общем включают применение дополнительных материалов помимо цемента и заполнителей и/или песка, которые представляют собой, например, волокна, органические добавки или так называемые ультратонкие частицы, в общем меньшие, чем зерна цемента.
Например, документ ЕР 0518777 описывает композицию строительного раствора, включающую, помимо портландцемента: песок с диаметром частиц от 80 мкм до 1 мм (в частности, от 125 до 500 мкм), кварцевую кремнеземную пыль с диаметром частиц от 0,1 до 0,5 мкм и водопоглощающее средство или пластификатор. Кремнеземная пыль представляет только от 10 до 30% вес. относительно цемента.
Документ WO 95/01316 описывает бетонную композицию, включающую, кроме портландцемента: песок с диаметром частиц от 150 до 400 мкм, мелкодисперсные компоненты с пуццолановой реакцией (в особенности аморфный кремнезем, но также зольную пыль или доменные шлаки) с диаметром частиц менее чем 0,5 мкм, небольшое количество металлических волокон и, необязательно, размолотый кварцевый порошок (средний размер частиц 10 мкм) и небольшие количества прочих добавок. Аморфный кремнезем может присутствовать на уровне от 10 до 40% вес. относительно цемента, и размолотый кварцевый порошок, когда он употребляется, типично присутствует в количестве 40% вес. относительно цемента. Бетонная композиция в этом документе поэтому требует применения приблизительно 900 кг цемента на м3 бетона.
В документе WO 95/01317 раскрыта бетонная композиция, очень похожая на описанную выше с исключительно стальной ватой в качестве металлических волокон и аморфным кремнеземом как компонентами с пуццолановой реакцией.
Цементные композиции, описанные в документе WO 99/23046, более конкретно посвящены цементированию скважин и включают, кроме гидравлического вяжущего: от 20 до 35% вес. относительно микрокремнеземного вяжущего с гранулометрическим составом от 0,1 до 50 мкм, и от 20 до 35% вес. относительно вяжущего из минеральных или органических частиц с диаметром от 0,5 до 200 мкм, а также суперпластификатора или пластификатора.
Документ WO 99/28267 относится к бетонной композиции, включающей цемент и металлические волокна, а также от 20 до 60% вес. относительно цементной матрицы гранулированных компонентов типа просеянного или размолотого песка с размерами частиц менее чем 6 мм; компоненты с пуццолановой реакцией с размером частиц менее чем 1 мкм; игольчатые или слоистые компоненты с размером частиц мельче чем 1 мм; и диспергатор. В примерах компоненты с пуццолановой реакцией состоят из кварцевого стекла в количестве приблизительно 30% вес. относительно портландцемента.
Весьма сходным образом документ WO 99/58468 описывает бетонную композицию, в которую включены по меньшей мере: небольшое количество органических волокон, гранулированные компоненты с размером частиц мельче чем 2 мм, тонкодисперсные компоненты с пуццолановой реакцией с частицами мельче чем 20 мкм, и по меньшей мере одна диспергирующая добавка. В различных упомянутых примерах композиция включает приблизительно 30% кварцевой муки и приблизительно 30% вес. тонкой кремнеземной пыли, относительно цемента.
Эти пропорции между различными диапазонами размеров частиц несущественно модифицированы в более позднем документе (WO 01/58826), также раскрывающем прочие бетонные композиции.
Документ ЕР 0934915 описывает бетон, приготовленный из цемента, в котором зерна имеют средний диаметр от 3 до 7 мкм, к которому добавлены песок, тонкая кремнеземная пыль с характеристическим диаметром частиц менее чем 1 мкм, противопенное средство и суперпластификатор, так что представлены по меньшей мере три диапазона размеров частиц. При рассмотрении различных примеров отмечено, что тонкая кремнеземная пыль находится в меньшем количестве по сравнению с цементом, причем последний типично присутствует в пропорции приблизительно 900 кг на м3 бетона.
Анализ прототипа показывает:
1) что оптимизация составов конкретно направлена на высококачественные или сверхвысококачественные бетоны и в общем неприменима к обычным бетонам; и
2) что все известные в настоящее время бетоны имеют относительно высокое содержание цемента.
Таким образом, даже если стандартные бетоны, которые проявляют менее хорошие характеристики в плане прочности на сжатие, чем вышеупомянутые бетоны, например, испытываются бетоны типа В25 (то есть прочность на сжатие через 28 дней после замешивания составляет по меньшей мере 25 МПа), отмечено, что количество цемента типично составляет от 260 до 360 кг на м3 бетона. Более того, настоящие Европейские стандарты не предусматривают уровней цемента ниже 260 кг/м3 для ординарных бетонов.
В настоящее время процессы производства цемента, более конкретно, его главной составной части, клинкера, ответственны за высокие уровни выбросов диоксида углерода. Производство зерен клинкера фактически требует
а) предварительного нагревания и декарбонизации сырьевой муки, которая получается путем размалывания сырьевых материалов, которые по большей части представляют собой известняк и глину; и
b) обжиг, или клинкерование, муки при температуре 1500ºС с последующим быстрым охлаждением.
Эти две стадии производят СО2, с одной стороны, как прямой продукт декарбонизации и, с другой стороны, как побочный продукт сжигания, которое происходит на стадии обжига для повышения температуры.
Уровень выбросов, поэтому, достигает минимума приблизительно 560 кг СО2 на тонну вяжущего для стандартного бетона В25 (в расчете на средние 850 кг СО2, выбрасываемые на тонну цемента) и даже выше для ультравысококачественного бетона.
Сейчас высокие уровни выбросов диоксида углерода в стандартных процессах производства цемента и бетонных композиций составляют главную экологическую проблему и, в контексте современности, составляют предмет высоких экономических санкций.
Поэтому существует настоятельная потребность в способе, дающем возможность производить бетон с сокращением связанных с этим выбросов диоксида углерода, названного бетона, обеспечивающего удовлетворительные механические свойства и, в частности, эквивалентные таковым для существующих ординарных бетонов, в плане их применения в строительной промышленности.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Изобретение представляет смесь, включающую в массовых частях:
- от 0,4 до 4%, предпочтительно от 0,8 до 1,7%, материалов в диапазоне размеров ультратонких частиц, включающих частицы с D90 менее чем 1 мкм, и/или удельной площадью поверхности, определенной по методу ВЕТ, больше чем 6 м2/г;
- от 1 до 6%, предпочтительно от 2 до 5%, портландцемента;
- от 8 до 25%, предпочтительно от 12 до 21%, материалов в диапазоне размеров тонких частиц, включающих частицы, в которых D10 и D90 составляют от 1 мкм до 100 мкм, и с удельной площадью поверхности по ВЕТ меньше чем 5 м2/г, отличных от цемента;
- от 25 до 50%, предпочтительно от 30 до 42%, материалов в диапазоне средних размеров частиц, включающих частицы, в которых D10 и D90 составляют от 100 мкм до 5 мм; и
- от 25 до 55%, предпочтительно от 35 до 47%, материалов в диапазоне более крупных размеров частиц, включающих частицы, в которых D10 составляет больше чем 5 мм.
Изобретение также представляет премикс вяжущего, включающий
- портландцемент;
- диапазон размеров тонких частиц, как определено выше; и
- диапазон размеров ультратонких частиц, как определено выше;
в котором массовая доля портландцемента в премиксе составляет менее чем 50%, и предпочтительно от 5 до 35%, более предпочтительно от 10 до 25%.
Преимущественно массовая доля диапазона размеров ультратонких частиц в названном премиксе вяжущего составляет от 2 до 20%, предпочтительно от 5 до 10%.
Преимущественно премикс вяжущего согласно изобретению включает в массовых долях:
- от 5 до 35%, предпочтительно от 10 до 25%, портландцемента;
- от 60 до 90%, предпочтительно от 65 до 85%, материалов в диапазоне размеров тонких частиц, и
- от 2 до 20%, предпочтительно от 5 до 10%, материалов в диапазоне размеров ультратонких частиц.
Согласно одному преимущественному варианту исполнения смеси или премикса вяжущего согласно изобретению диапазон размеров тонких частиц включает материалы, выбранные из группы, состоящей из тонкой кремнеземной пыли, известняковых порошков, осажденных кремнеземов, осажденных карбонатов, пирогенных кремнеземов, природных пуццоланов, пемз, размолотой зольной пыли, размолотого гидратированного или карбонизированного кремнеземного гидравлического вяжущего, и их смесей или совместных помолов, в сухом виде или водной суспензии.
Согласно конкретному варианту исполнения смеси или премикса вяжущего согласно изобретению смесь (портландцемент и диапазон размеров тонких частиц) включает
- первый поддиапазон размеров частиц, включающий частицы, в которых D10 и D90 составляют от 1 до 10 мкм; и
- второй поддиапазон размеров частиц, включающий частицы, в которых D10 и D90 составляют от 10 до 100 мкм;
и в которой первый поддиапазон размеров частиц включает портландцемент.
Согласно одному альтернативному варианту исполнения смеси или премикса вяжущего согласно изобретению смесь (портландцемент и диапазон размеров тонких частиц) включает частицы, в которых D10 и D90 составляют от 1 до 20 мкм.
Согласно одному преимущественному варианту исполнения смеси или премикса вяжущего, как определено выше, диапазон размеров тонких частиц включает один или несколько материалов, выбранных из зольной пыли, пуццоланов, известняковых порошков, кремнеземных порошков, извести, сульфата кальция, шлаков.
Преимущественно смесь или премикс, как определено выше, включает
- портландцемент и зольную пыль; или
- портландцемент и известняковый порошок; или
- портландцемент и шлак; или
- портландцемент, зольную пыль и известняковый порошок; или
- портландцемент, зольную пыль и шлак; или
- портландцемент, известняковый порошок и шлак; или
- портландцемент, зольную пыль, известняковый порошок и шлак.
Согласно одному варианту исполнения смесь или премикс вяжущего включает портландцемент и зольную пыль и не включает шлак.
Согласно одному варианту исполнения смесь или премикс вяжущего включает портландцемент и шлак и не включает зольную пыль.
Преимущественно смесь или премикс вяжущего, как определено выше, также включает
- пластификатор,
- необязательно, ускоритель, и/или воздухововлекающий материал, и/или загуститель, и/или замедлитель.
Согласно одному преимущественному варианту исполнения премикса вяжущего, как определено выше, доля пластификатора составляет от 0,05 до 3%, предпочтительно от 0,1 до 0,5%, выраженная как массовое отношение сухого экстракта пластификатора к массе премикса вяжущего.
Изобретение также представляет смесь, включающую
- премикс вяжущего, как определено выше;
- диапазон средних размеров частиц, как определено выше; и
- диапазон более крупных размеров частиц, как определено выше.
Преимущественно, названная смесь включает, в массовых долях:
- от 10 до 35%, предпочтительно от 15 до 25%, премикса вяжущего;
- от 25 до 50%, предпочтительно от 30 до 42%, материалов в диапазоне средних размеров частиц; и от 25 до 55%, предпочтительно от 35 до 47%, материалов в диапазоне более крупных размеров частиц.
Согласно одному преимущественному варианту исполнения вышеупомянутой смеси
- диапазон средних размеров частиц включает песок и/или тонкий песок; и
- диапазон более крупных размеров частиц включает заполнители, и/или гравий, и/или мелкий щебень, и/или тонкий гравий.
Согласно одному преимущественному варианту исполнения вышеупомянутой смеси коэффициент раздвижки скелета для вяжущего составляет от 0,5 до 1,3, предпочтительно от 0,7 до 1,0.
Изобретение также представляет композицию подвижной бетонной смеси, включающую
- смесь согласно изобретению, смешанную с
- водой.
Преимущественно названная композиция подвижной бетонной смеси включает
- от 10 до 100 кг/м3, предпочтительно от 20 до 40 кг/м3, материалов в диапазоне размеров ультратонких частиц, как определено выше;
- от 25 до 150 кг/м3, предпочтительно от 50 до 120 кг/м3, более предпочтительно от 60 до 105 кг/м3, портландцемента;
- от 200 до 600 кг/м3, предпочтительно от 300 до 500 кг/м3, материалов в диапазоне размеров тонких частиц, как определено выше;
- от 600 до 1200 кг/м3, предпочтительно от 700 до 1000 кг/м3, материалов в диапазоне средних размеров частиц, как определено выше;
- от 600 до 1300 кг/м3, предпочтительно от 800 до 1100 кг/м3, материалов в диапазоне более крупных размеров частиц, как определено выше; и
- необязательно, пластификатор.
Преимущественно названная композиция подвижной бетонной смеси также включает
- ускоритель, и/или воздухововлекающий материал, и/или загуститель, и/или замедлитель.
Согласно одному преимущественному варианту исполнения композиции подвижной бетонной смеси согласно изобретению отношение W/C, где W обозначает количество воды и С обозначает количество портландцемента, составляет от 1 до 2,5, предпочтительно от 1,3 до 1,5. Другие возможные диапазоны для отношения W/C представляют собой, например: от 1 до 1,3; от 1 до 1,5; от 1,3 до 2,5; и от 1,5 до 2,5.
Согласно одному преимущественному варианту исполнения композиции подвижной бетонной смеси согласно изобретению отношение W/В, где W обозначает количество воды и В обозначает количество материалов в смеси (портландцемент и диапазон размеров тонких частиц), составляет от 0,1 до 0,45, предпочтительно от 0,18 до 0,32. Другие возможные диапазоны для отношения W/В представляют собой, например: от 0,1 до 0,18; от 0,1 до 0,32; от 0,18 до 0,45; и от 0,32 до 0,45.
Отношения W/С и W/В в особенности регулируются согласно желательному количеству цемента и конечным механическим свойствам. При более низком количестве цемента отношение также будет относительно более низким. Стандартное испытание, проводимое специалистом в этой области технологии, будет определять количество воды как относительное к количеству цемента, тонких и ультратонких частиц композиции, согласно измерениям прочности образцов на сжатие.
Преимущественно композиция подвижной бетонной смеси согласно изобретению включает от 60 до 180 л/м3, предпочтительно от 80 до 150 л/м3, более предпочтительно от 95 до 135 л/м3 воды.
Согласно одному преимущественному варианту исполнения композиция подвижной бетонной смеси согласно изобретению представляет собой самоукладывающийся бетон.
Изобретение далее представляет бетонную композицию, включающую менее чем 150 кг/м3, предпочтительно, менее чем 120 кг/м3, более предпочтительно, от 60 до 105 кг/м3 портландцемента, и имеющую прочность на сжатие, большую чем или равную 4 МПа через 16 часов после замешивания, и большую чем или равную 25 МПа, предпочтительно большую чем или равную 30 МПа, через 28 дней после замешивания.
Изобретение также представляет объект из отвержденного бетона из композиции, определенной выше.
Изобретение далее представляет объект из отвержденного бетона, включающий
- от 10 до 100 кг/м3, предпочтительно от 20 до 40 кг/м3, материалов в диапазоне размеров ультратонких частиц, как определено выше;
- гидраты портландцемента в количестве, соответствующем количеству портландцемента от 25 до 150 кг/м3, предпочтительно от 50 до 120 кг/м3, более предпочтительно от 60 до 105 кг/м3;
- от 200 до 600 кг/м3, предпочтительно от 300 до 500 кг/м3, материалов в диапазоне размеров тонких частиц, как определено выше;
- от 600 до 1200 кг/м3, предпочтительно от 700 до 1000 кг/м3, материалов в диапазоне средних размеров частиц, как определено выше;
- от 600 до 1300 кг/м3, предпочтительно от 800 до 1100 кг/м3, материалов в диапазоне более крупных размеров частиц, как определено выше.
Согласно одному преимущественному варианту исполнения объекта из отвержденного бетона коэффициент раздвижки скелета вяжущим составляет от 0,5 до 1,3, предпочтительно от 0,7 до 1,0.
Преимущественно объект из отвержденного бетона согласно изобретению проявляет усадку менее чем 400 мкм/м, предпочтительно менее чем 200 мкм/м, через 80 дней.
Изобретение далее представляет способ получения композиции подвижной бетонной смеси, включающий стадию
- затворения смеси согласно изобретению водой.
Более того, изобретение представляет способ получения композиции подвижной бетонной смеси, включающий стадию
- смешивания премикса вяжущего согласно изобретению с материалами в диапазоне средних размеров частиц, как определено выше, материалами в диапазоне более крупных размеров частиц, как определено выше, и водой.
Согласно одному варианту исполнения способа получения композиции подвижной бетонной смеси согласно изобретению, количество используемого портландцемента составляет менее чем 150 кг/м3, предпочтительно менее чем 120 кг/м3, более предпочтительно от 60 до 105 кг/м3.
Изобретение далее представляет способ получения композиции подвижной бетонной смеси, включающий стадию смешивания
- от 10 до 100 кг/м3, предпочтительно от 20 до 40 кг/м3, материалов в диапазоне размеров ультратонких частиц, как определено выше;
- от 25 до 150 кг/м3, предпочтительно от 50 до 120 кг/м3, более предпочтительно от 60 до 105 кг/м3 портландцемента;
- от 200 до 600 кг/м3, предпочтительно от 300 до 500 кг/м3, материалов в диапазоне размеров тонких частиц, как определено выше;
- от 600 до 1200 кг/м3, предпочтительно от 700 до 1000 кг/м3, материалов в диапазоне средних размеров частиц, как определено выше;
- от 600 до 1300 кг/м3, предпочтительно от 800 до 1100 кг/м3, материалов в диапазоне более крупных размеров частиц, как определено выше; и
- необязательно, пластификатора, и/или ускорителя, и/или воздухововлекающего материала, и/или загустителя, и/или замедлителя с
- водой.
Согласно одному преимущественному варианту осуществления способа получения композиции подвижной бетонной смеси согласно изобретению, смешивание проводится при отношении W/C, где W обозначает количество воды и С обозначает количество портландцемента, от 1 до 2,5, предпочтительно от 1,3 до 1,5.
Согласно одному преимущественному варианту осуществления способа получения композиции подвижной бетонной смеси согласно изобретению, смешивание проводится при отношении W/В от 0,1 до 0,45, предпочтительно от 0,18 до 0,32, где W обозначает количество воды и В обозначает количество материалов в смеси (портландцемент и диапазон размеров тонких частиц).
Согласно одному преимущественному варианту осуществления способа получения композиции подвижной бетонной смеси согласно изобретению, количество используемой воды составляет от 60 до 180 л/м3, предпочтительно от 80 до 150 л/м3, более предпочтительно от 95 до 135 л/м3.
Согласно одному варианту осуществления способа получения композиции подвижной бетонной смеси согласно изобретению, прочность на сжатие составляет величину, большую чем или равную 4 МПа через 16 часов после замешивания.
Согласно одному варианту осуществления способа получения композиции подвижной бетонной смеси согласно изобретению, прочность на сжатие составляет величину, большую чем или равную 25 МПа, предпочтительно большую чем 30 МПа, через 28 дней после замешивания.
Изобретение далее представляет способ получения литой бетонной смеси, включающий стадию
- заливки композиции подвижной бетонной смеси согласно изобретению или получаемой с помощью вышеупомянутого способа.
Изобретение также представляет способ получения объекта из бетона, включающий стадию
- отверждения композиции подвижной бетонной смеси согласно изобретению или получаемой способом получения вышеупомянутой композиции подвижной бетонной смеси, или композиции литой бетонной смеси, как описано выше.
Изобретение открывает возможность соответствовать необходимости сокращения выбросов СО2, до сих пор неудовлетворенной с известными бетонами. Действительно, количество цемента (и, в частности, клинкера), используемого в пределах области настоящего изобретения, является меньшим, чем требуется обычно. Например, для состава согласно изобретению с 70 кг клинкера на м3 бетона выбросы СО2 составляют порядка 110 кг на тонну вяжущего, что означает сокращение выбросов СО2 почти на 80% по сравнению со стандартным бетоном типа В25, в то же время не допуская какого-либо существенного снижения механических характеристик бетона, поскольку изобретение представляет бетон с механической прочностью на сжатие, более высокой чем или равной 25 МПа через 28 дней после замешивания.
Бетон, получаемый согласно изобретению, также имеет следующие преимущества:
- его поведение в отношении коррозии арматуры в железобетоне является по меньшей мере таким же хорошим или даже лучшим по сравнению со стандартным бетоном типа В25;
- его пористость и проницаемость являются меньшими, чем таковые у стандартного бетона типа В25;
- его усадка является меньшей, чем таковая у стандартного бетона типа В25;
- его устойчивость к диффузии хлоридов является лучшей по сравнению со стандартным бетоном типа В25.
Различные задачи и преимущества изобретения достигаются с помощью полной оптимизации всех параметров состава, и в особенности с помощью
- разработки композиций вяжущих, характерных подразделением материалов на отдельные диапазоны размеров частиц, в особенности на диапазон тонких частиц, диапазон средних размеров частиц, диапазон более крупных частиц и диапазон ультратонких частиц, которое позволяет оптимизировать упаковку различных частиц и оптимизировать коэффициент раздвижки скелета вяжущим;
- присутствие, в дополнение к цементу, нецементных вяжущих, принадлежащих к диапазону размеров тонких частиц, которые находятся в преобладающем количестве относительно цемента, выбор и доля которых являются оптимизированными;
- применение ультратонких компонентов, в особенности компонентов с пуццолановой реакцией, способных участвовать в функции гидравлического вяжущего;
- регулирование количества требуемой воды;
- оптимизация различных добавок.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг.1а-1d представляют профили гранулометрического состава разнообразных материалов, используемых для получения сухих композиций согласно изобретению, а также связанных с этим смешанных бетонов. Размер в мкм показан по х-оси и процентная доля по объему по у-оси. Для разъяснения смысла наименований материалов может быть сделана ссылка на раздел примеров. Фиг.1а тем самым представляет профиль материалов, использованных, например, ниже в составах FA 1, FA 2, FA 7 или FA 8; Фиг.1b представляет таковой для материалов, использованных ниже для примера в составе FA 3; Фиг.1с представляет таковой для материалов, использованных ниже для примера в составах FA 4 или FA 5; Фиг.1d представляет таковой для материалов, использованных ниже для примера в составах FC1, FC2 или FC3.
Фиг.2 представляет собой фотографию, которая приводит графическое изображение типичной композиции сухой строительной растворной смеси согласно изобретению (слева) в сравнении со стандартной композицией сухой строительной растворной смеси типа В25 (справа). Различные составные части расположены в следующем порядке: А - заполнитель (известняковый заполнитель в образце справа, зольная пыль в образце слева); В - цемент; С - песок; D - заполнители; Е - вода; F - тонкая кремнеземная пыль.
Фиг.3 представляет усадку, измеренную на бетоне согласно изобретению (×) в сравнении с контрольным стандартным бетоном В25 (□). Время, в днях, показано по х-оси и изменение размеров бетона, в процентах, по у-оси.
ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Изобретение теперь будет описано более подробно и не ограничивается нижеследующим описанием.
Диапазоны гранулометрического состава
Изобретение представляет сухие строительные растворные композиции в форме смесей разнообразных компонентов в следующих массовых пропорциях:
- от 1 до 6%, предпочтительно от 2 до 5%, портландцемента;
- от 0,4 до 4%, предпочтительно от 0,8 до 1,7%, материалов в диапазоне размеров ультратонких частиц;
- от 8 до 25%, предпочтительно от 12 до 21%, материалов в диапазоне размеров тонких частиц, отличных от цемента;
- от 25 до 50%, предпочтительно от 30 до 42%, материалов в диапазоне средних размеров частиц;
- от 25 до 55%, предпочтительно от 35 до 47%, материалов в диапазоне более крупных размеров частиц.
Материалы, которые составляют вышеупомянутые смеси, присутствуют в форме частиц, то есть отдельных фрагментов материалов. Гранулометрический состав делает возможным провести подразделение компонентов на несколько «диапазонов размеров частиц», то есть по существу на отдельные разделы.
Таким образом, диапазон размеров ультратонких частиц составлен из
(i) частиц с D90 менее чем 1 мкм, или
(ii) частиц с удельной площадью поверхности по ВЕТ более чем 6 м2/г, или
(iii) частиц с D90 менее чем 1 мкм и с удельной площадью поверхности по ВЕТ более чем 6 м2/г.
Диапазон размеров тонких частиц соответствует группе частиц, в которой значения D10 и D90 составляют от 1 мкм до 100 мкм, и удельная площадь поверхности по ВЕТ составляет менее чем 5 м2/г. Диапазон средних размеров частиц соответствует группе частиц, в которой значения D10 и D90 составляют от 100 мкм до 5 мм. И диапазон более крупных размеров частиц соответствует группе частиц, в которой значение D10 составляет более чем 5 мм.
Величина D90 соответствует 90-му процентилю гранулометрического состава, т.е. 90% частиц являются более мелкими, чем D90, и 10% более крупными, чем D90. Подобным образом D10 соответствует 10-му процентилю гранулометрического состава, то есть, 10% частиц имеют размер, более мелкий, чем D10, и 90% имеют размер, более крупный, чем D10.
Величины D10 и D90 обозначаются Dv10 и Dv90, как показано на чертежах.
Другими словами, по меньшей мере 80% частиц в диапазоне размеров тонких частиц (предпочтительно по меньшей мере 90%, более предпочтительно по меньшей мере 95% или даже по меньшей мере 99%) имеют размер от 1 мкм до 100 мкм; по меньшей мере 80% частиц в диапазоне средних размеров частиц (предпочтительно по меньшей мере 90%, более предпочтительно по меньшей мере 95% или даже по меньшей мере 99%) имеют размер от 100 мкм до 5 мм; по меньшей мере 90% частиц в диапазоне более крупных размеров частиц (предпочтительно по меньшей мере 95% или даже по меньшей мере 99%) имеют размер больше чем 5 мм; и, согласно вариантам осуществления, соответствующим вышеупомянутым случаям (i) и (iii), по меньшей мере, 90% частиц в диапазоне размеров ультратонких частиц (предпочтительно по меньшей мере 95%, более предпочтительно по меньшей мере 99%) имеют размер менее чем 1 мкм. Четыре диапазона размеров частиц (ультратонких, тонких, средних и более крупных) тем самым соответствуют по существу отдельным размерным разделам.
Значения D10 и D90 группы частиц в общем могут быть определены с помощью лазерного гранулометрического анализа для частиц, более мелких, чем 200 мкм, или путем просеивания для частиц, более крупных, чем 200 мкм.
Тем не менее, когда отдельные частицы проявляют склонность к агрегированию, их размер следует определять с помощью электронной микроскопии, при условии, что кажущийся размер, измеренный с помощью лазерного дифракционного гранулометрического анализа, затем оказывается большим, чем реальный размер частиц, что могло бы исказить интерпретацию результатов.
Удельная площадь поверхности по ВЕТ представляет собой показатель общей реальной площади поверхности частиц, который учитывает наличие рельефных неровностей, неоднородностей, поверхностных или внутренних полостей, и пористости.
Согласно одному альтернативному варианту исполнения может иметь место перекрывание размеров частиц в диапазонах тонких и ультратонких частиц, то есть более чем 10% частиц в диапазонах ультратонких и тонких частиц соответственно могут относиться к одному и тому же диапазону размеров. В этом случае различение тонкого и ультратонкого диапазонов обеспечивается с помощью удельной площади поверхности по ВЕТ, причем к ультратонким частицам относятся таковые, которые имеют самую высокую удельную площадь поверхности (и тем самым высокую реакционную способность). В частности, в этом случае удельная площадь поверхности по ВЕТ материалов в ультратонком диапазоне предпочтительно составляет более чем 10 м2/г, преимущественно более чем 30 м2/г, и более предпочтительно больше, чем 80 м2/г. Более того, следует отметить, что материалы в ультратонком диапазоне также могут иметь такие предпочтительные значения удельной площади поверхности по ВЕТ даже в случае, где их величина D90 составляет менее чем 1 мкм.
Один пример ситуации, где ультратонкий и тонкий диапазоны различаются только по значениям удельной площади поверхности по ВЕТ, но не по размеру частиц, может быть таким, где ультратонкие частицы включают измельченное гидратированное гидравлическое вяжущее. В этом примере ультратонкие частицы могут иметь размер порядка 10 мкм при удельной площади поверхности, которая может составлять величину порядка 100 м2/г (благодаря пористости этого материала).
Еще один конкретный вариант осуществления настоящего изобретения позволяет подразделить смесь, включающую цемент и диапазон размеров тонких частиц, на два поддиапазона размеров частиц:
- первый поддиапазон размеров частиц, составленный частицами, в которых D10 и D90 составляют от 1 до 10 мкм; и
- второй поддиапазон размеров частиц, составленный частицами, в которых D10 и D90 составляют от 10 до 100 мкм.
В этом случае цемент, в частности, принадлежит к первому поддиапазону размеров частиц.
Другими словами, согласно этому варианту осуществления, по меньшей мере 80% частиц в первом поддиапазоне размеров частиц (предпочтительно по меньшей мере 90%, наиболее предпочтительно по меньшей мере 95% или даже по меньшей мере 99%) имеют размер от 1 до 10 мкм, и по меньшей мере 80% частиц во втором поддиапазоне размеров частиц (предпочтительно по меньшей мере 90%, наиболее предпочтительно по меньшей мере 95%, даже по меньшей мере 99%) имеют размер от 10 до 100 мкм. Еще согласно этому варианту осуществления смесь включает 5 диапазонов размеров частиц или 5 по существу отдельных разделов: ультратонкий диапазон (менее чем 1 мкм); первый поддиапазон из смеси «цемент + тонкий диапазон» (1 мкм - 10 мкм); второй поддиапазон из смеси «цемент + тонкий диапазон» (10 мкм - 100 мкм); средний диапазон (100 мкм - 5 мм) и более крупный диапазон (более чем 5 мм).
Согласно одному альтернативному варианту осуществления смесь, включающая цемент и диапазон размеров тонких частиц, включает частицы, в которых D10 и D90 составляют от 1 до 20 мкм. Другими словами, согласно этому варианту осуществления, по меньшей мере, 80% частиц цемента или материалов в диапазоне размеров тонких частиц (предпочтительно по меньшей мере 90%, наиболее предпочтительно по меньшей мере 95%, даже по меньшей мере 99%) имеют размер от 1 до 20 мкм. Этот вариант осуществления соответствует случаю, где профиль гранулометрического состава включает нарушение последовательности: смесь почти не содержит частиц с диаметром от 20 до 100 мкм.
Различные варианты осуществления, описанные выше, соответствуют оптимизированным состояниям упаковки зерен или частиц. Изобретение также представляет, как описано выше, премиксы вяжущих, которые соответствуют этим смесям для сухих строительных растворных смесей и которые не содержат ни материалов в диапазоне средних размеров частиц, ни материалов в диапазоне более крупных размеров частиц. Названные премиксы вяжущих предназначены для смешивания с материалами в диапазоне средних и более крупных размеров частиц перед приготовлением бетона или в ходе такового.
Предпочтительно, смеси согласно изобретению характеризуются коэффициентом раздвижки скелета вяжущим, составляющим от 0,5 до 1,3, предпочтительно от 0,7 до 1,0. Термин «скелет» обозначает материалы в диапазоне средних и более крупных размеров частиц, и «вяжущий» обозначает цемент, а также материалы в диапазоне размеров тонких и ультратонких частиц. Обсуждаемый термин «коэффициент раздвижки», поэтому, обозначает соотношение между объемом вяжущего и объемом пор скелета. Этот коэффициент рассчитывается главным образом из пористости при вибрационном уплотнении скелета.
Выбор материалов
В композициях, как определено выше, цемент представляет собой портландцемент, выбранный из портландцементов стандартного СРА-типа (Artificial Portland Cement, портландцемент из искусственной смеси сырьевых материалов), и главным образом из цементов, описанных в Европейском Стандарте EN 197-1. Например, возможно применение цемента СЕМ1 или СЕМ2 52.5 N, или R, или РМ (для морского строительства) или цемента PMES (для морского строительства, сульфатированная вода). Цемент может быть HRI-типа (High Initial Strength, высокой ранней прочности). В некоторых примерах, в особенности для СЕМ2-типа, портландцемент не включает чистого клинкера, но это при условии, что к нему подмешан по меньшей мере один дополнительный материал (шлак, тонкая кремнеземная пыль, пуццолан, зольная пыль, кальцинированный сланец, известь и т.д.) в количестве до 37%. В этих случаях вышеупомянутые количества цемента более конкретно соответствуют количествам клинкера, тогда как дополнительные материалы рассчитываются в пределах подходящего диапазона размеров частиц (например, типично в диапазоне размеров тонких частиц для шлакового компонента, диапазоне размеров ультратонких частиц для компонента тонкой кремнеземной пыли, и т.д.).
Диапазон более крупных размеров частиц может включать заполнители, и/или гравий, и/или мелкий щебень, и/или тонкий гравий.
Диапазон средних размеров частиц может главным образом включать песок или тонкий песок.
Диапазон размеров тонких частиц может включать один или более материалов, выбранных из зольной пыли, пуццоланов, известняковых порошков, кремнеземных порошков, извести, сульфата кальция (в частности, гипса в безводной или полугидратной форме), шлаков.
Слово «заполнители» иногда применяется для обозначения многих из вышеупомянутых материалов.
Особый интерес представляет смешивание цемента со следующими продуктами: только зольная пыль; или только известняковый порошок; или только шлак; или зольная пыль и известняковый порошок; или зольная пыль и шлак; или известняковый порошок и шлак; или зольная пыль, известняковый порошок и шлак.
Согласно одному варианту диапазон размеров тонких частиц включает зольную пыль (необязательно в сочетании с еще другими материалами), но не включает шлак. Согласно одному альтернативному варианту диапазон размеров тонких частиц включает шлак (необязательно в сочетании с еще другими материалами), но не включает зольную пыль. Эти два варианта ограничивают общий вклад СО2 премикса и смеси, поскольку производство шлака и зольной пыли связано с выбросами СО2. Это преимущество в плане ограничения вклада СО2 в особенности очевидно при рассмотрении первого варианта.
Диапазон размеров ультратонких частиц может включать материалы, выбранные из группы, состоящей из тонкой кремнеземной пыли, известняковых порошков, осажденных кремнеземов, осажденных карбонатов, пирогенных кремнеземов, природных пуццоланов, пемз, размолотой зольной пыли, размолотого гидратированного или карбонизированного кремнеземного гидравлического вяжущего и смесей или совместных помолов таковых, в сухом виде или в водной суспензии.
Термин «размолотое гидратированное кремнеземное гидравлическое вяжущее» главным образом обозначает продукты, описанные в документе FR 2708592.
Любой стандартный пластификатор (или суперпластифика