Способ выделения и концентрирования органических веществ из водных сред
Иллюстрации
Показать всеИзобретение относится к области химии, а именно разделения жидких смесей, и может применяться в различных отраслях промышленности и сельского хозяйства. Способ выделения и концентрирования органических веществ из водных сред заключается в термоградиентном первапорационном разделении жидких смесей через мембрану, селективную по целевому компоненту, путем сбора паров пермеата конденсацией на твердой поверхности, температура которой ниже температуры разделяемой смеси. В качестве материала мембраны используют композицию, состоящую из поли(1-триметилсилил-1-пропина) с числом звеньев в цепи n=900-25000 и молекулярной массой ММ=100000-2800000 и полидиметилсилметилена с числом звеньев в цепи n=1200-17000 и молекулярной массой ММ=86000-1200000. При этом содержание полидиметилсилметилена в составе композиции от 1,0-12,0 мас.%. Изобретение позволяет увеличить эффективность разделения и предотвращать экологические проблемы. 3 ил., 5 табл.
Реферат
Изобретение относится к области химии, а именно разделения жидких смесей, и может применяться в различных отраслях промышленности и сельского хозяйства. При этом применение мембранной технологии позволяет не только решать технологические задачи, но и предотвращать экологические проблемы, связанные с загрязнением окружающей среды.
Одним из мембранных процессов разделения жидких смесей, еще ограниченно применяемым в промышленных масштабах, является первапорация. Процесс первапорации позволяет эффективно разделять различные водно-органические смеси (осушку органических растворителей и очистку сточных вод) и смеси органических веществ. Перспективность первапорации связана как с актуальностью решаемых задач, так и с высокой эффективностью процесса первапорации по сравнению с другими процессами разделения, с возможностью разделения азеотропных смесей, малой энергоемкостью, безреагентностью и компактностью оборудования.
Первапорация представляет собой процесс мембранного разделения жидкостей, при котором разделяемая смесь (питающий поток) приводится в контакт с одной стороной селективно проницаемой непористой мембраны, а проникшие через мембрану компоненты (пермеат) удаляются в виде пара с ее обратной стороны.
Чаще всего на практике движущей силой процесса является градиент активности, который достигается искусственным понижением давления паров разделяемой жидкой смеси с обратной стороны мембраны одним из методов:
- либо вакуумированием;
- либо сдувкой паров проникающей смеси инертным газом;
- либо конденсацией на поверхности охлаждаемого теплообменника.
Только первый метод нашел применение (по экономическим соображениям) в крупных первапорационных установках (по крайней мере, для процессов обезвоживания органических растворителей), когда пермеат непрерывно конденсируется в вакуумируемом охлаждаемом теплообменнике и выводится из системы (В.В.Волков «Разделение жидкостей испарением через полимерные мембраны» Изв. Академии наук. Серия химическая, 1994, №2, с.208).
Однако основным недостатком вакуумной первапорации является применение специального оборудования, аппаратов, насосов для создания вакуума, что делает процесс сложным. Кроме того, вакуумирование - это процесс энергоемкий. Оба этих обстоятельства делают процесс вакуумной первапорации дорогостоящим и сложным с точки зрения аппаратурного оформления.
Два других метода чаще используются в лабораторных исследованиях.
Так, например, известен способ концентрирования растворов водорастворимых органических веществ и устройство для его осуществления (пат. JP 2005177535 (А), МПК В01D 63/00, опубл. 2005.07.07), основанный на использовании тепловой энергии с помощью разделительной мембраны с ограниченной площадью. Данный способ заключается в двух последовательных стадиях концентрирования паров в пароразделительном модуле и последующем первапорационном разделении в первапорационном модуле. Сначала в пароразделительном модуле разделяют пар, который получают дистилляцией исходной смеси, затем обогащенную по целевому компоненту смесь обогащают в первапорационном модуле, получая в качестве конечного продукта высококонцентрированный раствор органического вещества в воде.
Однако описанное техническое решение, хотя и достигает в конечном итоге высокой концентрации целевого компонента в растворе, не является оптимальным в решении поставленной задачи, так как в процессе концентрирования вещества присутствует стадия дистилляции исходной смеси, которая является крайне энергоемким процессом и, следовательно, снижает рентабельность концентрирования.
Известен способ разделения жидких смесей, паровых или парогазовых смесей, описанный в патенте ЕР 218019, В01D 61/36, 15.04.1987 г., методом термопервапорации с применением композиционной мембраны, в которой верхним селективным непористым слоем является гидрофильный полимер (ацетат целлюлозы, полисульфон или поливиниловый спирт), который в свою очередь нанесен на гидрофобную полимерную пористую подложку. Способ используют для выделения и концентрирования воды из водно-органических смесей и является наиболее близким аналогом.
Основным его недостатком является то обстоятельство, что конденсация пермеата проводится в поток охлаждающей жидкости, обязательным требованием к которой является отсутствие ее затекания в поры гидрофобной пористой подложки. Тем не менее, частичный перенос с водой органического компонента приводит к увеличению сродства сконденсированного пермеата к материалу пористой подложки и, как следствие, к затеканию и заполнению порового пространства подложки смесью охлаждающей жидкости и пермеата, что приводит к снижению массообменных характеристик мембраны и невозможности использования этого способа для выделения и концентрирования органических веществ.
Известен способ для выделения растворенного компонента с использованием паропроницаемой мембраны и последующей конденсации пара на охлаждаемой стенке, описанный в патенте US 3563860, В01D 1/22, 1971. При этом мембрана пропускает только один компонент разделяемой смеси (вторым обычно являются соли или ПАВ, которые не переходят в газовую фазу). Способ реализуется с помощью установки, состоящей из камеры, закрытой с обеих сторон мембраной. Через нее циркулирует горячий поток жидкости, из которой должен быть выделен желаемый компонент, например водяной пар. Установка содержит также камеру, закрытую с обеих сторон водонепроницаемой теплопроводной стенкой. Через эту камеру циркулирует охлаждающая жидкость, в качестве которой может быть использована жидкость, подлежащая обработке. Между этими камерами размещена камера сбора дистиллята, одной стенкой которой является указанная мембрана, пропускающая пар, а другой указанная водонепроницаемая теплопроводная стенка, на которой конденсируется пар. Горячий и холодный потоки жидкости из распределительных трубопроводов, соединенных соответственно с теплообменником и насосом холодной воды, параллельными потоками подаются в каждую соответствующую камеру и противоточно циркулируют в них.
Область применения описанного технического решения ограничена, поскольку практически невозможно подобрать мембрану, пропускающую только один компонент раствора. Данный метод применяется в основном для опреснения воды, поскольку растворенные в воде соли не переходят в пар. Однако для выделения и концентрирования органических соединений из водных сред он не применим.
Известно, что с помощью асимметричной поливинилтриметилсилановой (ПВТМС) мембраны можно проводить термопервапорационное разделение неорганических веществ, в том числе летучих кислот, если ПВТМС мембрану модифицировать в плазме низкочастотного тлеющего разряда в атмосфере воздуха (А.Б.Гильман, И.Б.Елкина, В.В.Угров, В.В.Волков «Плазмохимическая модификация поливинтриметилсилановой мембраны для термопервапорации» Химия высоких энергий, 1998, том 32, №4, с.305-309).
Но описанный способ не пригоден для выделения и концентрирования органических веществ из водных сред, так как поверхность плазменномодифицированной ПВТМС мембраны приобретает гидрофильные свойства и применима только для выделения воды.
Наиболее близким по технической сущности и достигаемому результату является способ, описанный в работе E.S.Fernandez, P.Geerdink, E.L.V.Goether, Desalination, 2010, V.250. PP.1053-1055, согласно которому описано применение термопервапорации с целью эффективного возврата тепла в процессе первапорационного разделения путем использования теплоты конденсации пермеата для прямого нагрева потока разделяемой смеси (питающего потока). Мембранный модуль состоит из мембранной камеры с разделительной мембраной и камеры конденсации с непроницаемой пластиной, на которой осуществляется конденсация пермеата. Мембранная камера и камера конденсации расположены близко друг от друга (расстояние - 2 мм) таким образом, что мембрана находится напротив непроницаемой пластины. Между камерами имеется воздушный зазор, который позволяет удалять сконденсированный пермеат с непроницаемой пластины. Поток исходной разделяемой смеси (питающий поток) подается при температуре Т1 1 в камеру конденсации и нагревается до температуры Т2 1 за счет энтальпии конденсации пермеата. Затем питающий поток нагревается до температуры Т2 0 с использованием внешнего источника тепла и подается в мембранную камеру. За счет разницы давления паров с обеих сторон мембраны (со стороны исходного потока и пермеата) часть питающего потока проникает через мембрану в виде пара и конденсируется на непроницаемой пластине камеры конденсации. Этот принцип был экспериментально исследован для выделения этанола из смесей этанол-вода и показано, что можно получить возврат тепла до 33% и реализовать потоки пермеата через мембрану до 0,5 кг/м2 ч при факторе разделения этанол/вода около 3.
С точки зрения задач выделения и концентрирования органических веществ из водных сред, основным недостатком описанного способа являются недостаточно высокие значения потока пермеата до 0,5 кг/м2·ч и фактор разделения около 3.
Кроме того, поток пермеата 0,5 кг/м2·ч получен при концентрации более 50% этанола в смеси этанол-вода, в то время как известно, что первапорация используется только в случае, когда через мембрану селективно проникает компонент с малым содержанием в разделяемой смеси (N.Winn, Chem. Eng. Prog. 2001, V.97, PP.66-72). Это связано с тем, что на проницаемость пермеата через мембрану необходимо затратить скрытую теплоту испарения для перевода пермеата из жидкого в парообразное состояние. Однако при снижении концентрации этанола в смеси этанол-вода до 10%, как указывают авторы работы, поток пермеата снижается до значений ниже 0,2 кг/м2ч.
Задача предлагаемого изобретения заключается в разработке способа выделения и концентрирования жидких органических веществ из водных сред простым и эффективным методом термопервапорации, обеспечивающего аналогичную селективность разделения и массоперенос выделяемого целевого компонента, как и в условиях вакуумной первапорации.
Поставленная задача решается тем, что предложен способ выделения и концентрирования органических веществ из водных сред с помощью термоградиентного первапорационного разделения жидких смесей через мембрану, селективную по целевому компоненту, путем сбора паров пермеата конденсацией на твердой поверхности, температура которой ниже температуры разделяемой смеси, в котором в качестве материала мембраны используют композицию, состоящую из поли(1-триметилсилил-1-пропина) общей формулы
,
где число звеньев в цепи n=900-25000 (молекулярная масса ММ=100000-2800000
и полидиметилсилметилена общей формулы
,
где число звеньев в цепи n=1200-17000 (ММ=86000-1200000), при содержании полидиметилсилметилена в составе композиции от 1,0 до 12,0 мас.%.
Технический результат, который может быть получен от использования предлагаемого технического решения, заключается в увеличении потока пермеата и фактора разделения при выделении и концентрировании органических соединений из водных сред.
Термопервапорационная установка состоит из термопервапорационного модуля (1) и двух контуров различной температуры. Схема установки приведена на фиг.1. Первый контур состоит из термостатируемой емкости с хладоагентом (2), который циркулирует в контуре с помощью насоса (3). Второй контур состоит из термостатируемой емкости с разделяемой жидкостью (4) и перистальтического насоса (5), с помощью которого осуществляется циркуляция жидкости в контуре. В собранном состоянии две части ячейки разделены мембраной (6) и твердой поверхностью (7), между которыми поддерживается воздушный зазор 0,5-4,0 мм (8). В ходе эксперимента пары пермеата испаряются с поверхности мембраны и конденсируются на твердой поверхности. Конденсат стекает с твердой поверхности под действием силы тяжести и накапливается в емкости для сбора пермеата (модуль ориентируется таким образом, что мембрана и твердая поверхность конденсации располагаются вертикально).
По разности масс емкости для сбора пермеата до и после проведения эксперимента определялась масса пермеата. Время проведения эксперимента составляет 4-6 часов.
В случае термопервапорации бинарных водно-органических смесей концентрация исходной смеси и пермеата определялась рефрактометрически и методом газовой хроматографии.
Состав многокомпонентных смесей анализировали методом газовой хроматографии при помощи хроматографа Кристаллюкс 4000М с использованием пламенно ионизационного детектора.
Общий поток пермеата определяют весовым методом по формуле
где m - масса пермеата (кг), проникшего через мембрану площадью S (м2), за время t (ч).
Фактор разделения α определяют по формуле:
где xо и xв - массовые доли органического компонента и воды соответственно в разделяемой смеси, а yо и yв - массовые доли органического компонента и воды соответственно в пермеате.
Нижеследующие примеры иллюстрируют предлагаемое техническое решение, но никоим образом не ограничивают область его применения.
Примеры 1-2
Проводят термопервапорационное выделение и концентрированно 1-бутанола из смеси 1-бутанол/вода с концентрацией 1-бутанола в разделяемом растворе, равной 1,0% и 1,5 мас.% через мембрану, выполненную из композиции, содержащей поли(1-триметилсилил-1-пропин) (ПТМСП) (ММ=200000) и полидиметилсилметилен (ПДМСМ) (ММ=430000), в количестве 98,8/1,2 мас.% соответственно.
Толщина мембраны составляет 42 мкм.
Температуру разделяемой исходной смеси поддерживают равной 60°С, при этом температуру конденсирующей поверхности поддерживают равной 15°С. Толщина воздушного зазора составляет 2 мм (толщина воздушного зазора выбрана исходя из условий термопервапорационного выделения и концентирирования органических веществ из водных сред по прототипу).
Результаты выделения и концентрирования 1-бутанола представлены в таблице 1.
Таблица 1 | |||
№ примера | Поток пермеата кг/м2·ч | Концентрация 1-бутанола в пермеате, мас.% | Фактор разделения |
1 | 0,15 | 22 | 27 |
2 | 0,19 | 36 | 38 |
Из данных таблицы 1 видно, что предлагаемый способ позволяет выделять и концентрировать 1-бутанол из водных растворов.
Пример 3
Проводят термопервапорационное выделение и концентрирование водного раствора органических веществ, моделирующего многокомпонентную ферментационную смесь ацетон-бутанол-этанольной ферментации (АБЭ ферментации) при температуре исходного раствора 60°С, температуре конденсирующей поверхности 15°С и толщине мембраны 42 мкм. В качестве материала мембраны используют композицию, содержащую поли(1-триметилсилил-1-пропин) (ПТМСП) (ММ=200000) и полидиметилсилметилен (ПДМСМ) (MM=430000), в количестве 98,8/1,2 мас.% соответственно.
Результаты выделения и концентрирования компонентов пермеата представлены в таблице 2.
Таблица 2 | |||
Ферментационная смесь | Состав, мас.% | ||
Этанол | 1-бутанол | Ацетон | |
Разделяемая смесь | 0.15 | 1.00 | 0.45 |
Пермеат | 0.74 | 20.41 | 1.70 |
Из данных таблицы 2 видно, что предлагаемый способ позволяет выделять и концентрировать органические вещества из многокомпонентных водных растворов.
Примеры 4-5
Проводят термопервапорационное выделение и концентрирование этанола из смеси этанол/вода с концентрацией этанола в разделяемом растворе 5,0 и 10 мас.% через ПТМСП/ПДМСМ мембрану. В качестве материала мембраны используют композицию, содержащую ПТМСП (ММ=630000) и ПДМСМ (ММ=360000) в количестве 95,5/4,5 мас.% соответственно.
Толщина мембраны составляет 4 мкм.
Температуру разделяемой исходной смеси изменяют от 41 до 74°С, при этом температуру конденсирующей поверхности поддерживают равной 15°С.
Результаты выделения и концентрирования 1-бутанола представлены в таблице 3.
Таблица 3 | ||||
№ примера | Концентрация этанола в исходной смеси, мас.% | Поток пермеата кг/м2·ч | Концентрация этанола в пермеате, мас.% | Фактор разделения |
4 | 5,0 | 1,56 | 17 | 4 |
5 | 10,0 | 2,50 | 38 | 6 |
Из анализа данных таблицы 3 видно, что при проведении выделения и концентрирования этанола предлагаемым способом при концентрации этанола в разделяемой смеси, равной 10 мас.%, поток пермеата составляет примерно 2,5 кг/м2·ч, а фактор разделения равен 6. А при той же исходной концентрации этанола в разделяемой смеси при проведении термопервапорации в условиях прототипа поток пермеата чуть ниже 0,2 кг/м2·ч, что более чем в 10 раз меньше потока пермеата при проведении первапорации предлагаемым способом (при максимальном факторе разделения, указанном в прототипе, равном 3).
Примеры 6-9
Проводят термопервапорационное выделение и концентрирование 1-бутанола из смеси 1-бутанол/вода с концентрацией 1-бутанола в разделяемом растворе, равной 2,0 мас.%, через ПТМСП/ПДМСМ мембрану, толщина которой составляет 40 мкм. В качестве материала мембраны используют композицию, содержащую поли(1-триметилсилил-1-пропин) (ПТМСП) (ММ=200000) и полидиметилсилметилен (ПДМСМ) (ММ=1200000), в количестве 99/1 мас.% соответственно.
Температуру разделяемой исходной смеси поддерживают равной 40°С, но при этом температуру конденсирующей поверхности изменяют от 5 до 20°С.
Результаты выделения и концентрирования 1-бутанола представлены в таблице 4.
Таблица 4 | ||||
№ примера | Температура конденсации, °С | Поток пермеата, кг/м2·ч | Концентрация 1-бутанола в пермеате, % | Фактор разделения |
6 | 5 | 0,15 | 49 | 47 |
7 | 10 | 0,14 | 52 | 53 |
8 | 15 | 0,1 | 43 | 37 |
9 | 20 | 0,04 | 10 | 5 |
Примеры 10-13
Проводят выделение и концентрирование 1-бутанола из смеси 1-бутанол/вода с концентрацией 1-бутанола в разделяемом растворе, равной 2,0 мас.%, через ПТМСП/ПДМСМ мембрану, толщина которой составляет 38 мкм в условиях вакуумной первапорации. В качестве материала мембраны используют композицию, содержащую поли(1-триметилсилил-1-пропин) (ПТМСП) (ММ=200000) и полидиметилсилметилен (ПДМСМ) (ММ=1200000), в количестве 99/1 мас.% соответственно.
Температуру разделяемой исходной смеси поддерживают равной 25°С, но при этом температуру конденсирующей поверхности изменяют от 0 до -196°С.
Результаты выделения и концентрирования 1-бутанола представлены в таблице 5.
Таблица 5 | ||||
№ примера | Температура конденсирующей поверхности, °С | Поток пермеата, кг/м2·ч | Концентрация 1-бутанола в пермеате, % | Фактор разделения |
10 | 0 | 0,04 | 18 | 11 |
11 | -19 | 0,08 | 24 | 15 |
12 | -79 | 0,10 | 40 | 33 |
13 | -196 | 0,12 | 68 | 104 |
Для наглядности сравнение по потоку пермеата и фактору разделения для процесса выделения и концентрирования органических веществ из водных сред, проводимого в условиях термопервапорации и вакуумной первапорации, приведены на фиг.2. Сравнение вакуумной первапорации и термопервапорации: поток пермеата (данные из таблицы 4 и 5) и фиг.3. Сравнение вакуумной первапорации и термопервапорации: фактор разделения (данные из таблицы 4 и 5), из которых видно, что при сопоставимых перепадах температур большее значение потока, проходящего через мембрану, и фактора разделения реализуется в условиях процесса термопервапорации.
Предлагаемое техническое решение позволяет увеличить поток пермеата (до 10 раз по сравнению с прототипом) и фактор разделения (в 2 раза по сравнению с прототипом) при выделении и концентрировании этанола из водных сред.
Выделение и концентрирование других органических соединений, например, 1-бутанола или многокомпонентной смеси АБЭ ферментации в прототипе не описано, и заявитель не имеет возможности сравнения с предлагаемом техническим решением.
Однако, анализируя исследуемые характеристики (поток пермеата и фактор разделения), получаемые при проведении первапорации указанных соединений из водных сред вакуумным способом, можно сделать вывод, что предлагаемое техническое решение позволяет проводить процесс селективного первапорационного выделения и концентрирования органических веществ из водных сред в отсутствие вакуума, преимущественно при атмосферном давлении при сравнимых значениях потока пермеата и фактора разделения по целевому органическому веществу, что и в случае вакуумной первапорации, но более простым и менее затратным способом.
Кроме того, предлагаемый способ может быть эффективно применен для первапорационного выделения и концентрирования органических веществ в процессах их получения ферментацией биомассы, например, ферментативное получение этанола или ферментативное получение 1-бутанола, так называемой ацетон-1-бутанол-этанольной ферментацией (АБЭ-ферментация). При получении спиртов таким способом образуется большое количество неконденсирующегося газа СО2, который делает неэкономичным использование вакуумной первапорации для этого применения. Это связано с тем, что для удаления проникающего вместе с органическими компонентами через мембрану СО2 необходимо постоянное вакуумирование (работа вакуумного насоса) для удаления СО2 из вакуумной части системы.
Способ выделения и концентрирования органических веществ из водных сред с помощью термоградиентного первапорационного разделения жидких смесей через мембрану, селективную по целевому компоненту, путем сбора паров пермеата конденсацией на твердой поверхности, температура которой ниже температуры разделяемой смеси, отличающийся тем, что в качестве материала мембраны используют композицию, состоящую из поли(1-триметилсилил-1-пропина) общей формулы ,где число звеньев в цепи n=900-25000 (молекулярная масса ММ=100000-2800000 и полидиметилсилметилена общей формулы ,где число звеньев в цепи n=1200-17000 (ММ=86000-1200000), при содержании полидиметилсилметилена в составе композиции от 1,0-12,0 мас.%.