Способ измерения физической величины
Иллюстрации
Показать всеИзобретение относится к измерительной технике и может быть использовано в измерительных, сигнальных, регулирующих или управляющих системах. Способ измерения физической величины включает преобразование ее в цифровой сигнал с последующей индикацией результатов измерения или передачей в пункт приема информации по беспроводной линии связи. Преобразование физической величины в цифровой сигнал производят путем определения времен разряда конденсатора последовательно через два резистора, по крайней мере, один из которых изменяет свое сопротивление при изменении физической величины, преобразования времен разряда через указанные резисторы в соответствующие промежуточные цифровые сигналы и запоминания промежуточных цифровых сигналов, сравнения промежуточных цифровых сигналов и формирования выходного цифрового сигнала по результату сравнения промежуточных цифровых сигналов. Технический результат заключается в повышении точности измерения. 5 з.п. ф-лы, 7 ил.
Реферат
Изобретение относится к измерительной технике и может быть использовано в измерительных, сигнальных, регулирующих или управляющих системах, использующих в качестве чувствительных элементов датчиков физической величины резисторы, изменяющие свое активное сопротивление при изменении контролируемой физической величины, например в системах контроля, управления и безопасности грузоподъемных кранов.
Известен способ измерения физической величины, включающий преобразование ее в электрический аналоговый сигнал с помощью электрического моста, преобразование аналогового сигнала в цифровой сигнал и преобразование цифрового сигнала в последовательный код с передачей результатов измерения в регистрирующую аппаратуру по проводной линии связи (RU 53774 U1, 27.05.2006). Недостатком такого способа является сложность передачи сигналов в регистрирующую аппаратуру при установке датчиков, реализующих данный способ, на подвижных элементах конструкции, например на выдвижной секции стрелы грузоподъемного крана или на его поворотной платформе, так как при этом необходимо применение вращающихся токосъемных устройств и специальных кабелей.
Известны также способы измерения физической величины, включающие преобразование ее в электрический аналоговый сигнал, преобразование аналогового сигнала в цифровой сигнал и преобразование цифрового сигнала в последовательный код с передачей результатов измерения в пункт приема по проводной мультиплексной линии связи (RU 2232709 С2, 20.07.2004) или по беспроводной линии связи (RU 2251524 С2, 10.05.2005).
Однако данные способы измерения физической величины предусматривают передачу результатов измерений в пункт приема только по проводной или беспроводной линии связи, что ограничивает область их применения, так как протоколы передачи данных по проводным и по беспроводным линиям связи имеют совершенно разную структуру, кодировку и методы контроля правильности обмена информацией и способы обеспечения помехозащищенности, обусловленные именно особенностями среды передачи сигнала.
Наиболее близким к заявленному способу измерения физической величины по совокупности существенных признаков является способ, включающий преобразование контролируемой физической величины в цифровой сигнал с последующей индикацией результатов измерения или передачей в пункт приема информации по беспроводной линии связи (RU 69990 U1, 10.01.2008). Данный способ, включающий в себя предварительное преобразование контролируемой физической величины, в частности усилия на грузозахватном органе грузоподъемного крана, в аналоговый сигнал с помощью электрического моста (моста Уитстона), обладает рядом недостатков, обусловленных особенностями моста Уитстона:
по причине очень малого изменения сопротивления тензорезисторов при нагружении датчика усилия, реализующего данный способ, и малого значения напряжения на выходе тензомоста, приблизительно 9-10 бит разрешения аналого-цифрового преобразователя (АЦП) теряются. Поэтому для получения на выходе датчика цифрового сигнала требуемой точности (0,1-0,5%) требуется использование высококачественного АЦП с разрешением не менее 21 бит и помехозащищенного инструментального усилителя с повышенными требованиями к топологии печатной платы, размещению и монтажу элементов на печатной плате. Но работать с сигналами в диапазоне нескольких десятков нановольт крайне трудно: на результат накладываются всевозможные посторонние электромагнитные излучения, колебания температуры, микровибрации датчиков, нелинейность шкалы тензорезисторов и помехи, возникающие на плате в моменты переключения окружающей логики. Кроме того, высокоточные АЦП очень нестабильны при высоких частотах преобразования (≈1 кГц и выше);
зависимостью точности измерений от точности поддержания уровня напряжения питания моста Уитстона. При использовании классического моста Уитстона существует прямая зависимость точности измерений от точности поддержания уровня напряжения питания моста. Для работы классического моста Уитстона необходим высокостабильный источник питания с заранее заданным и известным уровнем выходного напряжения и очень жесткими требованиями к точности поддержания уровня выходного напряжения. Напряжение автономного источника питания (батарейки) по мере его эксплуатации снижается. При снижении напряжения до значения ниже определенной величины стабилизатор напряжения питания моста не сможет обеспечить заданный уровень, поэтому выходной сигнал с моста будет содержать неконтролируемую и неисправимую ошибку. Кроме того, как показывают осциллограммы напряжений цепей питания датчика и его отдельных узлов, в моменты включения приемопередающего модуля датчика (радиомодема) в режим передачи происходит кратковременное, но резкое снижение напряжения питания не только автономного источника питания, но и вторичных цепей питания узлов датчика, в том числе и тензомоста. Результатом такого «провала» напряжения также является неконтролируемая и неисправимая ошибка выходного сигнала с тензомоста. Никакие разумные емкости и фильтры в цепях питания не позволяют избавиться от таких «провалов» в силу наличия внутреннего сопротивления источника питания;
зависимостью уровня выходного сигнала классического моста Уитстона от температуры, при которой происходит измерение. При изменении температуры происходит разбалансировка моста. Известны способы аппаратной температурной компенсации, но они в большинстве случаев не дают желаемого результата в широком диапазоне рабочих температур промышленного оборудования (от -40 до +55°С). При наличии в составе датчика микроконтроллера наилучшие результаты, в частности для цифрового датчика, дает определение и запоминание в памяти микроконтроллера поправочных температурных коэффициентов. Определение таких коэффициентов - длительная, трудоемкая и недешевая процедура, которая выполняется индивидуально для каждого экземпляра датчика;
повышенным энергопотреблением, вызванным в основном недопустимо большим (для автономных источников питания, таких как батарейки, аккумуляторы, солнечные элементы) расходом электроэнергии на питание моста Уитстона, что резко ограничивает и даже делает невозможным длительное (месяц, квартал, полугодие и т.д.) функционирование автономного устройства для осуществления данного способа (датчика физической величины). Сопротивление классического моста Уитстона при использовании распространенных тензорезисторов лежит в пределах 350-1000 Ом. Тензочувствительность большинства существующих тензометрических мостов лежит в пределах 1-2 мВ/В. Для получения приемлемых значений выходного сигнала тензомоста Уитстона (10-20 мВ) напряжение, подводимое к мосту, должно составлять не менее 10-15 В. При этом ток, потребляемый непосредственно мостом, будет лежать в пределах 10-60 мА. Марганцевощелочные АА-элементы имеют емкость около 3,2 А/ч. Если из восьми таких элементов собрать батарею напряжением 12 В, то только для питания моста ее емкости хватит не более чем на 90-300 часов непрерывной работы, т.е. на 3-12 суток. Но кроме моста необходимо питание электронных компонентов датчика (инструментального усилителя, микропроцессора и радиомодема), в результате чего время функционирования автономного датчика с одним комплектом батареек станет еще меньше. Это приводит к необходимости использования в датчике источника питания повышенной емкости для обеспечения необходимого ресурса без замены гальванических элементов, так как в ряде случаев их замена крайне сложна, в частности на грузоподъемных кранах с выдвигаемым или поворотным оборудованием. Увеличение емкости источника питания влечет за собой увеличение массы, габаритов и стоимости. Попытки снизить энергопотребление моста Уитстона путем подачи напряжения на диагональ питания периодически, кратковременными импульсами на короткое время измерения оказываются безуспешными, так как при подаче питания 10-12 В на тензорезисторы моста в течение некоторого времени (1-5 с) они разогреваются, а в процессе разогрева изменятся не только значения их сопротивлений, но и тензочувствительность. Проведение измерений в это время некорректно и приводит к дополнительным ошибкам. Уменьшить напряжение с целью уменьшения степени разогрева тензорезисторов при использовании классического способа и моста Уитстона нельзя, так как это приведет к уменьшению уровня выходного сигнала, который и без того очень маленький и имеет уровень в единицы милливольт;
в случае выхода моста Уитстона из строя необходимо переключение на резервный мост (если он есть), а это сама по себе непростая задача - коммутация очень слабых сигналов; кроме того, после такого переключения требуется калибровка датчика эталонными грузами.
Задачей, на решение которой направлено заявленное изобретение, является повышение точности измерений физической величины за счет:
прямого преобразования времени разряда конденсатора через активное электрическое сопротивление чувствительного элемента (резистора) в цифровой сигнал;
статистической обработки результатов измерения;
обеспечения независимости полученного результата измерений от напряжения источника электропитания;
снижения зависимости результатов измерения от температуры окружающей среды.
Еще одной задачей изобретения является уменьшение энергозатрат при передаче данных в пункт приема по беспроводной линии связи с использованием автономного источника электропитания.
Дополнительные решаемые задачи и преимущества заявленного изобретения будут понятны из последующего описания.
Поставленные технические задачи решаются тем, что в способе измерения физической величины, включающем преобразование ее в цифровой сигнал с последующей индикацией результатов измерения или передачей в пункт приема информации по беспроводной линии связи, согласно изобретению преобразование физической величины в цифровой сигнал производят путем:
определения времен разряда конденсатора последовательно через два резистора, по крайней мере, один из которых изменяет свое сопротивление при изменении физической величины;
преобразования времен разряда через указанные резисторы в соответствующие промежуточные цифровые сигналы и запоминания промежуточных цифровых сигналов;
сравнения промежуточных цифровых сигналов;
и формирования выходного цифрового сигнала по результату сравнения промежуточных цифровых сигналов.
Достижению технического результата способствуют также частные существенные признаки изобретения.
Определение времен разряда конденсатора последовательно через два резистора и преобразование времен разряда в соответствующие промежуточные цифровые сигналы с последующим их сравнением выполняют, по крайней мере, два раза, с запоминанием результатов сравнения, а формирование выходного цифрового сигнала выполняют с учетом всех запомненных результатов сравнения.
Предпочтительно определение времен разряда конденсатора последовательно через резисторы и преобразование времен разряда конденсатора в соответствующие промежуточные цифровые сигналы с последующим их сравнением выполняют последовательно через, по крайней мере, две пары резисторов, в каждой из которых, по крайней мере, один из резисторов изменяет сопротивление при изменении физической величины, с запоминанием результатов сравнения, а формирование выходного цифрового сигнала выполняют с учетом всех запомненных значений результатов сравнения.
Дополнительно измеряют температуру окружающей среды, значение которой используют для корректировки значения измеряемой физической величины.
До передачи выходного сигнала в пункт приема его дополнительно преобразуют в цифровой последовательный код проводной и/или беспроводной линии связи.
До начала измерений задают с помощью компьютера либо другого внешнего устройства допустимую ошибку измерения и запоминают ее, в процессе измерения определяют фактическую ошибку измерения и рассогласование между фактической и допустимой ошибкой измерения по величине и знаку и определяют частоту передачи результатов измерения по беспроводной линии связи в зависимости от рассогласования между фактической и допустимой ошибкой измерения.
Сущность заявленного технического решения заключается в том, что вместо традиционных мостовых измерительных схем используется схема последовательного измерения времени разряда предварительно заряженного конденсатора через, по крайней мере, два резистора (сначала через первый резистор, потом через второй), по крайней мере, один из которых изменяет свое сопротивление при изменении значения физической величины. Времена разряда конденсатора через резисторы могут быть измерены с высокой точностью специализированным высокоточным микроконтроллером (разрешение цифрового сигнала, т.е. фактически значение младшего значащего бита, соответствует интервалу времени ≈14 пикосекунд (14·10-12 с), таким образом, если считать, разрешение составляет половину младшего значащего разряда (МЗР), то это разрешение (rМЗР) равно 7·10-12 с). Один из резисторов, чувствительный к изменению физической величины, изменяет свое активное сопротивление.
В качестве другого резистора может быть использован либо высокостабильный резистор, не изменяющий свое сопротивление при изменении физической величины, либо резистор, изменяющий при изменении физической величины свое сопротивление в противоположном первому резистору направлении. Резисторы заранее подбираются таких номиналов, что при некотором начальном, среднем или номинальном значении физической величины значения сопротивлений двух резисторов равны.
Конденсатор после заряда до напряжения, равного напряжению источника питания, разряжается до некоторого порогового значения. После достижения порогового значения напряжения на конденсаторе разряд прекращается и начинается заряд до напряжения источника питания. Интервал времени, в течение которого происходил разряд, измеряется специализированным микроконтроллером, приспособленным для высокоточного измерения (с ошибкой измерения не более 7 пикосекунд) временных интервалов. Значение этого интервала, сразу определенное в микроконтроллере в виде цифрового кода, запоминается во внутренней памяти микроконтроллера. Как известно, время разряда связано со значениями емкости конденсатора и сопротивления резистора соотношением:
T=R·C,
где Т - постоянная времени, с, это время разряда конденсатора до напряжения, равного 36,8% от начального значения;
R - сопротивление резистора, Ом;
С - емкость конденсатора, Ф.
Практически чаще используется другая приближенная формула:
τ=0,7·R·С,
где τ - время разряда конденсатора до напряжения, равного ≈0,5 начального значения.
Затем осуществляется повторный заряд конденсатора до напряжения, равного напряжению источника питания, и последующий разряд конденсатора через второй резистор до того же порогового значения, последующее определение и запоминание в микроконтроллере интервала времени разряда конденсатора через второй резистор. Затем в микроконтроллере определяется разность между полученными временами, по ее величине и знаку определяется изменение значения физической величины и новое ее значение.
Если при начальном значении физической величины сопротивления обоих резисторов равны, то равны и величины времен разряда конденсатора через резисторы, а их разность равна нулю, т.е. физическая величина имеет свое исходное начальное значение.
Если же значение физической величины изменилось, то изменится время разряда конденсатора через резистор (резисторы), сопротивление которого (которых) также изменилось. При этом в микроконтроллере разность времен разрядов станет отличной от нуля. При этом в случае использования резисторов с обратными зависимостями их сопротивлений от изменения физической величины результирующий сигнал будет больше, чем в случае использования высокостабильного резистора в качестве второго резистора. Но в любом случае по ее величине и знаку определяется зависимое от ее значения изменение значения физической величины и новое ее значение.
Математически это описывается следующим образом. Например, для измерения деформаций металлических конструкций и силовых нагрузок на них широко используются проволочные тензорезисторы. Начальное значение сопротивления проволочного тензорезистора при отсутствии деформации материала, на который он наклеен, составляет, например, R0=350 Ом. Сопротивление высокостабильного резистора остается всегда постоянным, равным R0=350 Ом, кроме того, он может быть и вообще не наклеен на деформируемый материал. Максимальное изменение сопротивления тензорезистора ΔR при деформации материала составляет обычно не более 0,2% от его номинального значения, т.е. ΔR=2·10-3·R0=0,7 Ом. Сопротивление резистора при деформации материала R1=R0+ΔR=350,7 Ом. Время разряда конденсатора τ0 через высокостабильный резистор равно τ0=0,7·R0·C, а время разряда конденсатора τ1 через тензорезистор при деформации материала:
τ1=0,7·R1·C=0,7·(R0+ΔR)·C
После вычитания первого уравнения из второго и преобразования результата получается формула:
δR=ΔR/R0=(τ1-τ0)/(0,7·R0·C),
где δR - относительное изменение сопротивления тензорезистора при деформации материала.
При максимальной относительной деформации материала δLмакс, составляющей обычно 10-3, максимальное относительное изменение сопротивления тензорезистора δRмакс=(ΔR/R0)макс=2·10-3, т.е. в пределах упругих деформаций можно считать, что относительная деформация равна
δL=0,5·δR=0,5·(ΔR/R0).
А относительная деформация в свою очередь связана с величиной действующей силы (или давления) линейной зависимостью:
Р=KδL·δL,
где KδL - масштабный коэффициент, зависящий от деформируемого материала, его размеров и упругих свойств материала. На практике определяется опытным путем, хотя существуют расчетные формулы для тел простейшей формы.
А так как δL линейно связана с Δτ=(τ1-τ0), то в итоге получается формула для расчета действующей силы:
Р=K·Δτ,
где K - масштабный коэффициент.
При максимальной относительной деформации материала δLмакс, составляющей обычно 10-3, максимальное относительное изменение сопротивления тензорезистора δRмакс=(ΔR/R0)макс=2·10-3, т.е. в пределах упругих деформаций можно считать, что
δL=0,5·δR=0,5·(ΔR/R0).
Пусть емкость разрядного конденсатора составляет 200 нФ, т.е. 200·10-9 Ф. При максимальной деформации δRмакс=2·10-3 разность времен Δτмакс=(τ1-τ0)макс или Δτмакс=δRмакс·0,7·R0·C=2·10-3·0,7·350·200·10-9≈10-7 с.
Учитывая, что разрешение составляет половину младшего значащего разряда двоичного числа, как было указано ранее, равно rМЗР=7·10-12 с, максимальное значение разности времен разряда Δτмакс для данного примера составляет Δτмакс≈10-7 с или 10-7/(2·7·10-12)=7000 младших значащих разрядов, что эквивалентно ≈13-битному числу. При использовании в качестве второго резистора тензорезистора с обратным первому изменением сопротивления при деформации, как это делается в обычных тензомостах, значение Δτмакс будет примерно в 2 раза больше и соответственно составит ≈14000 младших значащих разрядов, что эквивалентно уже ≈14-битному числу. Такова же будет и разрядность результата единичного измерения - деформации или силы, действующей на деформируемый материал при использовании предлагаемого способа. Этой точности в большинстве случаев тензоизмерений более чем достаточно для решения большинства практических прикладных задач. Надо отметить, что тензоизмерения являются одним из самых тяжелых видов измерений по причине очень малых изменений исходных значений сопротивлений (не более 0,2%). В других случаях можно ожидать более высокую точность результата измерения. Поэтому при дальнейшем описании изобретения будет рассматриваться в качестве примера измерение деформации (нагрузки) с помощью тензорезисторов.
В этом и заключается сущность предлагаемого способа - замена существующего способа измерения очень слабого сигнала мостового преобразователя, требующего наличия высокостабильного источника напряжения питания моста и его последующего преобразования в цифровой сигнал дорогим, высокоточным, многоразрядным АЦП с очень низким уровнем шумов, измерением времен разряда конденсатора последовательно через два резистора, сопротивление, по крайней мере, одного из которых зависит от значения измеряемой физической величины, сравнением этих времен разряда и определением по результатам этого сравнения значения измеряемой физической величины. Для реализации предлагаемого способа не требуется прецизионный и высокостабильный источник питания, не требуется высокоточный многоразрядный АЦП и даже требуемое минимальное количество резисторов здесь в два раза меньше, чем при использовании известного способа. При всем этом точность получаемого результата оказывается выше, чем у известного способа.
Так как предлагаемый способ предусматривает заряд одного и того же конденсатора от источника питания, его последовательный разряд через два резистора и последующее сравнение времен разряда, то нет никакой необходимости иметь высокостабильный источник питания. Так как время разряда очень мало зависит от колебаний напряжения источника питания, а при использовании автономного источника питания оно вообще не зависит от этих колебаний, потому что процесс заряда конденсатора сглаживает кратковременные колебания напряжения, вызванные, например, кратковременным включением и выключением отдельных блоков устройства для реализации предлагаемого способа (датчика физической величины), в конце процесса заряда напряжение на конденсаторе практически не изменяется. А так как происходит сравнение времен разряда конденсатора от напряжения источника питания до одного и того же напряжения, составляющего, например, половину напряжения источника питания, то сами времена разряда и результат их сравнения совершенно не зависят от напряжения источника питания и его стабильности. Снижение напряжения автономного источника во времени протекает на много порядков медленнее процессов заряда и разряда и, благодаря операции сравнения времен разряда, никак не влияет на точность результата измерения. Более того, некоторое снижение напряжения автономного источника питания по мере его использования приводит к снижению уровня шумов результатов измерений и повышению точности. По этой же причине на точность измерения практически не оказывает никакого воздействия старение конденсатора и резисторов во времени и связанное с этим некоторое изменение их номиналов.
Операции последовательного заряда и разряда конденсатора через резисторы по сравнению с известным способом приводят к еще одному очень неожиданному, но важному результату. Помимо того что мостовая схема требует для своего питания высокостабильный и прецизионный источник питания с напряжением не менее 10-15 В, ток, потребляемый мостовой схемой, обычно составляет 10-60 мА. При питании датчика от сети или вторичного источника питания это не вызывает никаких проблем. Проблемы начинаются при использовании автономного источника питания. Это и величина напряжения питания, потому что приходится собирать батарею из отдельных элементов, при этом растет внутреннее сопротивление источника питания и, что более важно для автономного источника, потеря энергии на нем. Но самое неприятное - это ток, потребляемый таким датчиком. При таком токе потребления емкости около 3,2 А/ч марганцевощелочного АА-элемента хватит не больше чем на 3-12 суток. Для автономного датчика это недопустимо маленький срок.
При использовании предлагаемого способа, во-первых, нет необходимости иметь источник такого высокого напряжения, достаточно напряжения 3,6 В, которое дают выпускаемые в настоящее время литиевые батарейки. Измерительная схема сохраняет свою работоспособность при снижении напряжения питания до ≈2 В, и то в основном потому, что это нижний предел питания для других электронных компонентов (микроконтроллеры, компараторы и т.д.). Этого напряжения (2-3,6 В) достаточно и для питания всей электронной части датчика. Во-вторых, ток, потребляемый конденсатором при зарядке, очень мал и составляет в среднем 300 мкА. Учитывая, что разряд конденсатора продолжается дольше, чем заряд, так как конденсатор разряжается через резисторы номиналом 350-1000 Ом, а заряд идет практически напрямую от источника, внутреннее сопротивление которого в десятки и сотни раз меньше, а также то, что конденсатор разряжается не до конца, интегрально ток, потребляемый измерительной зарядно-разрядной цепью, не превышает 50-100 мкА. Это в сотни раз меньше, чем в известном способе. Электронная схема обработки сигналов потребляет в известном способе от 1 до 10 мА в зависимости от режима работы. Так как в предлагаемом способе заряды и разряды чередуются и электроника тоже работает активно не все время, а в основном обработка полученных времен разряда идет во время заряда конденсатора, то потребление при непрерывной работе электроники составит 300-1000 мкА. Такой потребляемый ток позволяет использовать малогабаритные литиевые батарейки в качестве автономного источника питания со сроком службы без замены (при непрерывной работе) в течение не менее чем 120-180 дней. Такой срок для автономного датчика может считаться вполне достаточным. Т.е. использование предлагаемого способа позволяет создавать автономные датчики с достаточным временем автономной работы без замены источника питания.
Сопротивление практически всех существующих резисторов, в том числе используемых для измерения физических величин, как правило, заметно зависит от температуры резистора, т.е. фактически от температуры окружающей среды, в которой выполняются измерения. Поэтому практически все измерительные цепи, использующие резисторы в качестве чувствительных элементов, имеют в своем составе цепи термокомпенсации. Конечно, температура среды не меняется так быстро, как измеряемая величина, и, как правило, ее влияние на изменение сопротивления меньше, чем измеряемой физической величины, поэтому измерять ее достаточно только в отдельные моменты времени и считать, что между измерениями она остается постоянной. Но если в известном способе изменение температуры всегда приводило к дополнительной разбалансировке измерительного моста и изменению выходного напряжения даже для совершенно идентичных идеальных резисторов, то при использовании предлагаемого способа и двух чувствительных к изменению физической величины резисторов, разность времен разряда через эти резисторы зависит от изменения температуры значительно (на несколько порядков) в меньшей степени, и эта зависимость в основном обусловлена лишь небольшими различиями температурных коэффициентов сопротивления двух резисторов, обусловленными технологическими особенностями их изготовления, например тем, что используются резисторы из разных партий поставки. Для большинства практических задач влиянием этого фактора можно пренебречь. А если его все-таки надо учитывать, то его учет в силу его малости представляет гораздо меньшие трудности как в аппаратном решении с помощью дополнительных резисторов в измерительной цепи датчика, так и в программном с использованием микроконтроллера блока обработки сигналов.
Поскольку предлагаемый способ использует для измерения определение времен разряда конденсатора через резисторы, то процесс измерения протекает достаточно быстро. Так, например, если при тензоизмерениях и номиналах резисторов 350÷1000 Ом и емкости конденсатора в диапазоне 30÷300 нФ ((30-300)·10-9 Ф) время разряда через один резистор составляет ≈8-75 мкс, через оба резистора - ≈16-150 мкс, то с учетом времени, необходимого для зарядки конденсатора, за 1 с может быть выполнено от ≈5000 до ≈50000 измерений. Т.е. время одиночного измерения Теи может составлять ≈20-200 мкс. Такая частота измерений явно избыточна для большинства практических задач, так как обычные скорости измерения большинства физических величин с помощью резисторов гораздо меньше и их измерения достаточно делать от 2 до 10 раз в секунду. При этом появляется реальная возможность использовать избыточность измерений для дополнительного повышения точности, т.е. проводить не один замер, а много, запоминать все промежуточные результаты, а затем методами математической статистики определять среднее значение (математическое ожидание) и дисперсию или среднеквадратическое отклонение результата от его математического ожидания. Кроме того, выполнение операции определения времен разряда конденсатора последовательно через два резистора и преобразования времен разряда в соответствующие промежуточные цифровые сигналы с последующим их сравнением, по крайней мере, два раза, с запоминанием результатов сравнения и формированием выходного цифрового сигнала с учетом всех запомненных результатов сравнения реально позволяет снизить влияние случайных шумов на результат измерения и значительно повысить точность. Так, при наличии в микроконтроллере блока обработки сигналов 12-разрядного счетчика числа измерений можно выполнять 4096 измерений с последующим осреднением их результатов. При этом по сравнению с одиночным измерением среднеквадратическое значение ошибки измерения с осреднением может быть уменьшено в √4096=64 раза, что эквивалентно увеличению разрешения результата на 6 разрядов. Т. е. разрешение результата составляет при этом уже не 12-13 разрядов, а практически 14-17 разрядов, что позволяет создавать измерительную систему с не менее чем 10000-100000 делений, не добавляя к ее аппаратному решению никаких высокоточных прецизионных элементов. При использовании известного способа для статистической обработки множества измерений необходимо квантование аналогового выходного сигнала тензомоста и его последующее высокочастотное аналого-цифровое преобразование, недостатки которого были описаны выше. Кроме того, для большинства известных АЦП при высоких частотах преобразования характерны провалы в разрешении при высоких частотах преобразования.
Ранее отмечалось, что для использования известного способа необходимо иметь четыре резистора, соединенные в мост Уитстона. При использовании предлагаемого способа достаточно двух резисторов, которые можно назвать полумостом. Однако в данном способе можно также использовать четыре резистора, образующие две пары. Конденсатор при этом будет последовательно заряжаться и разряжаться через эти две пары резисторов и времена разряда будут сравниваться для каждой пары, затем по результатам сравнения определяется результат или результаты измерения. Это может быть результат осреднения измерений по временам разряда через все четыре резистора, если они установлены в одной точке или рядом, по крайней мере, в окрестности, в которой физическая величина имеет одно конкретное значение. Это могут быть два результата, каждый для своего места установки чувствительных резисторов, т.е. при этом получают два значения физической величины в разных разнесенных точках среды. Предлагаемый способ в этом случае позволяет использовать во второй паре резисторы с отличным от первой пары номиналом независимо от взаимного их расположения.
Все перечисленные варианты допускают также многократные измерения с последующей статистической их обработкой, как это было описано ранее. Это также приводит к дополнительному повышению точности измерений в √2≈1,41 раз увеличению разрешения или дает ≈1 дополнительный разряд в разрешении.
Использование двух пар резисторов имеет еще одно дополнительное преимущество по сравнению с известным способом. Это повышение надежности за счет резервирования. Вторая пара резисторов может быть использована при выходе первой пары из строя, т.е. выполнять функции «горячего» резерва, переход на измерения с ее использованием может быть осуществлен практически мгновенно при получении информации микроконтроллером о неисправности или выходе из строя первой пары резисторов. При этом не требуется калибровка этой второй пары, так как она может быть выполнена при изготовлении датчика.
Таким же образом можно использовать не только две, а и большее количество, например четыре пары, резисторов. Количество определяется только возможностями микроконтроллера блока обработки сигналов. Установка дополнительных пар резисторов приводит к дополнительному повышению точности и/или надежности, хотя при этом несколько возрастает время одного измерения Ти.
Измерение дополнительной физической величины (температуры окружающей среды, значение которой используют для корректировки значения измеряемой физической величины) позволяет повысить точность измерения основной физической величины. Несмотря на то что предлагаемый способ позволяет получать результаты, в очень малой степени зависящие от температуры, при которой производится измерение, благодаря последовательному разряду конденсатора через резисторы с практически одинаковой температурой, некоторая зависимость результата от температуры имеет место. В силу малости этой зависимости ее учет в микроконтроллере блока обработки сигнала не представляет трудностей. Однако для того чтобы в случае необходимости учесть температуру, необходимо ее знать или измерять в месте установки датчика. Предлагаемый способ позволяет легко это сделать, используя тот же самый принцип, лежащий в основе способа, а именно последовательный заряд и разряд конденсатора сначала через терморезистор, например с положительным температурным коэффициентом сопротивления (ТКС), а затем через резистор с отрицательным ТКС. В качестве второго резистора может быть также использован высокостабильный резистор, сопротивление которого не зависит от температуры. Т.е. в данном случае температура среды и является тем самым измеряемым значением физической величины. Только эта величина в данном способе является дополнительной, которая измеряется для того, чтобы учесть влияние ее на результат измерения другой, основной, физической величины. На самом деле этот способ может быть использован для измерения именно температуры как основной измеряемой физической величины.
Преобразование выходного сигнала (до передачи в пункт приема) в цифровой последовательный код проводной и/или беспроводной линии связи позволяет использовать заявленный способ при разработке цифровых датчиков, использующих как нестандартный протокол обмена данными, так и стандартные, широко распространенные протоколы, например RS232, RS422, RS485 и др. При этом данные цифровые датчики остаются универсальными и допускают использование их без каких-либо конструктивных доработок в системах контроля, управления и безопасности грузоподъемных кранов как с кабельными линиями связи между элементами данной системы, так и с беспроводными или комбинированными линиями связи.
Определение в процессе измерения фактической ошибки измерения и рассогласования между фактической и заранее заданной допустимой ошибкой измерения по величине и знаку позволяет установить частоту передачи результатов измерения по беспроводной линии связи в зависимости от рассогласования между фактической и допустимой ошибкой измерения, т.е. фактически определять частоту включения приемопередатчика в режим передачи, и совсем отключать режим передачи (переводить приемопередатчик в «спящий» режим), когда сигналы от измерительного преобразователя не изменяются или изменяются в пределах требуемых ошибок измерения, тем самым исключая излишнее чрезмерное и ненужное энергопотребление от автономного источника питания и увеличивая срок его службы без замены. Процедура, связанная с определением рассогласования между фактической и допустимой ошибкой измерения, в настоящее время не представляет трудностей. Допустимая ошибка измерения к