Способ непрерывного, гетерогенно катализируемого, частичного дегидрирования, по меньшей мере, одного дегидрируемого углеводорода

Изобретение относится к способу непрерывного, гетерогенно катализируемого, частичного дегидрирования, по меньшей мере, одного дегидрируемого C2-C4-углеводорода в газовой фазе, включающему порядок работы, при котором к реакционному пространству, окруженному оболочкой, соприкасающейся с реакционным пространством, которая содержит, по меньшей мере, одно первое отверстие для подвода, по меньшей мере, одного исходного газового потока в реакционное пространство и, по меньшей мере, одно второе отверстие для отбора, по меньшей мере, одного потока образующегося газа из реакционного пространства, непрерывно подводят, по меньшей мере, один исходный газовый поток, содержащий, по меньшей мере, один дегидрируемый углеводород, в реакционном пространстве, по меньшей мере, один дегидрируемый углеводород, проводят через, по меньшей мере, один слой катализатора, находящийся в реакционном пространстве, и с получением газового продукта, содержащего, по меньшей мере, один дегидрированный углеводород, не вступивший в реакцию дегидрируемый углеводород, а также молекулярный водород и/или водяной пар, окислительным образом или не окислительным образом, частично дегидрируют с образованием, по меньшей мере, одного дегидрированного углеводорода, из реакционного пространства непрерывно отбирают, по меньшей мере, один поток образовавшегося газа; характеризующемуся тем, что поверхность оболочки на ее стороне, соприкасающейся с реакционным пространством, по меньшей мере, частично в слое толщиной d, по меньшей мере, 1 мм изготовлена из стали S, которая имеет следующий элементный состав:

в остальном Fe и обусловленные процессом ее получения примеси, при этом процентные данные, соответственно, отнесены к общему весу. Также изобретение относится к оболочке, в которой может осуществляться заявленный способ. Использование настоящего изобретения позволяет снизить катализируемое термическое разложение дегидрируемого и/или дегидрированного углеводорода. 2 н. и 28 з.п. ф-лы.

Реферат

Изобретение относится к способу непрерывного, гетерогенно катализируемого, частичного дегидрирования, по меньшей мере, одного дегидрируемого углеводорода в газовой фазе, включающему порядок работы, при котором к реакционному пространству, окруженному (материальной) оболочкой, соприкасающейся с реакционным пространством, которая содержит, по меньшей мере, одно отверстие для подвода, по меньшей мере, одного исходного газового потока в реакционное пространство и, по меньшей мере, одно второе отверстие - для отбора, по меньшей мере, одного потока газового продукта из реакционного пространства, непрерывно подводят

- по меньшей мере, один исходный газовый поток, содержащий, по меньшей мере, один дегидрируемый углеводород,

- в реакционном пространстве, по меньшей мере, один дегидрируемый углеводород, проводят через, по меньшей мере, один слой катализатора, находящийся в реакционном пространстве, и при получении газового продукта, содержащего, по меньшей мере, один дегидрированный углеводород, не вступивший в реакцию дегидрируемый углеводород, а также молекулярный водород и/или водяной пар, окислительным образом или не окислительным образом частично дегидрируют с образованием, по меньшей мере, одного дегидрированного углеводорода,

- из реакционного пространства непрерывно отбирают, по меньшей мере, один поток газового продукта.

Кроме того, предложенное изобретение относится к устройству для проведения заявляемого способа, а также к способу частичного окисления, по меньшей мере, одного дегидрированного углеводорода.

Понятие "дегидрированный углеводород", используемое в настоящей заявке, должно включать углеводороды, молекулы которых содержат, по меньшей мере, на два ("два" с точки зрения технологического использования являются предпочтительными) водородных атома меньше, чем молекулы дегидрируемого углеводорода. Обычно понятие углеводород должно охватывать вещества, молекула которых построена только из элементов углерода и водорода.

Тем самым дегидрированные углеводороды включают, в частности, ациклические и циклические алифатические углеводороды с одной или несколькими С, С- двойными связями в молекуле.

Примерами таких алифатических дегидрированных углеводородов являются пропен, изо-бутен, этилен, 1-бутен, 2-бутен и бутадиен. Т.е. к дегидрированным углеводородам относятся, в частности, однократно ненасыщенные, линейные (н-алкены) или разветвленные алифатические углеводороды (например, изо-алкены), а также циклоалкены. Кроме того, дегидрированные углеводороды должны также включать алкаполиены (например, диены и триены), которые содержат больше чем одну углерод-углерод двойную связь в молекуле. Но дегидрированные углеводороды должны также включать углеводородные соединения, которые получаются исходя из алкилароматических соединений, таких как этилбензол или изопропилбензол, за счет дегидрирования алкильных заместителей. Это, например, такие соединения, как стирол или α-метилстирол.

В целом дегидрированные углеводороды образуют ценные исходные соединения для синтеза, например, функционализированных, радикально полимеризуемых, соединений (например, акриловой кислоты из пропена или метакриловой кислоты из изо-бутена и продуктов их полимеризации). Например, такие функционализированные соединения могут быть произведены за счет частичного окисления дегидрированных углеводородов. Но дегидрированные углеводороды пригодны также для получения соединений, таких как метил-трет-бутиловый эфир (продукт последующего превращения изо-бутена, который пригоден, например, в качестве добавки к топливу для повышения октанового числа). Но дегидрированные углеводороды могут быть использованы также сами как таковые для полимеризации.

В качестве дегидририруемых углеводородов в настоящем описании рассматриваются, в частности, ациклические и циклические алканы, а также олефины (число их С, С-двойных связей должно быть повышено) (в качестве примера следует упомянуть гетерогенно катализируемое, частичное дегидрирование н-бутенов в бутадиен).

Т.е. понятие "дегидрируемые углеводороды" включает в настоящей заявке на патент, например, углеводороды стехиометрии CnH2n+2 с n>1 до n≤20, а также стехиометрии СnН2n с n>1 до n≤20, а также стехиометрии СnН2n-2 с n>2 до n≤20, и n=целое число, в частности, алканы с 2-16 атомами углерода, например, такие, как этан, пропан (в пропилен), н-бутан, изо-бутан (в изобутен), н-пентан, изо-пентан, н-гексан, н-гептан, н-октан, н-нонан, н-декан, н-ундекан, н-додекан, н-тридекан, н-тетрадекан, н-пентадекан или м-гексадекан.

Но, в частности, все встречающиеся в настоящей заявке выражения для алканов с 2-8 атомами углерода относятся к дегидрируемым углеводородам и в особенности к углеводородам с 2-4 атомами углерода (в частности, к алканам). Т.е. дегидрируемыми углеводородами в данном описании являются, прежде всего, этан, пропан, н-бутан и изо-бутан, а также 1-бутен и 2-бутен.

Описанный вначале способ получения дегидрированных углеводородов в общем известен (см., например, WO 03/076370, DE-A 102004032129, ЕР-А 731077, WO 01/96271, WO 01/96270, DE-A 10316039, WO 03/011804, WO 00/10961, ЕР-А 799169 и DE-A 10245585).

Принципиально способы получения дегидрированных углеводородов посредством гетерогенно катализируемого, частичного дегидрирования, по меньшей мере, одного дегидрируемого углеводорода подразделяются на две группы: окислительное и не окислительное, гетерогенно катализируемые, частичные дегидрирования. В отличие от окислительного, гетерогенно катализируемого, частичного дегидрирования, не окислительное, гетерогенно катализируемое, частичное дегидрирование происходит без участия молекулярного кислорода. Т.е. подлежащий отрыву молекулярный водород отрывается от дегидрируемого углеводорода непосредственно в виде молекулярного водорода и также в последующей стадии не окисляется молекулярным кислородом или, по меньшей мере, частично окисляется в воду. Тепловой эффект неокислительного дегидрирования является в результате в каждом случае эндотермичным. При окислительном, гетерогенно катализируемом, частичном дегидрировании подлежащий отрыву от дегидрируемого углеводорода молекулярный водород, в противоположность вышесказанному, отрывается при участии молекулярного кислорода. Этот отрыв может происходить непосредственно в виде воды (H2O) (в этом случае говорят сокращенно также о гетерогенно катализируемом оксидегидрированиии; его тепловой эффект в каждом случае экзотермичен). Он (отрыв) также может происходить сначала в виде молекулярного водорода (т.е. неокислительным, соответственно обычным образом), который затем на следующей стадии частично или полностью может быть окислен молекулярным кислородом в воду (в зависимости от окружения последующего сгорания водорода, суммарный тепловой эффект может быть эндотермичным, экзотермичным или нейтральным).

Для всех вышеназванных, гетерогенно катализируемых, частичных дегидрирований дегидрируемых углеводородов является общим то, что они происходят при сравнительно высоких реакционных температурах. Типичные реакционные температуры могут составлять ≥250°С, относительно распространено ≥300°С, часто ≥350°С или ≥400°С, соответственно ≥450°С или ≥500°С.

В течение длительной работы непрерывно функционирующего, гетерогенно катализируемого, частичного дегидрирования требуется, кроме того, с увеличивающимся временем работы обычно еще более высокие реакционные температуры, для того чтобы поддерживать режим, при котором порция дегидрирования однократно проходит реакционное пространство. Но это приводит обычно к тому, что используемые катализаторы с увеличивающимся временем работы в возрастающем объеме производства необратимо дезактивируются. Т.е. даже тогда, когда непрерывную работу все время временно приостанавливают (такой способ работы должен быть охвачен в данной заявке понятием "непрерывный "), для того чтобы с помощью подходящих мер используемые катализаторы реактивировать (регенерировать), с увеличивающимся общим временем работы процесса первоначальная активность катализаторов при увеличении общего времени работы больше не достигается. За счет соответствующего повышения реакционной температуры можно управлять указанными обстоятельствами.

Недостатком такого рода высоких реакционных температур является то, что по отношению к желаемой целевой реакции (дегидрируемый углеводород→дегидрированный углеводород) в объеме, как правило, увеличивающемся с реакционной температурой, происходят нежелательные побочные реакции, сопряженные с увеличением веса. Одной из таких нежелательных побочных реакций является, например, разложение дегидрируемого и/или дегирированного углеводорода с образованием углеводородов, содержащих обычно незначительное число углеродных атомов.

В качестве материала для оболочки при описанном в начале способе рекомендуются различные стали из известного уровня техники. В международной заявке WO 03/076370 в примерах исполнения рекомендуется в качестве рабочего вещества для оболочек сталь, которая на стороне оболочки, касающейся реакционного пространства, алонизирована, алитирована и/или алюминирована (т.е. покрыта слоем алюминия или оксида алюминия, или алюминием и оксидом алюминия). Других данных, относящихся к составам стали, в опубликованной Международной заявке WO 03/076370 не приведено. Аналогичные рекомендации дает опубликованная Международная заявка WO 03/011804. В качестве возможной альтернативы рекомендует она дополнительно совместное использование сульфидов в исходном газовом потоке, с целью пассивирования стороны оболочки, соприкасающейся с реакционным пространством.

Недостатком алонизирования или алитирования и/или алюминирования является все-таки то, что указанные процессы могут быть проведены в промышленном масштабе только со значительными затратами. Недостатком совместного использования сульфидов в исходном газовом потоке является, с одной стороны, их расход и, с другой стороны то, что такое совместное использование, как правило, отрицательно действует на срок службы катализаторов, используемых для гетерогенно катализируемого, частичного дегидрирования и/или отрицательно действует на срок службы катализаторов, используемых для подключенного в отдельных случаях, гетерогенно катализируемого, частичного окисления дегидрированного углеводорода.

Вышеназванные недостатки подтверждаются косвенным образом содержанием заявки на патент Германии DE-A 102004032129, которая в качестве рабочего материала для оболочки рекомендует в своем сравнительном примере легированную сталь без покрытия с номером рабочего вещества 1.4841 согласно DIN. Заявки на патент Германии DE-A 102005051401 и DE-A 102005052917 аналогичным образом рекомендуют в качестве рабочего материала для оболочки кремнийсодержащую легированную сталь или сталь как таковую, например стали типа 1.4841 согласно DIN.

Собственные исследования поразительным образом указывают на то, что сталь в качестве рабочего материала для стороны оболочек, соприкасающейся с реакционным пространством, способна катализировать термическое разложение дегидрируемых и/или дегидрированных углеводородов, за счет чего она уже при сравнительно низких реакционных температурах заметно проявляет себя нежелательным образом. Это не относится, в конце концов, к легированной стали с номером рабочего материала 1.4841 по DIN, которая должен иметь нижеприведенный элементный состав:

от 24 до 26 вес.% Сr (хрома)
от 19 до 22 вес.% Ni (никеля)
от 1,5 до 2,5 вес.% Si (кремния)
от ≥0 до ≤0,11 вес.% N (азота)
от ≥0 до ≤0,2 вес.% С (углерода)
от ≥0 до 2 вес.% Мn (марганца)
от ≥0 до 0,045 вес.% Р (фосфора)
от ≥0 до до 0,015 вес.% S (серы), и
в остальном Fe и примеси, обусловленные получением, при этом процентные данные относятся, соответственно, к общему весу.

В нормальном случае содержание азота указанного типа стали составляет достоверным образом менее чем 0,11 вес.% и по этой причине, как правило, производителями стали не специфицируется.

В рамках собственных исследований далее было установлено, что каталитическое действие стали на термическое разложение дегидрируемых и/или дегидрированных углеводородов зависит от элементного состава используемой стали.

Отрицательное влияние термического разложения дегидрируемых и/или дегидрированных углеводородов состоит не только в том, что такое термическое разложение снижает селективность целевого продукта, но также в том, что полученные в результате продукты разложения при повышенной температуре являются все потенциальными источниками элементарного углерода (кокса), который способен осаждаться на поверхности катализаторов, используемых для гетерогенно катализируемого, частичного дегидрирования, чтобы тем самым ускоренным образом и, по меньшей мере, частично также необратимо дезактивировать ее. В дополнение, термическое разложение углеводородов протекает в основном эндотермично и отнимает тепло от собственно целевой реакции.

Задача предложенного изобретения состоит в том, чтобы предоставить в распоряжение, как описано вначале, способ с использованием стали, пригодной для поверхности оболочки на стороне, соприкасающейся с реакционным пространством, которая уже не в алонизированной форме, а также в отсутствии сульфидов в исходном газовом потоке, менее выраженно катализирует термическое разложение дегидрируемого и/или дегидрированного углеводорода, чем высокосортная сталь с номером рабочего материала 1.4841 по DIN.

В соответствии с этим был найден способ непрерывного, гетерогенно катализируемого, частичного дегидрирования, по меньшей мере, одного дегидрируемого углеводорода в газовой фазе, включающий порядок работы, при котором к реакционному пространству, окруженному (материальной) оболочкой, соприкасающейся с реакционным пространством (т.е. соприкасающейся с реакционным газом, т.е. с дегидрируемым и дегидрированным углеводородом), которая содержит, по меньшей мере, одно первое отверстие для подвода, по меньшей мере, одного исходного газового потока в реакционное пространство и, по меньшей мере, одно второе отверстие для отбора, по меньшей мере, одного газового потока продукта из реакционного пространства, непрерывно подводят

- по меньшей мере, один исходный газовый поток, содержащий, по меньшей мере, один дегидрируемый углеводород,

- в реакционном пространстве, по меньшей мере, один дегидрируемый углеводород, проводят через, по меньшей мере, один слой катализатора, находящийся в реакционном пространстве, и при получении газового продукта, содержащего, по меньшей мере, один дегидрированный углеводород, не вступивший в реакцию дегидрируемый углеводород, а также молекулярный водород и/или водяной пар, окислительным образом или неокислительным образом, частично дегидрируют с образованием, по меньшей мере, одного дегидрированного углеводорода,

из реакционного пространства непрерывно отбирают, по меньшей мере, один газовый поток продукта, который отличается тем, что поверхность оболочки на своей стороне, касающейся реакционного пространства, по меньшей мере, частично в слое толщиной d, по меньшей мере, 1 мм (соответственно перпендикулярно к касательной, проходящей в соответствующей точке соприкосновения, на стороне, касающейся реакционного пространства) изготовлена из стали S, которая имеет следующий элементный состав:

от 18 до 30 вес.% Сr (хрома),
от 9 до 36 вес.% Ni (никеля),
от 1 до 3 вес.% Si (кремния),
от 0,1 до 0,3 вес.% N (азота),
от≥0, предпочтительно от 0,03 до 0,15 вес.% С (углерода),
от ≥0 до 4 вес.% Мn (марганца),
от ≥0 до 4 вес.% Al (алюминия),
от ≥0 до 0,05 вес.% Р (фосфора),
от ≥0 до 0,05 вес.% S (серы), и
от ≥0 до 0,1 вес.%, предпочтительно от >0 вес.% и особенно предпочтительно от 0,03 до 0,08 вес.% одного или нескольких редкоземельных металлов и в остальном Fe и обусловленные получением примеси, при этом процентные данные, соответственно, отнесены к общему весу (стали).

В общем, в рамках вышеуказанных содержаний предпочтительно, когда составляет содержание N≥0,11, лучше ≥0,12, предпочтительно ≥0,13, особенно предпочтительно ≥0,14 и еще лучше ≥0,15. Особенно предпочтительно содержание N лежит при 0,15-0,18 вес.%. Особенно предпочтительно комбинированным образом используются области, названные выше как предпочтительные.

Согласно изобретению общее количество примесей, обусловленных условиями получения, предпочтительно составляет в общем и одинаковым образом отнесенное ≤1 вес.%, предпочтительно ≤0,75 вес.%, особенно предпочтительно ≤0,5 вес.%, и полностью предпочтительно ≤0,25 вес.%. Как правило, общее количество примесей стали, обусловленных условиями получения, составляет все-таки ≥0,1 вес.%. В отличие от примесей, обусловленных условиями получения, в случае других составных частей стали речь идет о легированных составных частях, обуславливающих их свойства. Это справедливо, в частности, для элементов Сr (хром), Ni (никель), Si (кремний), N (азот) и С (углерод).

Редкоземельные металлы включают элементы церий (Се), празеодим (Рr), неодим (Nd), прометий (Рm), самарий (Sm), европий (Еu), гадолиний (Gd), тербий (Тb), диспрозий (Dy), гольмий (Но), эрбий (Еr), тулий (Тm), иттербий (Yb) и лутеций (Lu). Согласно изобретению предпочтительным редкоземельным элементом является церий (Се). Согласно изобретению предпочтительно релевантная сталь S имеет поэтому ≥0,1 вес.% Се (церия) или Се (церия) и одного или нескольких редкоземельных металлов [в частности, La (лантан), Nd (неодим) и/или Рr (празеодим)], отличных от Се (церия).

Согласно изобретению предпочтительно поверхность оболочек (стена, окружающая реакционное пространство), на ее стороне, соприкасающейся с реакционным пространством, по меньшей мере, на 10%, предпочтительно, по меньшей мере, на 20%, или по меньшей мере, на 30%, полностью предпочтительно, по меньшей мере, на 40% или, по меньшей мере, на 50%, еще предпочтительнее по, меньшей мере, на 60% или, по меньшей мере, на 70%, лучше, по меньшей мере, на 80% или, меньшей мере, на 90% и лучше всего, по меньшей мере, на 95% или, по меньшей мере, на 100% своей общей поверхности в толщине слоя d, по меньшей мере, 1 мм изготовлена из релевантной стали. Согласно изобретению предпочтительно вышеназванное d составляет, по меньшей мере, 2 мм, или, по меньшей мере, 3 мм, или, по меньшей мере, 4 мм, или, по меньшей мере, 5 мм. Но понятно также, что d может составлять также от ≥ 5 мм до 30 мм или до 25 мм, или до 20 мм, или до 15 мм, или до 10 мм. Полностью предпочтительно в случае заявляемого способа оболочка, окружающая реакционное пространство, изготовлена во всей своей совокупности, или, по меньшей мере, на 80% своего веса, лучше, по меньшей мере на 90% своего веса или, по меньшей мере, на 95% своего веса из заявляемой стали. Согласно изобретению предпочтительно также, что трубопроводы, ведущие, по меньшей мере, один исходный газовый поток по направлению к реакционному пространству, а также, по меньшей мере, один газовый поток продукта от реакционного пространства, изготовлены из заявляемой стали S или, по меньшей мере, на своей стороне, касающейся газа, покрыты такой сталью. Но понятно, что указанные трубопроводы могут быть также изготовлены из других сталей, например, согласно номерам рабочих веществ по DIN 1.4910, или 1.4941, или 1.4541 или 1.4841. Использование заявляемых сталей S, в частности, тогда имеет повышенное преимущество, когда реакционный газ вступает в соприкосновение с рабочей средой, которая имеет температуру ≥450°С.

Вышеназванные трубопроводы для подходящей и надежной работы предпочтительно оборудованы устройствами для компенсации эффектов расширения в длину, как, например, они могут случиться на основе изменений температуры, при этом с преимуществом используются компенсаторы, которые отличается продольным способом действия.

Указанные компенсаторы, исполненные, как правило, многослойными, могут быть изготовлены из того же материала, что и сами трубопроводы. Особенно предпочтительны все-таки формы исполнения с (в общем газопроницаемой жесткой внутренней трубкой и газонепроницаемой эластичной внешней оболочкой (газонепроницаемой эластичной внешней трубкой)) внутренней частью трубки, соприкасающейся с подводимым газом, изготовленной из заявляемой стали S, которая целесообразным образом содержит газопроницаемый компенсаторный зазор и с лежащей снаружи, газонепроницаемой, эластичной, волнообразной частью, которая, по меньшей мере, частично изготовлена из материала, в частности способного выдержать механическую и температурную нагрузку, как, например, материал 1.4876 (обозначение по VdTüV-Wb 434) или 1.4958/1.4959 (обозначение по DIN 17459), или INCOLOY® 800 Н, или 800 НТ, или основанный на никеле материал 2.4816 [альтернативное обозначение Alloy 600 (сплав 600)] или 2.4851 [альтернативное обозначение Alloy 600 (сплав 601)].

Согласно изобретению сталь, релевантная согласно изобретению, имеет следующий элементный состав:

от 18 до 26 вес.% Сr (хрома),
от 9 до 36 вес.% Ni (никеля),
от 1 до 2,5 вес.% Si (кремния),
от 0,1 до 0,3 вес.% N (азота),
от ≥0, предпочтительно (независимо от С (углерода), содержания других элементов) от 0,03 до 0,15
вес.%
от ≥0 до 3 вес.% Мn (марганца),
от ≥0 до 4 вес.% Al (алюминия),
от ≥0 до 0,05 вес.% Р (фосфора),
от ≥0 до 0,05 вес.% S (серы) и
от ≥0 до 0,1 вес.%, предпочтительно от >0 до 0,1 и особенно предпочтительно от 0,03 до 0,08 (соответственно, независимо от содержаний всех других элементов) вес.% одного или нескольких редкоземельных металлов (предпочтительно Се или Се и одного или нескольких других редкоземельных металлов) и в остальном Fe и обусловленные получением примеси, при этом процентные данные, соответственно, отнесены к общему весу (стали).

Более предпочтительно сталь, релевантная согласно изобретению, имеет следующий элементный состав:

от 20 до 25 вес.% Сr (хрома),
от 9 до 20 (независимо от других содержаний) предпочтительно до 15 вес.% Ni (никеля),
от 1,4 до 2,5 вес.% Si (кремния),
от 0,1 до 0,3 вес.% N(азота),
от ≥0, предпочтительно (независимо от других содержаний) от 0,03 до 0,15 вес.% С (углерода),
от ≥0 до 3 вес.% Мn (марганца),
от ≥0 до 4 вес.% Al (алюминия),
от ≥0 до 0,05 вес.% Р (фосфора),
от ≥0 до 0,05 вес.% S (серы) и
от ≥0 до 0,1, предпочтительно от >0 до 0,1 и особенно предпочтительно от 0,03 до 0,08 (соответственно, независимо от всех других содержаний) вес.% одного или нескольких редкоземельных металлов (предпочтительно Се или Се и одного или нескольких других редкоземельных металлов) и в остальном Fe и обусловленные получением примеси, при этом процентные данные, соответственно, отнесены к общему весу (стали).

Особенно предпочтительно сталь, релевантная согласно изобретению, имеет следующий элементный состав:

от 20 до 22 вес.% Сr (хрома),
от 10 до 12 вес.% Ni (никеля),
от 1,4 до 2,5 вес.% Si (кремния),
от 0,12 до 0,2 вес.% N (азота),
от ≥0, предпочтительно (независимо от всех других содержаний) от 0,05 до 0,12 вес.% С (углерода),
от ≥0 до 1 вес.% Мn (марганца),
от ≥0 до 2, предпочтительно (независимо от всех других содержаний) 0 вес.% Al (алюминия),
от ≥0 до 0,45 вес.% Р (фосфора),
от ≥0 до 0,015 вес.% S (серы) и
от ≥0 до 0,1, предпочтительно от >0 до 0,1 и особенно предпочтительно от 0,03 до 0,08 (соответственно, независимо от всех других содержаний) вес.% одного или нескольких редкоземельных металлов (предпочтительно Се или Се и одного или нескольких других редкоземельных металлов) и в остальном Fe и обусловленные получением примеси, при этом процентные данные, соответственно, отнесены к общему весу (стали).

В общем, в рамках всех вышеприведенных составов, названных выше как выгодные или предпочтительные, благоприятно, когда составляет содержание N≥0,11, лучше ≥0,12, предпочтительно ≥0,13, особенно предпочтительно ≥0,14, и еще лучше ≥0,15 вес.%. Особенно предпочтительным во всех случаях является содержание азота (N) от 0,15 до 0,18 вес.%. С выгодой используются комбинированным образом все области, названные, соответственно, как предпочтительные.

Согласно изобретению существенно, что, в частности, предпочтительные составы стали S уже выбраны таким образом, что они оказываются как предпочтительные не только по отношению к нежелательному каталитическому действию релевантной стали.

Скорее, при имеющемся выборе предпочтительной области дополнительно принимается во внимание прежде всего, что сталь, выбранная как рабочий материал в производственном процессе, дополнительно по возможности оказывается предпочтительной в отношении своей механической прочности, а также относительно своей коррозионной и обычной прочности на износ. то обстоятельство имеет, в частности, значение тогда, когда оболочка по существу полностью изготавливается из выбранной стали S.

Например, используемая сталь S должна иметь также незначительную склонность к хрупкости в условиях процесса, используемых для гетерогенно катализируемого, частичного дегидрирования. Это требование, в частности, необходимо при повышенных температурах, используемых обычно в заявляемом процессе. Это, прежде всего, имеет значение тогда, когда реакционные температуры и/или температуры регенерации катализатора составляют от ≥400°С до ≤900°С, или от ≥500°С до ≤800°С, или от ≥550°С до ≤750°С, или от ≥600°С до ≤700°С. При этом в вышеназванном требовании уже принято во внимание также, что заявляемый способ гетерогенно катализируемого, частичного дегидрирорования проводится предпочтительно при рабочих давлениях выше 1 атм. Т.е. используемая согласно изобретению сталь S должна подходить также в качестве материала для реакторов, работающих под давлением. Кроме того, устойчивость во времени и характеристики термоустойчивости стали, выбранной согласно изобретению, должны удовлетворять требованиям заявляемого способа. То же самое распространяется на ее взрывоустойчивость и на ее склонность к науглероживанию. Сделанный предпочтительный выбор учитывает далее, что выбранная сталь в предпочтительном способе должна быть способна к обработке. Это означает, в частности, что она должна быть способна к обработке сваркой с технологической точки зрения, что невозможно для сталей, алонизированных перед обработкой, без отрицательного влияния алонизирования. Алонизирование после обработки в промышленном масштабе все-таки очень дорого или, как следствие, не проводится.

Требование коррозионной устойчивости имеет значение в особенности с той точки зрения, что дегидрированный углеводород, образовавшийся в процессе в соответствии с изобретением, может быть частично окислен в гетерогенно катализируемом процессе, последующем за заявляемым процессом (особенно предпочтительно в сопровождении не дегидрированного углеводорода). Если затем из газовой смеси продуктов частичного окисления отделяют желаемый продукт частичного окисления, то обычно остается еще остаточный газ, содержащий еще не дегидрированный углеводород и оксигенаты, который предпочтительно с целью дальнейшего превращения еще не дегидрированного углеводорода, по меньшей мере, частично возвращается в заявляемый процесс. Подавляющее большинство всех оксигенатов (например, акролеин, акриловая кислота, метакролеин, метакриловая кислота, Н2O (вода), О2(кислород), CO2 (диоксид углерода) и т.п.) все-таки обладают коррозионным действием.

Стали S, пригодные согласно изобретению, могут быть получены известным способом.

См., например, Enzyklopadie Naturwissenschaft und Technik, Verlag moderne Industrie, 1976, под заголовками "Stahlbegleiter", "Eisen", а также "Eisen und StahF, или Ullmanns Encyclopadie der technischen Chemie, Verlag Chemie, 4. Auflage, Band 3, Verfahrenstechnik II und Reaktionsapparate, Kapitel "Werkstoffe in der chemischen Industrie".

Согласно изобретению пригодными сталями являются, например, стали с номерами материалов согласно EN 1.4818, 1.4835 и 1.4854, среди которых сталь с номером материала 1.4854 является полностью предпочтительной. Кроме того, для заявляемого способа подходят также стали с номерами материалов по DIN 1.4891 и 1.4893, из которых сталь с номером материала 1.4893 является особенно предпочтительной. Также для заявляемого способа подходят стали с номерами материалов согласно ASTM/UNS S 30415, S 30815 и S 35315, среди которых сталь с номером материала S 30815, согласно изобретению является предпочтительной. Кроме того, для заявляемого способа подходят стали с номерами материалов согласно SS 23726б, 2361 и 2368, среди которых последняя согласно изобретению является предпочтительной.

Вышеназванные и прочие стали S, пригодные согласно изобретению, имеются также в продаже. Например, фирма Outokumpu Stainless АВ, в SE-774 22 Avesta, Schweden продает стали под собственными фирменными обозначениями МА™, 253 МА® и 353 МА® вышеназванных сталей, среди которых 253 МА®, согласно изобретению, является особенно предпочтительной. Фирма ThyssenKrupp Nirosta GmbH, в D-47794 Krefeld, Germany, продает под маркой легированной нержавеющей стали THERMAX® также сталь, особенно благоприятную согласно изобретению.

К сталям S, пригодным согласно изобретению, принадлежат тем самым, в частности, стали составов:

I.
18,5 вес.% Сr (хрома),
9,5 вес.% Ni (никеля),
1,3 вес.% Si (кремния),
0,15 вес.% N(азота),
от ≥0 до ≤0,05 вес.% С (углерода),
от ≥0 до ≤1 вес.% Мn (марганца),
от ≥0 до ≤0,045 вес.% Р (фосфора),
от ≥0 до ≤0,015 вес.% S (серы) и
от ≥0 до 0,1, предпочтительно от >0 до 0,1 и особенно предпочтительно от 0,03 до 0,08 вес.% одного или нескольких редкоземельных металлов (предпочтительно Се или Се и одного или нескольких других редкоземельных металлов) и в остальном Fe и обусловленные получением примеси, при этом процентные данные, соответственно, отнесены к общему весу.
II.
21 вес.% Сr (хрома),
11 вес.% Ni (никеля),
от 1,4 до 2,5 вес.% Si (кремния),
0,17 вес.% N (азота),
0,09 вес.% С (углерода),
от ≥0 до ≤1 вес.% Мn (марганца),
от ≥0 до ≤0,045 вес.% Р (фосфора),
от ≥0 до ≤0,015 вес.% S (серы) и
от ≥0 до 0,1, предпочтительно от>0 до 0,1 и особенно предпочтительно от 0,03 до 0,08 вес.% одного или нескольких редкоземельных металлов (предпочтительно Се или Се и одного или нескольких других редкоземельных металлов) и в остальном Fe и обусловленные получением примеси, при этом процентные данные, соответственно, отнесены к общему весу.
III.
от 24 до 26 вес.% Сr (хрома),
от 34 до 36 вес.% Ni (никеля),
1,2 до 2,0 вес.% Si (кремния),
0,12 до 0,2 вес.% N (азота),
0,04 до 0,08 вес.% С (углерода),
от ≥0 до ≤2,0 вес.% Мn (марганца),
от ≥0 до ≤0,045 вес.% Р (фосфора),
от ≥0 до ≤0,015 вес.% S (серы) и
от ≥0 до 0,1, предпочтительно от >0 до 0,1 и особенно предпочтительно от 0,03 до 0,08 вес.% одного или нескольких редкоземельных металлов (предпочтительно Се или Се и одного или нескольких других редкоземельных металлов) и в остальном Fe и обусловленные получением примеси, при этом процентные данные, соответственно, отнесены к общему весу.

Само собой разумеется, пригодные согласно изобретению стали S могут быть использованы для заявляемого способа также в алонизированной, алитированной и/или алюминированной форме (в частности на стороне, касающейся реакционного пространства). В этой форме они оказываются особенно предпочтительными в том случае, когда алонизирование, например. обусловленное изготовлением, повреждено или повреждается, в степени, достаточной уже для незначительного катализа термического разложения.

Если нет критичной необходимости изготовления оболочки полностью из подходящей согласно изобретению стали, а остается достаточным применить специальную сталь частично или только для поверхности оболочки со стороны реакционной среды в пределах заявленной средней толщины (например, из экономических соображений может быть целесообразным поверхность оболочки со стороны, касающейся реакционного пространства, изготавливать согласно изобретению только в тех местах, где в реакционном пространстве возникают особенно высокие температуры, или вообще изготавливать поверхность в заявляемой средней толщине слоя из заявляемой стали), то это можно достичь простым способом за счет плакирования (например, плакирования на вальцах или смачивающего плакирования, или наплавкой плакирующего слоя с прессованием), т.е. таким образом, что на поверхность в качестве основы, в виде покрытия наносят другое вещество (например, другую сталь) на желаемые места или на общее окружение поверхности заявляемой стали и, например, с помощью прессования или вальцевания, соответственно склеивания или сваривания прочно соединяют с основным материалом.

Заявляемый способ, в частности, является предпочтительным тогда, когда, по меньшей мере, один исходный газовый поток в качестве инертного газа-разбавителя содержит водяной пар (например, ≥1 об.%) и/или в качестве реагента молекулярный кислород (например, ≥0,1 или ≥0,5 об.%). Но это является предпочтительным также тогда, когда, по меньшей мере, один исходный газовый поток содержит водяной пар и/или молекулярный кислород в виде примесей. Кроме того, предпочтение имеет место тогда, когда в течение заявляемого, гетерогенно катализируемого, частичного дегидрирования водяной пар образуется в качестве продукта реакции. Это имеет значение в особенности тогда, когда для заявляемого процесса используется способ ведения процесса с циркулирующим газом или способ с замкнутым петлеобразным циклом, рекомендованные в Международной заявке WO 03/076370. Но заявляемый способ не является, в конце концов, особенно предпочтительным в том случае, когда, по меньшей мере, один исходный газовый поток из довключенного в заявляемый способ частичного окисления дегидрированного углеводорода, образовавшегося в рамках заявляемого процесса, в сопровождении присутствующего еще изначально дегидрируемого углеводорода, включает остаточный газ, содержащий оксигенат, оставшийся после отделения целевого продукта из газовой смеси продуктов частичного окисления.

В общем, по меньшей мере, один слой катализатора, находящийся в реакционном пространстве, может быть как вихревым слоем, или псевдоожиженным (кипящим) слоем, или неподвижным (закрепленным) слоем. Понятно, что вихревой слой и, например, неподвижный слой или кипящий слой и неподвижный слой могут быть также скомбинированы в реакционном пространстве. Согласно изобретению в случае, по меньшей мере, одного слоя катализатора заявляемого способа предпочтительно речь идет исключительно о неподвижных слоях катализатора.

Под нагрузкой слоя катализатора, катализирующего реакционную стадию, реакционным газом в настоящей заявке следует понимать в общем смысле количество реакционного газа в норм-литрах (=N1; объем в литрах, который заняло бы соответствующее количество газа при нормальных условиях (0°С, 1 атм)), которое проводится за час через литр слоя катализатора (например, неподвижного слоя катализатора). Но нагрузка может быть отнесена также только на составную часть реакционного газа. Тогда это есть количество этой составной части реакционного газа в NI/I·ч, которое проводится за час через литр неподвижного слоя катализатора (чистые загрузки инертного материала рассчитываются не по отношению к закрепленному слою катализатора). Нагрузка может быть рассчитана также только на количество катализатора, содержащегося в слое катализатора, который содержит собственно катализатор, разбавленный инертным материалом (это отмечается тогда в явно выраженном виде).

Под полным окислением (сгоранием) дегидрированного и/или дегидрируемого углеводорода в настоящей заявке понимается