Способ извлечения алюминия и железа из золошлаковых отходов
Изобретение относится к области переработки полезных ископаемых и может быть использовано при обогащении золошлаковых отходов, сырья техногенного характера, содержащего железо и алюминий. Способ извлечения алюминия и железа из золошлаковых отходов включает обработку раствором серной кислоты с экстракцией алюминийсодержащих компонентов в раствор. Перед экстракцией алюминийсодержащих компонентов в раствор отходы подвергают классификации и многостадийной магнитной сепарации при периодическом увеличении поля магнитной индукции для полного выделения магнитной фракции, содержащей железо. Техническим результатом является повышение эффективности извлечения алюминия и железа при экстракции из золошлакового материала, снижение затрат на реагентную обработку материала. 1 ил., 2 табл.
Реферат
Изобретение относится к области обогащения полезных ископаемых и может быть использовано при обогащении золошлаковых отходов, сырья техногенного характера, содержащего железо и алюминий.
Известен способ получения сульфата алюминия, включающий формирование пульпы из исходного сырья в виде шлака алюминиевого производства, содержащего оксид алюминия, посредством перемешивания исходного сырья с водой, взаимодействие компонентов шлака с серной кислотой и водой с образованием водного раствора сульфата алюминия [1].
Недостатком данного способа является использование для экстракции высококонцентрированного раствора серной кислоты (70-75%).
Известен способ получения сульфата алюминия, включающий предварительную отмывку шлака, содержащего оксид алюминия, от солей, затем обработку его серной кислотой, отделение фильтрацией полученного раствора от песка [2].
Данный способ не обеспечивает эффективную подготовку алюминийсодержащего сырья. Недостатком также является ограниченная сырьевая база применения метода при использовании отвальных алюмосодержащих шлаков, в то время как ЗШО являются широко распространенным сырьем.
Наиболее близким к предлагаемому способу является способ получения коагулянта путем растворения окислов железа и алюминия из глины или золы серной кислотой с добавлением поваренной соли. Процесс проводится с подогревом и пропусканием постоянного или переменного электрического тока [3].
Недостатком этого способа является использование процесса электролиза, в результате которого образуется щелочь, нейтрализующая в процессе экстракции кислоту. Это снижает интенсивность извлечения компонентов.
Техническим результатом является повышение эффективности извлечения алюминия и железа при экстракции из золошлакового материала, снижение затрат на реагентную обработку материала.
Технический результат достигается тем, что в способе извлечения алюминия и железа из золошлаковых отходов, включающем обработку раствором серной кислоты с экстракцией алюминийсодержащих компонентов в раствор, перед экстракцией алюминийсодержащих компонентов в раствор отходы подвергают классификации и многостадийной магнитной сепарации при периодическом увеличении поля магнитной индукции для полного выделения магнитной фракции, содержащей железо, а экстракцию алюминийсодержащих компонентов проводят из немагнитной фракции сначала обработкой 60-85%-ным раствором ортофосфорной кислоты в течение 3 часов при температуре 100-120°С с последующей фильтрацией и затем обработкой осадка раствором серной кислоты, при этом обработку ведут 30%-ным раствором серной кислоты.
Совокупность новых существенных признаков позволяет решить новую техническую задачу по извлечению алюминий- и железосодержащих компонентов из золошлаковых отходов.
На чертеже - схема извлечения алюминий- и железосодержащих компонентов золошлаковых отходов с использованием магнитной сепарации и кислотной экстракции.
Реализация способа осуществлялась следующим образом.
Золошлаковый материал, содержащий ценные компоненты (таблица 1), измельчался и классифицировался до крупности -2,0+0,0 мм и подвергался процессу магнитной сепарации для отделения магнитной фракции, содержащей железо и другие тяжелые металлы.
Таблица 1 | ||||||||||||
Силикатный анализ исходного сырья | ||||||||||||
№ пробы | Содержание определяемого компонента, % | |||||||||||
SiO2 | TiO2 | Al2O3 | Fe2О3 | MnO | MgO | CaO | Na2O | K2O | Р2O5 | SO3 | Потери при прокаливании | |
1 | 57,05 | 0,53 | 22.19 | 9.1 | 0,2 | 1,63 | 2,28 | 0,85 | 2,11 | 0,21 | 0.28 | 3,38 |
2 | 59,62 | 0,49 | 21,29 | 11,32 | 0.28 | 1,27 | 1,99 | 0,81 | 2,06 | 0,2 | 0,14 | 0,95 |
3 | 60,0 | 0,68 | 24,76 | 5,33 | 0,07 | 1,84 | 3,20 | 0,70 | 2,11 | 0,22 | 0,1 | 0,5 |
4 | 58,57 | 0,57 | 20,97 | 10,66 | 0,21 | 1,73 | 3,20 | 0,74 | 2,0 | 0,26 | 0,17 | 0,73 |
5 | 59,57 | 0.59 | 22,27 | 8,66 | 0,15 | 1,55 | 2,91 | 0,64 | 1,3 | 0,25 | 0,1 | 0,5 |
Процесс проводили в несколько стадий (3-5 перечисток) с увеличением поля магнитной индукции на перечистных операциях для увеличения степени извлечения магнитной фракции. Технологические показатели процесса сепарации приведены в таблице 2.
Таблица 2 | |
Итоговая таблица продуктов обогащения магнитной фракции. | |
Продукт | Выход |
% | |
Магнитная фракция | 4,91 |
Промежуточный продукт | 8,31 |
«Хвосты» | 86,48 |
Углистые | 0,3 |
Итого | 100,00 |
Немагнитная фракция (хвосты магнитной сепарации) подвергалась двух стадийной экстракции растворами ортофосфорной и серной кислот. На первой стадии обработка проводилась 60-85% раствором ортофосфорной кислоты, что увеличило выход алюминийсодержащих компонентов из стекловидной фазы золошлакового материала. Варьированием температуры, времени реакции и концентрации кислоты, анализом полученных данных выявлены условия процесса экстракции алюминия, при которых извлечение является наибольшим при времени 3 часа и температуре 100-120°С. По истечении времени экстракции осадок отделяется от маточного раствора фильтрованием. Маточный раствор, отделенный от алюминийсодержащих компонентов, возвращается в технологический цикл обработки исходного материала золошлакового отхода.
На второй стадии осадок обрабатывается 20-30% раствором серной кислоты. Раствор алюминийсодержащего компонента отделяется от силикатной составляющей фильтрованием. Определение количества алюминия велось фотометрическим методом с алюминоном по ГОСТ 18165-89 [4], определение железа титрованием с роданидом калия.
Реализация способа позволила достичь 60-65% извлечение алюминийсодержащих компонентов. Двухстадийный процесс экстракции позволяет увеличить селективность извлечения алюминийсодержащих компонентов, благодаря различной растворимости фосфатов основных компонентов золы в кислотах. Условия процесса извлечения не требуют применения специального типа оборудования. Процесс можно проводить без использования автоклава в кислотоустойчивом реакторе с мешалкой. Широкое использование способа обеспечит экономическую и экологическую эффективность за счет утилизации широко распространенного отхода теплоэнергетики.
Источники информации
1. Патент №2220098 РФ. Способ получения сульфата алюминия / Акимов И.Я., Ермаков М.В., Мельников Г.М., Парахин Ю.А.
2. Патент №2315715 РФ. Способ получения сульфата алюминия / Захаревский В.Н., Имангулов Р.Р.
3. Патент №2122975 РФ. Способ получения коагулянта / Ханин А.Б., Иванов А.Д., Будыкина Т.А.
4. ГОСТ 18165-89 «Вода питьевая. Метод определения массовой концентрации алюминия».
Способ извлечения алюминия и железа из золошлаковых отходов, включающий обработку раствором серной кислоты с экстракцией алюминийсодержащих компонентов в раствор, отличающийся тем, что перед экстракций алюминийсодержащих компонентов в раствор отходы подвергают классификации и многостадийной магнитной сепарации при периодическом увеличении поля магнитной индукции для полного выделения магнитной фракции, содержащей железо, а экстракцию алюминийсодержащих компонентов проводят из немагнитной фракции сначала обработкой 60-85%-ным раствором ортофосфорной кислоты в течение 3 ч при температуре 100-120°С с последующей фильтрацией и затем обработкой осадка раствором серной кислоты, при этом обработку ведут 30%-ным раствором серной кислоты.