Система и способ для выполнения операции бурения на месторождении

Иллюстрации

Показать все

Изобретение относится к способу выполнения операции бурения на буровой площадке, имеющей буровую вышку, выполненную с возможностью продвижения бурового инструмента в геологическую среду. Этапы способа включают в себя получение траектории скважины, связанной с первым объемом, получение информации, относящейся к первому объекту геологической среды, связанному со вторым объемом, использование трехмерного относительного сравнения для определения того, пересекается ли первый объем со вторым объемом для определения информации о первом пересечении, обновление траектории скважины на основании информации о первом пересечении для получения обновленной траектории скважины и для продвижения бурового инструмента в геологическую среду на основании обновленной траектории скважины. Техническим результатом является повышение точности траектории бурения. 5 н. и 43 з.п. ф-лы, 12 ил.

Реферат

2420-164317RU/061

Предпосылки создания изобретения

Область техники, к которой относится изобретение

Настоящее изобретение относится к приемам выполнения операций на месторождении, связанных с геологическими формациями, имеющими резервуары. Более конкретно, изобретение относится к приемам выполнения операций бурения, предполагающих анализ бурового оборудования, условий бурения и других параметров месторождения, которые оказывают влияние на операции бурения.

Предшествующий уровень техники

Операции на месторождении, такие как разведка, бурение, опробование пластов приборами на кабеле, завершение скважины и добыча, обычно выполняются для обнаружения и сбора ценных скважинных флюидов. Как показано на фиг.1A, изыскательские работы часто выполняются с использованием таких методик сбора данных, как сейсмические сканеры для формирования карт геологических структур. Эти структуры часто анализируются для обнаружения наличия таких подземных ресурсов, как ценные флюиды и минералы. Эта информация используется для доступа к геологическим структурам и для обнаружения формаций, содержащих необходимые полезные ископаемые. Данные, собранные с помощью методик сбора данных, могут быть оценены и проанализированы для определения присутствия ценных объектов в формации и ответа на вопрос, является ли доступ к ним экономически обоснованным.

Формация является обширным телом породы, имеющей отличительные свойства, которое может быть нанесено на карту. Пространства между зернами породы ("пористость") формации могут содержать такие флюиды, как нефть, газ или вода. Соединения между пространствами ("проницаемость") могут позволить флюидам перемещаться через формацию. Формации с достаточной пористостью и проницаемостью для вмещения флюидов и обеспечения их перемещения называют резервуарами. Структура - это геологический признак, который создается при деформации земной поверхности, как складка или разлом, является внутренним признаком самой породы (таким как разрыв) или, говоря обобщенно, обусловлен взаиморасположением пород. Приведенные выше определения взяты из промыслового словаря компании Schlumberger (www.glossary.oilfield.slb.com), но в промышленности термины «формация» и «структура» могут свободно использоваться как синонимы.

Как показано на фиг.1B-1D, одна или несколько буровых площадок могут быть расположены вдоль геологических структур для сбора ценных флюидов из подземных резервуаров. Буровые площадки оснащены инструментами, способными обнаруживать и извлекать углеводороды из подземных резервуаров. Как показано на фиг.1B, буровые инструменты обычно опускают с буровых вышек в геологическую среду по заданному пути для обнаружения ценных скважинных флюидов. Буровой инструмент во время операции бурения может выполнять скважинные измерения для исследования условий бурения. В некоторых случаях, как показано на фиг.1C, буровой инструмент удаляют и в скважину опускают проводной инструмент для выполнения дополнительного исследования скважины. По всему тексту этого документа термин "ствол скважины" используется взаимозаменяемо с термином "скважина".

После выполнения операции бурения скважина может быть подготовлена к добыче. Как показано на фиг.1D, оборудование для завершения размещается в скважине для завершения скважины при подготовке к добыче из нее флюида. Флюид затем всасывается из скважинного резервуара в скважину и далее на поверхность. Добывающее оборудование расположено в различных местах на поверхности для сбора углеводородов с буровых площадок. Флюид, всасываемый из подземных резервуаров, поступает в добывающее оборудование через транспортные механизмы, такие как насосно-компрессорные трубы. Для мониторинга параметров месторождения и/или для управления операциями на месторождении по месторождению может быть расположено различное оборудование.

Обычно во время операций на месторождении собираются данные для анализа и/или мониторинга этих операций. Такие данные могут включать в себя, например, данные о геологической формации, оборудовании, статистические и другие данные. Данные, относящиеся к геологической формации, собираются из различных источников. Данные формации могут быть статическими или динамическими. Статические данные относятся к структуре формации и геологической стратиграфии, которая определяет геологическую структуру геологической формации. Динамические данные относятся к протеканию флюидов через геологические структуры геологической формации. Такие статические и динамические данные могут быть собраны для дополнительного изучения формаций и содержащихся в них ценных ресурсов.

В качестве источников, используемых для сбора статических данных, могут применяться сейсмические инструменты, такие как самоходная сейсмическая станция, которая посылает продольные сейсмоволны в землю, как показано на фиг.1A. Эти волны измеряются для описания изменений в плотности геологической структуры на различных глубинах. Эта информация может быть использована для формирования базовых структурных карт геологической формации. Другие статические измерения могут быть собраны с использованием проб керна и приемов скважинного каротажа. Пробы керна используются для получения физических образцов формации на разных глубинах, как показано на фиг.1B. Скважинный каротаж предполагает размещение скважинного инструмента в скважине для проведения на разных глубинах изменений различных скважинных параметров, таких как плотность, удельное сопротивление и так далее. Такой скважинный каротаж может быть выполнен с использованием, например, бурового инструмента на фиг.1B и/или кабельного инструмента на фиг.1C. После формирования и завершения скважины флюиды вытекают на поверхность с использованием насосно-компрессорной трубы, как показано на фиг.1D. По мере поступления флюида на поверхность может осуществляться мониторинг различных динамических измерений таких параметров, как скорость потоков флюида, давление и состав. Эти параметры могут быть использованы для определения различных характеристик геологической формации.

Датчики могут быть расположены по всему месторождению для сбора данных, относящихся к различным операциям на месторождении. Например, датчики, расположенные в скважине, могут осуществлять мониторинг состава флюида, датчики, расположенные вдоль пути протекания, могут осуществлять мониторинг скоростей потоков, и датчики, расположенные на обрабатывающем комплексе, могут осуществлять мониторинг собранных флюидов. Другие датчики могут использовать для мониторинга состояний скважины, поверхности, оборудование или другие состояния. Данные мониторинга часто используют для выработки решений на различных местах месторождения в различное время. Собранные этими датчиками данные могут быть дополнительно проанализированы и обработаны. Данные могут быть собраны и использованы для текущих или будущих операций. При использовании для будущих операций на тех же или других местах такие данные иногда называются статистическими данными.

Обработанные данные могут быть использованы для прогнозирования скважинных условий и принятия решений, касающихся операций на месторождении. Такие решения могут включать планирование скважины, проводку скважины, завершение скважины, операционные уровни, скорости добычи и другие конфигурации. Часто эта информация используется для определения того, когда бурить новые скважины, когда осуществлять повторное завершение существующих скважин или изменять добычу из скважины.

Данные из одной или нескольких скважин могут быть проанализированы для планирования или прогнозирования различных результатов на данной скважине. В некоторых случаях данные из соседних скважин или скважин с аналогичными условиями или оборудованием используются для прогнозирования того, как будет себя вести скважина. Обычно при анализе скважинных операций учитывается большое количество переменных и данных. Следовательно, часто полезно моделировать операцию на месторождении для определения желаемого способа ее проведения. Во время проведения операций необходимо корректировать операционные условия по мере их изменения и поступления новой информации.

Разработаны приемы для моделирования поведения геологических структур, подземных резервуаров, скважин, поверхностных комплексов, а также других составляющих операции на месторождении. Примеры техник моделирования показаны в патентах/заявках США №№ US 5992519, WO 2004/049216, WO 1999/064896, US 6313837, US 2003/0216897, US 2003/0132934, US 2005/0149307 и US 2006/0197759. Существующие приемы моделирования обычно использовались для анализа только определенных частей операции на месторождении. Совсем недавно были предприняты попытки использовать более чем одну модель при анализе определенных операций на месторождении. См., например, патенты/заявки США №№ US 6980940, WO 2004/049216, US 2004/0220846 и US 10/586,283.

Также были разработаны приемы для прогнозирования и/или планирования определенных операций на месторождении, таких как операции бурения. Примеры техник для формирования планов бурения показаны в патентах/заявках США №№20050236184, 20050211468, 20050228905, 20050209886 и 20050209836. Некоторые приемы бурения предполагают управление операцией бурения. Примеры таких приемов бурения показаны в патентах/заявках №№ GB 2392931 и GB 2411669. Другие приемы бурения стремятся представить операции бурения в режиме реального времени. Примеры приемов, предусматривающих представление бурения в режиме реального времени, показаны в патентах/заявках США №№7079952, 6266619, 5899958, 5139094, 7003439 и 5680906.

Сущность изобретения

Согласно одному аспекту изобретение относится к способу выполнения операции бурения на буровой площадке, имеющей буровую установку, выполненную с возможностью продвижения бурового инструмента в геологическую среду. Способ включает в себя этапы, согласно которым получают траекторию скважины, связанную с первым объемом, получают информацию, относящуюся к первому геологическому объекту, связанному со вторым объемом, используют трехмерное относительное сравнение для определения пересечения первого объема со вторым объемом, для определения первой информации о пересечении, обновляют траекторию скважины на основании первой информации о пересечении для получения обновленной траектории скважины и продвигают буровой инструмент в геологическую среду на основании обновленной траектории скважины.

В общем согласно другому аспекту изобретение относится к способу выполнения операции бурения на буровой площадке, имеющей буровую установку, выполненную с возможностью продвижения бурового инструмента в геологическую среду. Способ включает в себя этапы, согласно которым получают геологическую цель на основании геологической информации, причем геологическая цель связана с первым объемом, задают скважинную цель на основании геологической цели и геологической информации, связанной с геологической целью, причем скважинная цель соответствует подмножеству первого объема, получают траекторию скважины на основании скважинной цели и продвигают буровой инструмент в геологическую среду на основании траектории скважины.

Согласно еще одному аспекту изобретение относится к системе для выполнения операции бурения на буровой площадке, имеющей буровую установку, выполненную с возможностью продвижения бурового инструмента в геологическую среду. Система включает в себя интерфейс, выполненный с возможностью получения траектории скважины, причем траектория скважины связана с первым объемом и с возможностью получения информации, связанной с первым геологическим объектом, причем первый геологический объект связан со вторым объемом. Система также включает в себя блок моделирования, выполненный с возможностью определения пересечения первого объема со вторым объемом с использованием трехмерного относительного сравнения для получения информации о первом пересечении и для обновления траектории скважины на основании информации о первом пересечении.

Согласно еще одному своему аспекту изобретение относится к компьютерному программному продукту, воплощающему инструкции, для компьютера для реализации этапов способа выполнения операции бурения на буровой площадке, имеющей буровую установку, выполненную с возможностью продвижения бурового инструмента в геологическую среду. Инструкции включают в себя функции для получения траектории скважины, связанной с первым объемом, получения информации, относящейся к первому объекту геологической среды, связанному со вторым объемом, использования трехмерного относительного сравнения для определения пересечения первого объема со вторым объемом для определения первой информации о пересечении, обновления траектории скважины на основании первой информации о пересечении для получения обновленной траектории скважины и для продвижения бурового инструмента в геологическую среду на основании обновленной траектории скважины.

Другие аспекты и преимущества изобретения станут очевидны из дальнейшего описания и прилагаемой формулы изобретения.

Краткое описание чертежей

Фиг.1A-1D показывают схематический вид месторождения, имеющего геологические структуры, содержащие резервуары, а также различные операции, выполняющиеся на месторождении.

Фиг.2A-2D показывают графические изображения данных, собираемых инструментами на фиг.1A-1D соответственно.

Фиг.3 показывает схематический вид, частично в разрезе, операции бурения на месторождении.

Фиг.4-5 показывают данные в качестве примера схематические диаграммы систем для выполнения операции бурения на месторождении.

Фиг.6-9 показывают данные в качестве примера блок-схемы, изображающие способы для выполнения операции бурения на месторождении.

Фиг.10 показывает данные в качестве примера графическое представление информации о пересечении.

Фиг.11 показывает данные в качестве примера табличное представление информации о пересечении.

Фиг.12 показывает данные в качестве примера графическое представление траектории скважины и боковой траектории скважины, связанной с траекторией скважины.

Подробное описание изобретения

Ниже будут подробно описаны конкретные варианты осуществления изобретения со ссылкой на прилагаемые чертежи. Аналогичные элементы на разных чертежах обозначены одинаковыми ссылочными номерами для согласованности.

В следующем подробном описании вариантов осуществления изобретения раскрываются многочисленные конкретные детали в целях обеспечения более глубокого понимания изобретения. В некоторых случаях известные из уровня техники признаки не описываются в деталях, чтобы не усложнять понимание изобретения. В настоящей заявке на патент термины "S7" и "Этап" используются в одинаковом значении.

Настоящее изобретение предполагает практическое применение в нефтяной и газовой индустрии. Фиг.1A-1D показывают пример месторождения (100) с подземными структурами и геологическими структурами в них. Более конкретно, фиг.1A-1D показывают схематические изображения месторождения (100), имеющего геологические структуры (102), содержащие резервуар (104), а также изображают различные операции, выполняемые на месторождении. Различные измерения геологической формации производятся различными инструментами в одном и том же месте. Эти измерения могут использоваться для формирования информации о формации и/или геологических структурах и/или содержащихся в них флюидах.

Фиг.1A изображает разведывательную операцию, выполняемую с помощью самоходной сейсмической станции (106a), для измерения свойств геологической формации. Разведывательная операция является сейсмической операцией для создания акустических колебаний. На фиг.1A акустический источник (110) производит акустические колебания (112), которые отражаются от множества горизонтов (114) геологической формации (116). Звуковые колебания (112) принимаются датчиками, такими как сейсмоприемники (118), расположенные на земной поверхности, а сейсмоприемники (118) вырабатывают электрические выходные сигналы, обозначенные на фиг.1A как «принятые данные».

Принятые акустические колебания (112) содержат различные параметры (такие как амплитуда и/или частота). Принятые данные (120) в виде входных данных передаются в компьютер (122a) самоходной сейсмической станции (106a), и в ответ на входные данные регистрирующий компьютер (122a) самоходной сейсмической станции формирует запись (124) сейсмических выходных данных. Сейсмические данные могут быть, при необходимости, дополнительно обработаны, например, путем уплотнения данных.

Фиг.1B изображает операцию бурения, выполняемую буровым инструментом (106b), подвешенным на буровой вышке (128) и продвигаемым в геологическую формацию (102) для формирования скважины (136). Бассейн (130) бурового раствора используется для подачи бурового раствора в буровой инструмент через нагнетательный трубопровод (132) для циркуляции бурового раствора через буровой инструмент и выхода его обратно на поверхность. Буровой инструмент продвигают в формацию для достижения резервуара (104). Буровой инструмент предпочтительно выполнен с возможностью измерения скважинных параметров. Инструмент для каротажа во время бурения может быть выполнен с возможностью отбора проб (133) керна, как показано, или без такой возможности, так что образцы (133) керна могут быть отобраны с использованием другого инструмента.

Поверхностный блок (134) используется для соединения с буровым инструментом и оборудованием за пределами рабочей площадки. Поверхностный блок (134) выполнен с возможностью связи с буровым инструментом (106b) для передачи команд управления буровым инструментом (106b) и приема от него данных. Поверхностный блок (134) предпочтительно оснащен компьютером для приема, хранения, обработки и анализа данных с месторождения. Поверхностный блок (134) собирает выходные данные (135), сформированные во время операции бурения. Такие выходные данные (135) могут сохраняться на компьютерно-читаемом носителе (компакт-диске (CD), ленточном приводе, жестком диске, флеш-памяти или другом подходящем носителе). Далее, выходные данные (135) могут быть сохранены в компьютерном программном продукте, который по необходимости сохраняют, копируют и/или распространяют. Компьютер, аналогичный компьютеру поверхностного блока, может быть расположен в различных местах на месторождении и/или в удаленных положениях.

Датчики (S), такие как измерительные приборы, могут быть расположены по всему резервуару, буровой установке, промысловому оборудованию (такому как скважинный инструмент) или в других частях месторождения, для сбора информации о различных параметрах, таких как поверхностные параметры, скважинные параметры и/или операционные условия. Эти датчики (S) предпочтительно измеряют параметры месторождения, такие как нагрузка на долото, вращающий момент на долоте, давления, температуры, скорости потоков, составы, измеренные глубины, азимут, наклон и другие параметры операций на месторождении.

Информация, полученная от датчиков (S), может быть собрана поверхностным блоком (134) и/или другими источниками сбора данных для анализа или другой обработки. Данные, собранные датчиками (S), могут использоваться сами по себе или в сочетании с другими данными. Данные могут сохраняться в базе данных, при этом все или выбранные части данных могут избирательно использоваться для анализа и/или прогнозирования операций на месторождении с текущей и/или другими скважинами.

Данные на выходе из различных датчиков (S) (выходные данные), расположенных по всему месторождению, могут затем обрабатываться для использования. Данные могут представлять собой статистические данные, данные в режиме реального времени или их сочетание. Данные в режиме реального времени могут использоваться в режиме реального времени или сохраняться для последующего использования. Данные в режиме реального времени могут также комбинироваться со статистическими данными или другими входными данными для дальнейшего анализа. Данные могут помещаться в раздельные базы данных или комбинироваться в единую базу данных.

Собранные данные могут использоваться для выполнения анализа, такого как операции моделирования. Например, выходные сейсмические данные могут использоваться для выполнения геологических, геофизических и/или резервуарных технических имитаций. Данные резервуара, скважины, поверхности и/или процесса могут использоваться для выполнения резервуарных, скважинных или других имитаций. Выходные данные (135) операции на месторождении могут формироваться непосредственно датчиками (S), а также формироваться посредством некоторой предварительной обработки или моделирования. Эти выходные данные (135) могут выступать в роли входных данных для последующего анализа.

Данные собираются и хранятся в поверхностном блоке (134). Один или несколько поверхностных блоков могут располагаться на месторождении или подсоединяться к нему удаленно. Поверхностный блок (134) может быть одним блоком или сложной сетью блоков, используемой для выполнения необходимых функций управления данными по всему месторождению. Поверхностный блок (134) может быть ручной или автоматической системой. Поверхностный блок (134) может управляться и/или настраиваться пользователем.

Поверхностный блок (134) может быть оснащен приемопередатчиком (137) для обеспечения связи между поверхностным блоком (134) и различными частями месторождения и/или других местоположений. Поверхностный блок (134) также может быть оснащен контроллером или функционально соединен с ним для приведения в действие механизмов на месторождении. Поверхностный блок (134) может отправлять сигналы команд на месторождение в ответ на принимаемые данные. Поверхностный блок (134) может принимать команды через приемопередатчик (137) или может сам передавать команды на контроллер. Возможно использование процессора для анализа данных (локально или удаленно) и принятия решений для инициализации контроллера. Таким образом, месторождение может избирательно настраиваться на основании собранных данных. Эти настройки могут быть сделаны автоматически на основании компьютерного протокола или вручную оператором. В некоторых случаях планы скважин и/или размещение скважины могут быть скорректированы для выбора оптимальных операционных условий или для предотвращения проблем.

Фиг.1С изображает каротажную операцию, выполняемую с помощью кабельного инструмента (106c), опущенного с вышки (128) в скважину (136) на фиг.1B. Кабельный инструмент (106c) предпочтительно выполнен с возможностью размещения в скважине (136) для выполнения скважинного каротажа, выполнения скважинных испытаний и/или отбора проб. Кабельный инструмент (106c) может быть использован с применением другого способа и устройства для выполнения операций по сейсморазведке. Кабельный инструмент (106c) на фиг.1С может иметь источник (144) взрывной или акустической энергии, который посылает электрические сигналы в окружающие геологические формации (102).

Кабельный инструмент (106c) может быть операционно соединен, например, с сейсмоприемниками (118), находящимися в памяти компьютера (122a) самоходной сейсмической станции (106a) на фиг.1A. Кабельный инструмент (106c) может также обеспечивать данные для поверхностного блока (134). Как показано, выходные данные (135) формируются кабельным инструментом (106c) и собираются на поверхности. Для обеспечения разведки геологической формации (102) кабельный инструмент (106c) может быть расположен на различных глубинах в скважине (136).

Фиг.1D изображает операцию добычи на месторождении, выполняемую добывающим инструментом (106d), подаваемым с добывающего блока или фонтанной арматуры (129) в завершенной скважине (136) на фиг.1С для перекачивания флюида из подземного резервуара в поверхностные комплексы (142). Флюид течет из резервуара (104) через перфорацию в обсадной колонне (не показана) в добывающий инструмент (106d) в скважине (136) и в поверхностный комплекс (142) через сеть сбора (146).

Датчики (S), такие как измерительные приборы, могут быть расположены по всему месторождению для сбора данных, связанных с различными операциями на месторождении, как это описано выше. Как показано, датчик (S) может быть расположен на добывающем инструменте (106d) или на сопряженном оборудовании, таком как фонтанная арматура, сеть сбора, поверхностные комплексы и/или добывающий комплекс, для измерения параметров флюида, таких как состав флюида, скорость потоков, давление, температура и/или другие параметры операции добычи.

Несмотря на то что показаны только упрощенные конфигурации буровых площадок, следует понимать, что месторождение может покрывать участки поверхности, моря и/или воды, которые содержат одну или несколько буровых площадок. Добыча может также включать в себя нагнетание скважин (не показано) для дополнительного извлечения. Одна или несколько систем сбора могут быть операционно подсоединены к одной или нескольким буровым площадкам для избирательного сбора скважинных флюидов из скважин.

Во время процесса добычи выходные данные (135) могут собираться от различных датчиков (S) и передаваться на поверхностный блок (134) и/или обрабатывающие комплексы. Эти данные могут представлять собой, например, данные резервуара, данные скважины, данные с поверхности и/или данные о процессе.

Все операции на месторождении, показанные на фиг.1A-1D, имеют важное коммерческое значение. Например, оборудование, показанное на каждом из этих чертежей, имеет различную стоимость и/или связанные с его использованием риски. По меньшей мере, некоторые данные, собранные на месторождении, относятся к технико-экономическим показателям, таким как стоимость и риск. Технико-экономические показатели могут включать в себя, например, затраты на добычу, время бурения, стоимость хранения, цену на нефть/газ, погоду, политическую стабильность, налоги, доступность оборудования, геологическую среду и другие факторы, которые влияют на стоимость выполнения операций на месторождении или связанные с ним потенциальные обязательства. Могут быть приняты решения и разработаны стратегические бизнес-планы для уменьшения потенциальных затрат и рисков. Например, план месторождения может быть основан на этих технико-экономических показателях. Такой план месторождения может, например, определять положение буровой вышки, а также глубину, количество скважин, длительность операции и другие факторы, которые будут влиять на стоимость и риски, связанные с операцией на месторождении.

Несмотря на то что фиг.1A-1D изображают инструменты для мониторинга, используемые для измерения свойств месторождения, следует понимать, что инструменты могут быть использованы не на месторождении, например в шахтах, водоносных горизонтах и других геологических комплексах. В дополнение, несмотря на то что изображены определенные инструменты сбора данных, следует понимать, что могут быть использованы различные измерительные инструменты, способные измерять такие свойства геологической формации и/или ее геологических структур, как полное время пробега сейсмической волны, плотность, удельное сопротивление, скорость добычи и так далее. Различные датчики (S) могут быть расположены в разных положениях по всей геологической формации и/или на инструментах для мониторинга, для сбора и/или осуществления мониторинга желаемых данных. Также могут быть обеспечены другие источники данных с удаленных положений.

Конфигурация месторождения на фиг.1A-1D не предназначена для ограничения объема изобретения. Частично или все месторождения могут быть наземными или морскими. В дополнение, несмотря на то что изображено одно месторождение, проанализированное в одном положении, настоящее изобретение может быть использовано с любой комбинацией одного или нескольких месторождений, одного или нескольких обрабатывающих комплексов, одной или нескольких буровых площадок.

Фиг.2A-2D являются графическими изображениями данных, собранных инструментами на фиг.1A-1D. Фиг.2A показывает дорожку (202) сейсмограммы геологической формации, показанной на фиг.1A, полученную разведывательным инструментом (106a). Дорожка (202) сейсмограммы показывает полный отклик за период времени. Фиг.2B показывает образец керна (133), взятый каротажным инструментом (106b). При испытании керна обычно получают график плотности, удельного сопротивления или другого физического параметра образца керна относительно длины керна. Фиг.2C изображает каротажную диаграмму (204) геологической формации на фиг.1С, полученную кабельным инструментом (106c). При кабельном каротаже обычно получают измерения удельного сопротивления формации на различных глубинах. Фиг.2D показывает кривую падения добычи (206) флюида, протекающего через геологическую формацию на фиг.1D, полученную с помощью добывающего инструмента (106d). Кривая падения добычи обычно представляет скорость (Q) добычи как функцию от времени (t).

Соответствующие графики на фиг.2A-2C содержат статические измерения, которые описывают физические характеристики формации. Эти измерения можно сравнивать для определения точности измерений и/или проверки ошибок. Таким образом, графики каждого из соответствующих измерений можно упорядочивать и масштабировать для сравнения и проверки свойств.

Фиг.2D показывает динамическое измерение свойств флюида во всей скважине. По мере протекания флюида через скважину делаются измерения свойств флюида, таких как скорости потоков, давление, состав и так далее. Как описано ниже, статические и динамические измерения можно использовать для формирования моделей геологической формации для определения ее характеристик.

Модели можно использовать для создания модели геологической среды, определяющей геологические условия. Эта модель геологической среды прогнозирует структуру и ее поведение по мере выполнения операций на месторождении. По мере сбора новой информации вся модель геологической среды или ее часть может потребовать корректировки.

Фиг.3 является схематическим видом буровой площадки (300), изображающим операцию бурения, такую как операция бурения на фиг.1B на месторождении, в деталях. Система (300) буровой площадки включает в себя буровую систему (302) и поверхностный блок (304). В показанном варианте осуществления изобретения скважина (306) формируется путем вращательного бурения хорошо известным способом. Однако специалисты в данной области техники, пользующиеся преимуществами этого изобретения, поймут, что настоящее изобретение также находит применение при бурении, отличном от обычного вращательного бурения (например, направленное бурение с помощью забойного двигателя) и не ограничено применением только на поверхностных буровых установках.

Буровая система (302) включает в себя буровую колонну (308), опущенную в скважину (306) с буровым долотом (310) на ее нижнем конце. Буровая система (302) также включает в себя поверхностную платформу и узел (312) буровой вышки, расположенный над скважиной (306), пронизывающей геологическую формацию (F). Узел (312) включает в себя стол (314) ротора, ведущую штангу (316), крюк (318) и вращающийся вертлюг (319). Буровая колонна (308) вращается столом (314) ротора, приводимым в действие непоказанным средством, который удерживает ведущую штангу (316) на верхнем конце буровой колонны. Буровая колонна (308) подвешена на крюке (318), прикрепленном к талевому блоку (также не показан), через ведущую штангу (316) и вертлюг (319), который позволяет буровой колонне вращаться относительно крюка.

Буровая система (302) дополнительно включает в себя буровой флюид или раствор (320), хранящийся в бассейне (322), сформированном на буровой площадке. Насос закачивает буровой флюид (320) внутрь буровой колонны (308) через отверстие в вертлюге (319), заставляя буровой флюид течь вниз через буровую колонну (308), как показано стрелкой (324). Буровой флюид покидает буровую колонну (308) через отверстия в буровом долоте (310) и затем циркулирует вверх через область между внешней стороной буровой колонны и стенкой скважины, называемую кольцевым пространством (326). Таким образом, буровой флюид смазывает буровое долото (310) и выносит буровой шлам на поверхность по мере возвращения в бассейн (322) для рециркуляции.

Буровая колонна (308) дополнительно включает в себя компоновку низа бурильной колонны (КНБК), в общем обозначаемую как КНБК (330), около бурового долота (310) (другими словами, в пределах нескольких длин утяжеленных буровых труб от бурового долота). КНБК (330) включает в себя возможности для измерения, обработки и хранения информации, а также связи с поверхностным блоком. КНБК (330) дополнительно включает в себя утяжеленные буровые трубы (328) для выполнения других различных измерительных функций.

По буровой площадке расположены датчики (S) для сбора, предпочтительно в режиме реального времени, данных, касающихся работ на буровой площадке, а также условий на буровой площадке. Датчики (S) на фиг.3 могут быть аналогичными датчикам на фиг.1A-1D. Датчики на фиг.3 могут также обладать устройствами или возможностями мониторинга, такими как камеры (не показаны) для предоставления изображений операции. Поверхностные датчики или измерительные приборы (S) могут быть размещены по поверхностным системам для предоставления, среди прочего, информации о поверхностном блоке, такой как давление в напорной линии, нагрузка на крюк, глубина, вращающий момент на поверхности, скорость вращения. Поверхностные датчики или измерительные приборы (S) расположены по буровому инструменту и/или скважине для обеспечения информации, среди прочего, о скважинных условиях, таких как давление в скважине, нагрузка на буровое долото, вращающий момент на долоте, направление, наклон, скорость вращения трубы, температура инструмента, температура в кольцевом пространстве и на поверхности инструмента. Информация, собранная датчиками и камерами, направляется в разные части буровой системы и/или поверхностного блока управления.

Буровая система (302) операционно соединена с поверхностным блоком (304) для связи с ним. КНБК (330) оснащена коммуникационным субагрегатом (352), который соединяется с поверхностным блоком. Коммуникационный субагрегат (352) выполнен с возможностью отправлять и принимать сигналы с поверхности с использованием телеметрии пульсации бурового раствора. Коммуникационный субагрегат может включать в себя, например, передатчик, который формирует сигнал, такой как акустический или электромагнитный сигнал, который представляет измеренные параметры бурения. Связь между скважинными и поверхностными системами изображена в виде телеметрии пульсации бурового раствора, такой как одна из показанных в патенте США №5517464, права по которому принадлежат заявителю по настоящей заявке. Специалистам в данной области техники должно быть понятно, что могут быть задействованы различные телеметрические системы, такие как проводные буровые трубы, электромагнитные или другие известные телеметрические системы.

Обычно скважина (306) бурится в соответствии с планом бурения, который утверждается перед бурением. План бурения обычно описывает оборудование, давления, траектории и/или другие параметры, которые определяют процесс бурения для буровой площадки (300). Операция бурения может быть затем выполнена в соответствии с планом бурения. Однако после сбора информации операция бурения может потребовать отклонения от плана бурения. Дополнительно, по мере выполнения бурения или другой операции геологические условия могут меняться. По мере сбора новой информации модель геологической среды может также требовать корректировки.

Фиг.4 является схематическим видом системы (400) для выполнения операции бурения на месторождении. Как показано, система (400) включает в себя поверхностный блок (402), операционно соединенный с буровой системой (404) буровой площадки, серверы (406), операционно соединенные с поверхностным блоком (402), и моделирующий инструмент (408), операционно соединенный с серверами (406). Как показано, буровая система (404) буровой площадки выполнена с возможностью продвижения бурового инструмента в геологическую среду.

Геологическая среда может содержать объекты геологической среды. Объекты геологической среды могут соответствовать физической структуре, границе, траектории или н