Калибровка канала для коммуникационной системы с дуплексной связью и временным разделением канала
Иллюстрации
Показать всеРаскрыты способы калибровки восходящего и нисходящего каналов. Технический результат заключается в учете различий в частотных откликах передающих и приемных цепей в точке доступа и пользовательском терминале. Для этого в одном из вариантов осуществления пилот-сигналы передают по нисходящему и восходящему каналам и используют для вывода оценок откликов нисходящего и восходящего каналов, соответственно. Затем определяют два набора поправочных факторов, основываясь на оценках откликов нисходящего и восходящего каналов. Калиброванный нисходящий канал формируют, используя первый набор поправочных факторов для нисходящего канала, и калиброванный восходящий канал формируют, используя второй набор поправочных факторов для восходящего канала. Первый и второй наборы поправочных факторов могут быть определены, используя вычисления отношения матриц или вычисление с минимальной среднеквадратичной ошибкой (MMSE). Калибровка может выполняться в реальном масштабе времени, основываясь на передаче по радиоканалу. 6 н. и 32 з.п. ф-лы, 6 ил., 2 табл.
Реферат
Притязание на приоритет по 35 U.S.C. § 119.
Настоящая заявка на патент притязает на приоритет по предварительной заявке на патент США № 60/421462, озаглавленной “Channel Calibration for a Time Division Duplexed Communication System”, и предварительной заявке на патент США № 60/421309, озаглавленной “MIMO WLAN System”, обе поданы 25 октября 2002 года, и права на которые принадлежат правообладателю настоящей заявки на патент, и которые включены в настоящее описание во всей своей полноте в качестве ссылки.
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится в общем случае к связи и более точно к способам калибровки откликов нисходящего и восходящего каналов в коммуникационной системе с дуплексной связью и временным разделением каналов (TDD).
УРОВЕНЬ ТЕХНИКИ
В беспроводной коммуникационной системе передача данных между точкой доступа и пользовательским терминалом происходит по беспроводному каналу. В зависимости от конструкции системы одни и те же или различные полосы частот могут использоваться для нисходящей линии и восходящей линии. Нисходящая линия (или прямая линия) относится к передаче от точки доступа к пользовательскому терминалу, а восходящая линия (или обратная линия) относится к передаче от пользовательского терминала к точке доступа. Если доступны две полосы частот, тогда нисходящая линия и восходящая линия могут передаваться в отдельных полосах частот, используя дуплексную связь с частотным разделением каналов (FDD). Если доступна только одна полоса частот, тогда нисходящая линия и восходящая линия могут совместно использовать одну полосу частот с применением дуплексной связи с временным разделением каналов (TDD).
Для достижения высокой производительности часто бывает необходимым знать частотный отклик беспроводного канала. Например, отклик нисходящего канала может быть необходим точке доступа для выполнения пространственной обработки (описано ниже) для передачи данных по нисходящей линии пользовательскому терминалу. Отклик нисходящего канала может быть оценен пользовательским терминалом, основываясь на пилот-сигнале, передаваемом точкой доступа. Пользовательский терминал может затем отправить оценку канала обратно в точку доступа для дальнейшего использования. Для такой схемы оценки канала необходимо передавать пилот-сигнал по нисходящей линии и отправка оценки канала в точку доступа вызывает дополнительные задержки и требует дополнительных ресурсов.
Для TDD систем с общей полосой частот можно предположить, что отклики нисходящего канала и восходящего канала являются взаимно-обратными. То есть, если представляет матрицу отклика канала от антенной решетки A до антенной решетки B, то взаимно-обратный канал подразумевает, что соединение от решетки B к решетке A дается , где обозначает транспонированную матрицу . Таким образом, для TDD системы отклик канала для одной линии может быть оценен, основываясь на пилот-сигнале, посланном по другой линии. Например, отклик восходящего канала может быть оценен, основываясь на пилот-сигнале восходящей линии, и транспонированный отклик восходящего канала может быть использован в качестве оценки отклика нисходящего канала.
Однако частотные отклики передающей и приемной цепей в точке доступа обычно отличаются от частотных откликов передающей и приемной цепей в пользовательском терминале. В частности, частотные отклики передающей/приемной цепей, используемые для передачи по восходящей линии, могут отличаться от частотных откликов передающих/приемных цепей, используемых для передачи по нисходящей линии. “Эффективный” отклик нисходящего канала (т.е. включающего в себя передающие/приемные цепи) может быть отличным от отклика, взаимно-обратного эффективного нисходящего канала вследствие различий в передающих/приемных цепях (т.е. отклики эффективных каналов не являются взаимно-обратными). Если взаимно-обратная оценка отклика канала, полученная для одной линии, используется для пространственной обработки в другой линии, тогда различие в частотных откликах передающих/приемных цепей представляет ошибку, которая в случае, если ее не определить и не учесть, может вызвать деградацию производительности.
Таким образом, в данной области техники существует потребность в способах калибровки нисходящего и восходящего каналов в TDD коммуникационной системе.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
В настоящем описании изложены способы для калибровки нисходящего и восходящего каналов для учета различий в частотных откликах передающей и приемной цепей в точке доступа и пользовательском терминале. После калибровки оценка отклика канала, полученная для одной линии, может быть использована для получения оценки отклика канала для другой линии. Это упрощает оценку канала и пространственную обработку.
В одном из вариантов осуществления предложен способ калибровки нисходящего и восходящего каналов в беспроводной TDD коммуникационной системе с множеством входов и множеством выходов (MIMO). Согласно способу пилот-сигнал передают по восходящему каналу и используют для вывода оценки отклика восходящего канала. Пилот-сигнал также передают по нисходящему каналу и используют для вывода оценки отклика нисходящего канала. Затем определяют два набора поправочных факторов, основываясь на оценках откликов нисходящего и восходящего каналов. Калиброванный нисходящий канал формируют путем использования первого набора поправочных факторов для нисходящего канала, и калиброванный восходящий канал формируют путем использования второго набора поправочных факторов для восходящего канала. Соответствующие поправочные факторы используют в соответствующих передатчиках для нисходящего и восходящего каналов. Отклики калиброванных нисходящего и восходящего каналов являются приблизительно взаимно-обратными благодаря двум наборам поправочных факторов. Первый и второй наборы поправочных факторов могут быть определены с использованием вычисления отношения матриц или вычисления с минимальной среднеквадратичной ошибкой (MMSE), как описано ниже.
Калибровка может выполняться в реальном масштабе времени, основываясь на передаче по радиоканалу. Каждый пользовательский терминал в системе может вывести второй набор поправочных факторов для использования в нем. Первый набор поправочных факторов для точки доступа может быть выведен множеством терминалов. Для системы с мультиплексированием с ортогональным делением частот (OFDM) калибровка может выполняться для первого набора поддиапазонов для получения двух наборов поправочных факторов для каждого поддиапазона в наборе. Поправочные факторы для других “некалиброванных” поддиапазонов могут быть интерполированы, основываясь на поправочных факторах, полученных для “калиброванных” поддиапазонов.
Различные аспекты вариантов осуществления настоящего изобретения более подробно описаны ниже.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Отличительные особенности, сущность и преимущество настоящего изобретения станут более очевидными из приведенного ниже подробного описания, рассматриваемого совместно с чертежами, на которых одинаковые ссылочные позиции обозначают одинаковые элементы.
На фиг.1 показаны передающие и приемные цепи в точке доступа и пользовательском терминале MIMO системы;
фиг.2 иллюстрирует применение поправочных факторов для учета различий в передающих/приемных цепях точки доступа и пользовательского терминала;
на фиг.3 показан процесс калибровки откликов нисходящего и восходящего каналов в TDD MIMO-OFDM системе;
на фиг.4 показан процесс вывода оценок поправочных векторов из оценок откликов нисходящего и восходящего каналов;
фиг.5 представляет собой блок-схему точки доступа и пользовательского терминала; и
фиг. 6 представляет собой блок-схему TX пространственного процессора.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
Способы калибровки, изложенные в настоящем описании, могут быть использованы для различных коммуникационных систем. В частности, эти способы могут быть использованы в системах с одним входом и одним выходом (SISO), системах с множеством входов и одним выходом (MISO), системах с одним входом и множеством выходов (SIMO) и системах с множеством входов и множеством выходов (MIMO).
MIMO система использует множество (NT) передающих антенн и множество (NR) приемных антенн для передачи данных. MIMO канал, сформированный NT передающими и NR приемными антеннами, может быть разделен на NS независимых каналов, причем NS≤min{NT,NR}. Каждый из NS независимых каналов также называется пространственным каналом или собственной модой MIMO канала и соответствует размерности. MIMO система может обеспечить улучшенную производительность (т.е. увеличенную емкость передачи) в случае, если используются дополнительные размерности, созданные множеством передающих и приемных антенн. Обычно это требует точной оценки отклика канала между передатчиком и приемником.
На Фиг. 1 показана блок-схема передающей и приемной цепей в точке 102 доступа и пользовательском терминале 104 в MIMO системе. Для этой системы восходящая линия и нисходящая линия совместно используют один и тот же частотный диапазон способом дуплексной связи с временным разделением.
Для нисходящей линии в точке 102 доступа символы (определяемые вектором “передачи”) обрабатываются передающей цепью (TMTR) 114 и передаются через Nap антенны 116 по беспроводному каналу. В пользовательском терминале 104 сигналы нисходящей линии принимаются Nut антеннами 152 и обрабатываются приемной цепью (RCVR) 154 для обеспечения принятых символов (обозначаемых вектором “приема”). Обработка в передающей цепи 114, как правило, включает в себя цифроаналоговое преобразование, усиление, фильтрацию, повышение частоты и т.д. Обработка в приемной цепи 154, как правило, включает в себя понижение частоты, усиление, фильтрацию, аналого-цифровое преобразование и т.д.
В случае восходящей линии в пользовательском терминале 104 символы (обозначаемые вектором передачи) обрабатываются в передающей цепи 164 и передаются через Nut антенны 152 по беспроводному каналу. В точке 102 доступа сигналы восходящей линии принимаются Nap антеннами 116 и обрабатываются в приемной цепи 124 для обеспечения принятых символов (обозначаемых вектором приема).
В случае нисходящей линии вектор приема в пользовательском терминале может быть выражен как
, | уравнение (1) |
где представляет собой вектор передачи с Nap элементами для символов, передаваемых через Nap антенны точки доступа;
представляет собой вектор приема с Nut элементами для символов, принятых Nut антеннами в пользовательском терминале;
представляет собой Nap×Nap диагональную матрицу с элементами, представляющими собой комплексные усиления, связанные с передающей цепью для Nap антенн в точке доступа;
представляет собой Nut×Nut диагональную матрицу с элементами, представляющими собой комплексные усиления, связанные с приемной цепью для Nut антенн в пользовательском терминале;
представляет собой Nut×Nap матрицу откликов каналов для нисходящей линии.
Отклики передающих/приемных цепей и беспроводного канала, как правило, являются функцией частоты. Для простоты предполагается, что канал является каналом с амплитудным замиранием (т.е. с равномерным частотным откликом).
В случае восходящей линии вектор приема в точке доступа может быть выражен как
уравнение (2) |
где представляет собой вектор передачи для символов, передаваемых через Nut антенны пользовательского терминала;
представляет собой вектор приема для символов, принятых Nap антеннами в точке доступа;
представляет собой Nut×Nut диагональную матрицу с элементами в виде комплексных усилений, связанных с передающей цепью для Nut антенн в пользовательском терминале;
представляет собой Nap×Nap диагональную матрицу с элементами в виде комплексных усилений, связанных с приемной цепью для Nap антенн в точке доступа; и
представляет собой Nap×Nut матрицу откликов каналов для восходящей линии.
Для TDD системы, поскольку нисходящая линия и восходящая линия совместно используют один и тот же диапазон частот, обычно существует сильная корреляция между откликами нисходящего и восходящего каналов. Таким образом, матрицы откликов нисходящего и восходящего каналов могут рассматриваться как взаимно-обратные (т.е. транспонированные) по отношению друг к другу, и обозначаемые как , , соответственно, как показано в уравнениях (1) и (2). Однако отклики передающих/приемных цепей в точке доступа, как правило, не совпадают с откликами передающих/приемных цепей в пользовательском терминале. Указанные различия приводят к неравенству .
Из уравнения (1) и (2) “эффективные” отклики нисходящего и восходящего каналов, и , которые включают в себя отклики, используемых передающих и приемных цепей, могут быть выражены как
и | уравнение (3) |
Комбинируя указанные два уравнения и уравнение (3), может быть получено следующее соотношение:
уравнение (4) |
Преобразуя уравнение (4), получаем следующее:
или | уравнение (5) |
где и .
Уравнение (5) также может быть представлено в виде:
. | уравнение (6) |
Левая сторона уравнения (6) представляет отклик калиброванного канала восходящей линии, а правая сторона представляет транспонированный отклик калиброванного канала нисходящей линии. Использование диагональных матриц, и , в эффективных откликах нисходящего и восходящего каналов, как показано в уравнении (6), позволяет выразить отклики калиброванных каналов для нисходящей линии и восходящей линии как результат транспонирования друг друга. (Nap×Nap) диагональная матрица для точки доступа представляет собой отношение отклика приемной цепи к отклику передающей цепи (т.е. ), причем отношение является поэлементным отношением. Аналогично (Nut×Nut) диагональная матрица для пользовательского терминала представляет собой отношение отклика приемной цепи и отклика передающей цепи.
Матрицы и включают в себя значение, учитывающие различия в передающих/приемных цепях точки доступа и пользовательского терминала. Это позволяет отклик канала для одной линии выразить через отклик канала для другой линии, как показано в уравнении (6).
Для определения матриц и может быть выполнена калибровка. Как правило, истинный отклик канала и отклики передающей/приемной цепи не являются известными, а также не могут быть легко и точно получены. Напротив, эффективные отклики нисходящего и восходящего каналов, и , могут быть оценены, основываясь на пилот-сигналах, передаваемых по нисходящей линии и восходящей линии, соответственно, как описано ниже. Затем оценки матриц и , которые называются поправочными матрицами и , могут быть выведены, основываясь на оценках откликов нисходящего и восходящего каналов, и , как описано ниже. Матрицы и включают в себя поправочные факторы, которые позволяют учитывать различия в передающих/приемных цепях точки доступа и пользовательского терминала.
Фиг. 2 иллюстрирует использование поправочных матриц и для учета различий в передающих/приемных цепях точки доступа и пользовательского терминала. В случае нисходящей линии вектор передачи сначала умножают на матрицу в блоке 112. Последующая обработка в передающей цепи 114 и приемной цепи 154 для нисходящей линии является такой же, как показано на Фиг. 1. Аналогично, в случае восходящей линии вектор передачи сначала умножают на матрицу в блоке 162. Опять же последующая обработка в передающей цепи 164 и приемной цепи 124 для восходящей линии является такой же, как показано на Фиг. 1.
“Калиброванные” отклики нисходящего и восходящего каналов, видимые в пользовательском терминале и точке доступа, соответственно, при этом могут быть выражены как
и | уравнение (7) |
где и представляют собой выражения для оценки “истинных” откликов калиброванных каналов в уравнении (6). Комбинируя два уравнения набора уравнений (7) с использованием выражения из уравнения (6), можно показать, что . Точность отношения зависит от точности матриц и , которая в свою очередь, как правило, зависит от качества оценок откликов нисходящего и восходящего каналов, и .
Как показано выше, калибровка может выполняться в TDD системе для определения различий в откликах передающих/приемных цепей в точке доступа и пользовательском терминале, и для учета этих различий. После калибровки передающих/приемных цепей оценка отклика калиброванного канала, полученная для одной линии (например, ), может быть использована для определения оценки отклика калиброванного канала для другой линии (например, ).
Способы калибровки, изложенные в настоящем описании, также могут быть использованы для беспроводных коммуникационных систем, которые используют OFDM. При OFDM весь диапазон частот системы эффективно разделяют на несколько (NF) ортогональных поддиапазонов, которые также называются частотными бинами или подканалами. В случае OFDM каждый поддиапазон связан с соответствующей поднесущей, которая может быть модулирована данными. Для MIMO системы, которая использует OFDM (т.е. MIMO-OFDM системы), каждый поддиапазон каждой собственной моды можно рассматривать как независимый канал передачи.
Калибровка может выполняться различными способами. Для ясности конкретная схема калибровки описана ниже для TDD MIMO-OFDM системы. Для такой системы каждый поддиапазон беспроводной линии может рассматриваться как взаимно-обратный.
На фиг. 3 показана блок-схема последовательности операций процесса 300 калибровки откликов нисходящего и восходящего каналов в TDD MIMO-OFDM системе. Сначала пользовательский терминал получает тайминг и частоту точки доступа, используя процедуры получения, определенные для данной системы (этап 310). Затем пользовательский терминал может отправить сообщение для инициирования калибровки точкой доступа, или калибровка может быть инициирована точкой доступа. Калибровка может выполняться параллельно с регистрацией/аутентификацией пользовательского терминала точкой доступа (например, во время установки вызова) и также может выполняться по необходимости в любое время.
Калибровка может выполняться для всех поддиапазонов, которые могут быть использованы для передачи данных (которые называются поддиапазонами “данных”). Поддиапазоны, не используемые для передачи данных (т.е. охранные поддиапазоны), как правило, не требуют калибровки. Однако поскольку частотные отклики передающих/приемных цепей в точке доступа и пользовательском терминале обычно являются равномерными по большинству полос частот, представляющих интерес, и поскольку смежные поддиапазоны с большой вероятностью являются коррелированными, калибровка может выполняться только для подмножества поддиапазонов данных. Если калибруются не все поддиапазоны данных, то информация о поддиапазонах, предназначенных для калибровки (которые называются как “назначенные” поддиапазоны), может быть отправлена в точку доступа (например, в сообщении, отправленном для инициации калибровки).
Для калибровки пользовательский терминал передает MIMO пилот-сигнал по назначенным поддиапазонам в точку доступа (этап 312). Генерация MIMO пилот-сигнала описана более подробно ниже. Продолжительность передачи MIMO пилот-сигнала по восходящей линии может зависеть от количества назначенных поддиапазонов. Например, может быть достаточно 8 OFDM символов, если калибровка выполняется для четырех поддиапазонов, а для большего количества поддиапазонов может потребоваться большее количество (например, 20) OFDM символов. Как правило, полная мощность передачи является фиксированной, поэтому если MIMO пилот-сигнал передают по небольшому количеству поддиапазонов, то для каждого из этих поддиапазонов может использоваться более высокий уровень мощности передачи и ОСШ для каждого поддиапазона будет высоким. Напротив, если MIMO пилот-сигнал передают по большому количеству поддиапазонов, тогда для каждого поддиапазона будет использован меньший уровень мощности передачи, и ОСШ для каждого поддиапазона будет хуже. Если ОСШ для каждого поддиапазона не является достаточно высоким, тогда для MIMO пилот-сигнала может быть отправлено большее количество OFDM символов, которые интегрируются в приемнике для получения более высоко общего ОСШ для данного поддиапазона.
Точка доступа принимает MIMO пилот-сигнал по восходящей линии и выводит оценку отклика восходящего канала, , для каждого из назначенных поддиапазонов, где k представляет собой индекс поддиапазона. Оценка канала, основанная на MIMO пилот-сигнале, описана ниже. Оценки откликов восходящих каналов оцифровывают и посылают в пользовательский терминал (этап 314). Элементы каждой матрицы представляют собой комплексные усиления каналов между Nut передающими и Nap приемными антеннами для восходящей линии для k-го поддиапазона. Усиление каналов для всех матриц могут быть масштабированы на конкретный фактор масштабирования, который является общим для всех назначенных поддиапазонов, для получения требуемого динамического диапазона. Например, усиления каналов в каждой матрице могут быть единообразно масштабированы на наибольшее усиление канала для всех матриц для назначенных поддиапазонов таким образом, чтобы величина наибольшего усиления канала составляла единицу. Поскольку задачей калибровки является нормализация различий в усилении/фазе между нисходящей линией и восходящей линией, абсолютные усиления каналов не являются важными. Если 12-битные комплексные значения (т.е. с 12-битными синфазными (I) и 12-битными квадратурными (Q) компонентами) используют для представления усилений канала, тогда оценки откликов нисходящих каналов могут быть отправлены в пользовательский терминал в 3·Nut·Nap·Nsb в байтах, где “3” возникает вследствие того, что для представления I и Q компонентов используют 24 бита и Nsb представляет собой количество назначенных поддиапазонов.
Пользовательский терминал также принимает MIMO пилот-сигнал по нисходящей линии, передаваемый точкой доступа (этап 316) и выводит оценку отклика нисходящего канала, , для каждого из назначенных поддиапазонов, основываясь на принятом пилот-сигнале (этап 318). Затем пользовательский терминал определяет поправочные факторы, и , для каждого из назначенных поддиапазонов, основываясь на оценках откликов восходящего и нисходящего каналов, и (этап 320).
Для вывода поправочных факторов предполагается, что отклики нисходящего и восходящего каналов для каждого поддиапазона являются взаимно-обратными, с поправками для усиления/фазы для учета различий в передающих/приемных цепях точки доступа и пользовательского терминала, которые даются как
, для k∈K, | уравнение (8) |
где К представляет собой множество всех поддиапазонов данных. Поскольку во время калибровки доступны только оценки откликов эффективных нисходящих и восходящих каналов для назначенных поддиапазонов, уравнение (8) может быть переписано как
, для k∈K', | уравнение (9) |
где K' представляет собой множество всех назначенных поддиапазонов. Поправочный вектор может быть определен как включающий в себя только Nut диагональных элементов . Аналогично поправочный вектор может быть определен как включающий в себя только Nap диагональных элементов .
Поправочные факторы и могут быть выведены из оценок каналов и различными способами, в том числе при помощи вычисления отношения матриц и вычисления с минимальной среднеквадратичной ошибкой (MMSE). Оба указанных способа вычисления более подробно описаны ниже. Также могут использоваться другие способы вычисления, и это находится в пределах объема настоящего изобретения.
А. Вычисление отношения матриц
Фиг. 4 представляет собой блок-схему последовательности операций варианта осуществления процесса 320а для вывода поправочных векторов и из оценок откликов нисходящего и восходящего каналов и , используя вычисление отношения матриц. Процесс 320а может быть использован в качестве этапа 320 по Фиг. 3.
Сначала для каждого назначенного поддиапазона вычисляют (Nut×Nap) матрицу (этап 412), следующим образом:
, для k∈K' | уравнение (10) |
где отношение вычисляют поэлементно. Каждый элемент таким образом может быть вычислен как
, для i={1…Nut} и j={1…Nap} | уравнение (11) |
где и представляют собой ((i,j)-й (строка, столбец) элемент и , соответственно, представляет собой (i,j)-й элемент .
В одном из вариантов осуществления поправочный вектор для точки доступа, , определяют как равный среднему нормированных строк и выводят на этапах блока 420. Каждая строка сначала нормируется посредством масштабирования каждого из Nap элементов в строке на первый элемент в этой строке (этап 422). Таким образом, если представляет собой i-ю строку , то нормированная строка может быть выражена как
, уравнение (12)
Затем среднее значение нормированных строк определяют как сумма Nut нормированных строк, деленная на Nut (этап 424). Поправочный вектор определяют как равный указанному среднему (этап 426), что может быть выражено как
, для k∈K', | уравнение (13) |
Вследствие нормировки первый элемент является единичным.
В одном из вариантов осуществления поправочный вектор для пользовательского терминала, , определен как равный среднему обратных значений нормированных столбцов , и определяется на этапах блока 430. Сначала j-й столбец нормируют путем масштабирования каждого элемента в столбце на j-й элемент вектора , который обозначен как (этап 432). Таким образом, если представляет собой j-й столбец , то нормированный столбец может быть выражен как
уравнение (14) |
Затем среднее обратных значений нормированных столбцов определяют как сумму обратных значений Nap нормированных столбцов, деленную на Nap (этап 434). Поправочный вектор определяют как равный указанному среднему (этап 436), что может быть выражено как
, для k∈K, | уравнение (15) |
где обратные значения нормированных столбцов, , получают на поэлементной основе.
В. MMSE вычисление
Для MMSE вычисления поправочные факторы и выводят из оценок откликов нисходящего и восходящего каналов и таким образом, что среднеквадратичная ошибка (MSE) между откликом калиброванного нисходящего канала и откликом калиброванного восходящего канала является минимальной. Это условие может быть выражено как
, для k∈K, | уравнение (16) |
что также может быть записано как
, для k∈K,
где , поскольку является диагональной матрицей.
На уравнение (16) наложено ограничение, заключающееся в том, что первый элемент определен как равный единице (т.е. ). Без такого ограничения будет получено тривиальное решение, в котором все элементы матриц и равны нулю. В уравнении (16) матрицу сначала получают как . Затем получают квадрат абсолютного значения для каждого из Nap·Nut элементов матрицы . Среднеквадратичная ошибка (или квадратичная ошибка, если не производится деление на Nap·Nut) при этом равна сумме всех квадратов Nap·Nut значений.
MMSE вычисление выполняют для каждого назначенного поддиапазона для получения поправочных факторов и для этого поддиапазона. MMSE вычисление для одного поддиапазона описано ниже. Для простоты индекс поддиапазона, k, в нижеследующем описании опущен. Также для простоты элементы оценки отклика нисходящего канала обозначены , элементы оценки отклика восходящего канала обозначены как , диагональные элементы матрицы обозначены как