Композиция для алкилирования и способ детоксификации вредного соединения путем применения композиции
Иллюстрации
Показать всеИзобретение относится к композициям для алкилирования и их использованию. Описана композиция для алкилирования вредного соединения, содержащего по меньшей мере один элемент, выбранный из группы, включающей мышьяк, сурьму и селен, которая содержит кобальтовый комплекс и восстанавливающий агент для восстановления по меньшей мере одного элемента, выбранного из группы, включающей мышьяк, сурьму и селен, и дополнительно включает восстанавливающий агент для восстановления кобальтового комплекса. Описан способ детоксификации вредного соединения, где вредное соединение, содержащее по меньшей мере один элемент, выбранный из группы, включающей мышьяк, сурьму и селен, детоксифицируют путем алкилирования в присутствии композиции, описанной выше. Описано применение описанной выше композиции в качестве средства для детоксификации путем дегалогенирования органического галоида, выбранного из группы, включающей пестицид, антипирен, ПХД, ДДТ, тригалоидметан, трихлороэтил и хлороформ. Технический результат - получена эффективная композиция для детоксификации вредного соединения, содержащего по меньшей мере один элемент, выбранный из группы, включающей мышьяк, сурьму и селен. 3 н. и 36 з.п. ф-лы, 25 табл., 33 ил.
Реферат
Область техники, к которой относится изобретение
Данное изобретение относится к композиции для алкилирования и способу детоксификации вредного соединения путем применения композиции.
Предшествующий уровень техники
Материалы, содержащие тяжелые металлы, такие как мышьяк, сурьма и селен, широко применяются в качестве промышленных материалов, например, полупроводников, но они влияют на организм при проникновении в окружающую среду, т.е. являются вредным материалом для организма.
Ранее в качестве способа удаления этих тяжелых металлов применяли общеизвестный способ, в котором флоккулирующий агент, такой как полихлоринированный алюминий (ПХА), добавляли в сточные воды, содержащие неорганический мышьяк, такой как вредная мышьяковистая кислота, а затем неорганический мышьяк удаляли путем фильтрации после его агрегации на флоккулирующем агенте и железе, содержащемся в сырой воде и впоследствии осевшем. Другим является способ, где соединение мышьяка и т.д. абсорбировали с применением флоккулирующего агента на основе активированной окиси алюминия, церия.
С другой стороны, известно, что в природе неорганический мышьяк находится в морских продуктах, таких как морские водоросли, и что часть неорганического мышьяка превращается в органическое соединение мышьяка, такое как диметил-мышьяк, в физиологическом процессе (Kaise et al., 1998, Organomet. Chem., 12 137-143). Общеизвестно, что это органическое соединение мышьяка обладает меньшей токсичностью для млекопитающих, чем неорганический мышьяк.
Сущность изобретения
В вышеуказанном способе удаления тяжелого металла, характеризующемся применением фильтрации и абсорбции, необходимо хранить или перерабатывать загрязненный осадок, содержащий вредное соединение, такое как неорганический мышьяк, и абсорбент, на котором абсорбировано вредное соединение, например, путем изоляции вредного соединения бетоном или др., для предотвращения утечки во внешнюю среду. Таким образом, существует проблема трудности массового захоронения, поскольку требуется место хранения или большое пространство для переработки площадей захоронения.
В мире признано, что мышьяк, содержащийся в морских продуктах, является безвредным арсенобетаином, и в данном изобретении можно достичь детоксификации путем химического превращения высоко токсичного неорганического мышьяка в безвредный арсенобетаин.
Таким образом, задачей данного изобретения является создание композиции для детоксификации вредного соединения, содержащего мышьяк и т.д. эффективно и систематически, и способа детоксификации вредного соединения путем применения композиции.
Чтобы решить указанные задачи, авторы данного изобретения провели исследования реакции метилирования вредного соединения, в частности метилирования, в особенности диметилирования и более предпочтительно триметилирования вредного соединения, содержащего мышьяк и т.д., посредством химических реакций с применением органического комплекса металла, имеющего связь кобальт-углерод. В результате авторы создали данное изобретение.
Композиция для алкилирования в соответствии с данным изобретением характеризуется тем, что она содержит кобальтовый комплекс.
Далее, в предпочтительном воплощении композиции для алкилирования по данному изобретению композиция характеризуется тем, что вредное соединение, содержащее по меньшей мере один элемент, выбранный из группы, включающей мышьяк, сурьму и селен, алкилируют с применением кобальтового комплекса.
Далее, в предпочтительном воплощении композиции для алкилирования по данному изобретению композиция характеризуется дополнительным содержанием восстанавливающего агента для восстановления по меньшей мере одного металла, выбранного из группы, включающей мышьяк, сурьму и селен.
Далее, в предпочтительном воплощении композиции для алкилирования по данному изобретению композиция характеризуется тем, что восстанавливающий агент является материалом, имеющим SH группу.
Далее, в предпочтительном воплощении композиции для алкилирования по данному изобретению композиция характеризуется тем, что материал, имеющий SH группу, является по меньшей мере одним, выбранным из группы, включающей глутатион, восстановленный глутатион (GSH), цистеин, S-аденозил-цистеин, сульфорафан, гомоцистеин и тиогликоль.
Далее, в предпочтительном воплощении композиции для алкилирования по данному изобретению композиция характеризуется тем, что композиция дополнительно содержит добавочный агент метилирования, имеющий S-Me группу.
Далее, в предпочтительном воплощении композиции для алкилирования по данному изобретению композиция характеризуется тем, что добавочный агент метилирования является по меньшей мере одним, выбранным из группы, включающей метионин и S-аденозил-метионин.
Далее, в предпочтительном воплощении композиции для алкилирования по данному изобретению композиция характеризуется тем, что дополнительно содержит буферный раствор.
Далее, в предпочтительном воплощении композиции для алкилирования по данному изобретению композиция характеризуется тем, что рН буферного раствора находится в диапазоне 5-10.
Далее, в предпочтительном воплощении композиции для алкилирования по данному изобретению композиция характеризуется тем, что рН композиции для алкилирования составляет меньше 9.
Далее, в предпочтительном воплощении композиции для алкилирования по данному изобретению композиция характеризуется тем, что дополнительно содержит Н2О2.
Далее, в предпочтительном воплощении композиции для алкилирования по данному изобретению композиция характеризуется тем, что дополнительно содержит органическое галоидное соединение.
Далее, в предпочтительном воплощении композиции для алкилирования по данному изобретению композиция характеризуется тем, что органическое галоидное соединение является метилгалоидом.
Далее, в предпочтительном воплощении композиции для алкилирования по данному изобретению композиция характеризуется тем, что метилгалоид является по меньшей мере одним, выбранным из группы, включающей метилиодид, метилбромид и метилхлорид.
Далее, в предпочтительном воплощении композиции для алкилирования по данному изобретению композиция характеризуется тем, что органическое галоидное соединение является галогенированной уксусной кислотой.
Далее, в предпочтительном воплощении композиции для алкилирования по данному изобретению композиция характеризуется тем, что галогенированная уксусная кислота является по меньшей мере одной, выбранной из группы, включающей хлоруксусную кислоту, бромуксусную кислоту и йодоуксусную кислоту.
Далее, в предпочтительном воплощении композиции для алкилирования по данному изобретению композиция характеризуется тем, что органическое галоидное соединение является по меньшей мере одним, выбранным из группы, включающей метил-хлорид, метил-бромид, метил-йодид, хлоруксусную кислоту, бромуксусную кислоту, йодоуксусную кислоту, хлороэтанол, бромоэтанол, иодоэтанол, хлоропропионовую кислоту, бромопропионовую кислоту, иодопропионовую кислоту, хлоруксусной кислоты этиловый эфир, бромуксусной кислоты этиловый эфир и йодоуксусной кислоты этиловый эфир.
Далее, в предпочтительном воплощении композиции для алкилирования по данному изобретению композиция характеризуется тем, что органическое галоидное соединение является реактивом Гриньяра, имеющим следующую химическую формулу (1):
где R=Me, СН2СООН или СН2СООС2Н5, Х=Сl, Вr или I.
Далее, в предпочтительном воплощении композиции для алкилирования по данному изобретению композиция характеризуется тем, что органическое галоидное соединение получено из устойчивого органического материала, выбранного из группы, включающей пестицид, антипирен, диоксин, полихлорированный дифенил (ПХД), дихлордифенилтрихлорэтан (ДДТ), тригалоидметан, трихлороэтил и хлороформ.
Далее, в предпочтительном воплощении композиции для алкилирования по данному изобретению композиция характеризуется тем, что дополнительно содержит восстанавливающий агент для восстановления кобальтового комплекса.
Далее, в предпочтительном воплощении композиции для алкилирования по данному изобретению композиция характеризуется тем, что восстанавливающий агент является по меньшей мере одним, выбранным из группы, включающей оксид титана и комплекс рутения.
Далее, в предпочтительном воплощении композиции для алкилирования по данному изобретению композиция характеризуется тем, что кобальтовый комплекс является метиловым комплексом, включающим по меньшей мере одно соединение, выбранное из метилкобаламина (метилированного витамина В12, официальное наименование: Соα[α-5,6-диметилбенз-1Н-имидазол-1-ил-Соβ-метилкобамид]), витамина В12, такого как цианкобаламин, кобальт(II) ацетил-ацетоната, кобальт(II) ацетил-ацетоната, кобальт карбонила (дикобальт октакарбонила), кобальт(II)1,1,1,5,5,5 гексафторацетилацетоната, кобальт(II) мезо-тетрафенилпорфина, гексафторфосфорной кислоты бис-(пентаметил-циклопента-диенил) кобальта, N,N'-бис-(салицилиден)-этилен-диамин кобальта(II), бис-(2,2,6,6-тетраметил-3,5-гептандионато) кобальта(II), (хлорофталоцианиннато) кобальта(II), хлоротрис(трифенилфосфин) кобальта(I), метилового комплекса кобальт(II) ацетата, кобальт(II) бензоата, кобальт(II) цианида, циклогексан кобальт(II) бутирата, 2-кобальт(II) этилгексаноата, мезо-тетраметоксифенил порфирин кобальта(II), кобальт нафтентата, кобальт(II) фталоцианина, метил кобальт(III) протопорфирина IX, кобальта стеарата, кобальт(II) сульфамата, (1R,2R)-(-)-1,2-циклогександиамино-N,N'-бис(3,5-ди-t-бутилсалицилиден) кобальта(II), (1S,2S)-(+)-1,2-циклогександиамино-N,N'-бис(3,5-ди-t-бутилсалицилиден) кобальта(II), циклопентадиенил бис (трифенилфосфин) кобальта(I), циклопентадиенил кобальт дикарбонила, дибромо бис (трифенилфосфин) кобальта(II), (тетрааминохлоро фталоцианиннато) кобальта(II), (тетра-t-бутил фталоцианиннато) кобальта(II), или по меньшей мере одним, выбранным из группы, включающей кобальт-метиловый комплекс, образованный из соединения кобальта с алкил-галоидом, в особенности с метил-галоидом.
Далее, в предпочтительном воплощении композиции для алкилирования по данному изобретению композиция характеризуется тем, что указанное отношение между молярностью восстанавливающего агента [восстанавливающий агент] по меньшей мере одного металла, выбранного из группы, состоящей из мышьяка, сурьмы и селена, определяемое формулой: [восстанавливающий агент]/[металл], больше или равно 1000.
Далее, в предпочтительном воплощении композиции для алкилирования по данному изобретению композиция характеризуется тем, что указанное отношение больше или равно 10000. Далее, в предпочтительном воплощении композиции для алкилирования по данному изобретению композиция характеризуется тем, что отношение между молярностью кобальтового комплекса [Со комплекс] и молярностью металла [металл], выбранного из мышьяка, сурьмы и селена, определяемое формулой [Со комплекс]/[металл], больше или равно 100.
Далее, в предпочтительном воплощении композиции для алкилирования по данному изобретению композиция характеризуется тем, что указанное отношение больше или равно 1000.
Способ детоксификации вредного соединения по данному изобретению характеризуется тем, что вредное соединение, содержащее по меньшей мере один элемент, выбранный из группы, включающей мышьяк, сурьму и селен, детоксифицируют путем алкилирования вредного соединения, в присутствии композиции по любому из п.1-26.
Далее, в предпочтительном воплощении способа детоксификации вредного соединения по данному изобретению детоксификацию осуществляют путем повышения степени окисления одного элемента.
Далее, в предпочтительном воплощении способа детоксификации вредного соединения по данному изобретению способ характеризуется тем, что по меньшей мере одну связь одного элемента алкилируют.
Далее, в предпочтительном воплощении способа детоксификации вредного соединения по данному изобретению способ характеризуется тем, что элемент является мышьяком.
Далее, в предпочтительном воплощении способа детоксификации вредного соединения по данному изобретению способ характеризуется тем, что доза, приводящая к 50% летальному исходу (LD50) соединения, детоксифицированного путем алкилирования, больше или равна 1000 мг/кг.
Далее, в предпочтительном воплощении способа детоксификации вредного соединения по данному изобретению способ характеризуется тем, что концентрация, приводящая к 50% ингибированию клеточного роста (IC50) соединения, детоксифицированного путем алкилирования, больше или равна 1000 мкМ.
Далее, в предпочтительном воплощении способа детоксификации вредного соединения по данному изобретению способ характеризуется тем, что вредное соединение выбрано из группы, включающей триоксид мышьяка, пентоксид мышьяка, трихлорид мышьяка, пентахлорид мышьяка, мышьяково-сульфидное соединение, цианисто-мышьяковое соединение, хлоро-мышьяковое соединение и другие неорганические соли мышьяка.
Далее, в предпочтительном воплощении способа детоксификации вредного соединения в соответствии с данным изобретением способ характеризуется тем, что алкилирование представляет собой метилирование.
Далее, в предпочтительном воплощении способа детоксификации вредного соединения в соответствии с данным изобретением способ характеризуется тем, что вредное соединение превращают в диметильное соединение или триметильное соединение посредством метилирования.
Далее, в предпочтительном воплощении способа детоксификации вредного соединения в соответствии с данным изобретением способ характеризуется тем, что диметильное соединение представляет собой диметил-арсонил-этанол (DMAE), диметил-арсонил-ацетат (DMAA), какодиловую кислоту или арсеносахар.
Далее, в предпочтительном воплощении способа детоксификации вредного соединения в соответствии с данным изобретением способ характеризуется тем, что триметильное соединение представляет собой арсенохолин, арсенобетаин, триметиларсеносахар или триметиларсиноксид.
Далее, в предпочтительном воплощении способа детоксификации вредного соединения в соответствии с данным изобретением органический галоид, выбранный из группы, включающей пестицид, антипирен, диоксин, ПХД, ДДТ, тригалоидметан, трихлороэтил и хлороформ, детоксифицируют путем дегалогенирования органического галоида в присутствии композиции по любому из п.1-26.
Далее, в предпочтительном воплощении способа детоксификации вредного соединения в соответствии с данным изобретением органический галоид, выбранный из группы, включающей пестицид, антипирен, диоксин, ПХД, ДДТ, тригалоидметан, трихлороэтил и хлороформ, детоксифицируют путем дегалогенирования в присутствии композиции по любому из п.1-26, а затем в присутствии кобальтового комплекса, полученного при реакции, вредное соединение, содержащее по меньшей мере один элемент, выбранный из группы, включающей мышьяк, сурьму и селен, детоксифицируют путем алкилирования вредного соединения.
Далее, в предпочтительном воплощении способа детоксификации вредного соединения в соответствии с данным изобретением способ дополнительно включает этап воздействия света в присутствии восстанавливающего агента для восстановления кобальтового комплекса.
Далее, в предпочтительном воплощении способа детоксификации вредного соединения в соответствии с данным изобретением редуцирующий агент является по меньшей мере одним, выбранным из группы, включающей оксид титана и комплекс рутения.
Данное изобретение позволяет достичь результата, состоящего в том, что возможно алкилировать вредное соединение, в частности вредное соединение, содержащее мышьяк, сурьму и селен и т.д., легко и просто. Кроме того, результат изобретения состоит в том, что не требуется большого пространства, такого как место хранения, и можно детоксифицировать вредное соединение без ограничения. Далее, в соответствии со способом данного изобретения результат заключается в том, что не вырабатывается ненужный побочный продукт, поскольку не применяется биологический материал. Далее, в соответствии с данным изобретением результат состоит в том, что можно снизить вредный неорганический мышьяк более простым способом.
Краткое описание чертежей
На фиг.1 приведена высокоэффективная хроматография с масс-спектрометрией с индуктивно связанной плазмой ВЭЖХ-ИСП-МС анализ экстракта хлореллы (вверху: стандартный образец, внизу: образец).
На фиг.2 приведен ВЭЖХ-ИСП-МС анализ экстракта хлореллы (вверху: стандартный образец, в середине: добавление GSH (NE 14-7), внизу: добавление МеСо+GSH+MIAA (NE 15-7)).
На фиг.3 показаны условия в случае добавления GSH (NE 14-4), GSH+МеСо+MIAA (NE 15-4) к экстракту хлореллы, соответственно, и обработки экстракта хлореллы NaOH (внизу).
На фиг.4 показаны условия в случае добавления GSH+МеСо+MIAA к DMA (NE 9-4).
На фиг.5 приведена ВЭЖХ-ИСП-МС хроматограмма. № на графике соответствует № в таблице 7.
На фиг.6 приведена ВЭЖХ-ИСП-МС хроматограмма. № на графике соответствует № в таблице 7.
На фиг.7 показано изменение в час концентрации мышьякового соединения в реакционном растворе. Она является графической формой результатов из таблицы 7.
На фиг.8 показано изменение в час процента мышьякового соединения в реакционном растворе.
На фиг.9 показано изменение в час процента мышьякового соединения в реакционном растворе.
На фиг.10 приведена ВЭЖХ-ИСП-МС хроматограмма. № на графике соответствует № в таблице 8.
На фиг.11 приведена ВЭЖХ-ИСП-МС хроматограмма. № на графике соответствует № в таблице 8.
На фиг.12 приведена ВЭЖХ-ИСП-МС хроматограмма. № на графике соответствует № в таблице 8.
На фиг.13 приведена ВЭЖХ-ИСП-МС хроматограмма. № на графике соответствует № в таблице 8.
На фиг.14 показано изменение в час концентрации мышьякового соединения в реакционном растворе.
На фиг.15 показано изменение в час концентрации мышьякового соединения в реакционном растворе (после обработки раствором перекиси водорода).
На фиг.16 показано изменение в час процента мышьякового соединения в реакционном растворе (перед обработкой перекисью водорода).
На фиг.17 показано изменение в час процента мышьякового соединения в реакционном растворе (после обработки перекисью водорода).
На фиг.18 показано изменение в час концентрации мышьякового соединения в реакционном растворе (№1-4 из таблицы 9).
На фиг.19 показано изменение в час концентрации мышьякового соединения в реакционном растворе (№5-8 из таблицы 9, после обработки раствором перекиси водорода).
На фиг.20 показано изменение в час концентрации мышьякового соединения в реакционном растворе (№9-12 из таблицы 9).
На фиг.21 показано изменение в час концентрации мышьякового соединения в реакционном растворе (№13-16 из таблицы 9, после обработки раствором перекиси водорода).
На фиг.22 показано изменение в час концентрации мышьякового соединения в реакционном растворе (№17-20 из таблицы 9, перед обработкой раствором перекиси водорода).
На фиг.23 показано изменение в час концентрации мышьякового соединения в реакционном растворе (№21-24 из таблицы 9, перед обработкой раствором перекиси водорода).
На фиг.24 показано изменение в час процента мышьякового соединения в реакционном растворе (№1-4 из таблицы 9, перед обработкой перекисью водорода).
На фиг.25 показано изменение в час процента мышьякового соединения в реакционном растворе (№5-8 из таблицы 9, после обработки раствором перекиси водорода).
На фиг.26 показано изменение в час процента мышьякового соединения в реакционном растворе (№9-12 из таблицы 9, перед обработкой раствором перекиси водорода).
На фиг.27 показано изменение в час процента мышьякового соединения в реакционном растворе (№13-16 из таблицы 9, после обработки раствором перекиси водорода).
На фиг.28 показано изменение в час процента мышьякового соединения в реакционном растворе (№17-20 из таблицы 9, перед обработкой раствором перекиси водорода).
На фиг.29 показано изменение в час процента мышьякового соединения в реакционном растворе (№21-24 из таблицы 9, после обработки раствором перекиси водорода).
На фиг.30 показан механизм метилирования триоксида мышьяка в случае витамина В12 в качестве примера.
На фиг.31 приведена ВЭЖХ-ИСП-МС хроматограмма реакции метилирования селенистой кислоты [Se(IV)] посредством МС.
На фиг.32 приведена ВЭЖХ-ИСП-МС хроматограмма (измерительный элемент: Sb, m/z 121).
На фиг.33 приведены условия реакции получения триметил-мышьяка (ТМА) из триоксида мышьяка, соответствующего метилкобаламину.
Осуществление изобретения
Композиция для алкилирования в соответствии с данным изобретением содержит кобальтовый комплекс. Кобальтовый комплекс, применяемый здесь, не ограничен конкретно каким-либо соединением, но в качестве примера можно привести металлоорганический комплекс, имеющий связь кобальт-углерод.
В качестве примера металлоорганического комплекса, имеющего связь кобальт-углерод, могут применяться нижеупомянутые вещества. Так, предпочтительно применяют метилкобаламин (метилированный витамин В12, официальное наименование: Соα-[α-5,6-диметилбенз-1Н-имидазол-1-ил-Соβ-метилкобамид]). Далее, в качестве примера может быть упомянуто по меньшей мере одно соединение, выбранное из группы, включающей метиловый комплекс по меньшей мере одного соединения, выбранного из витамина В12, такого как цианкобаламин, кобальт(II) ацетил-ацетоната, кобальт(II) ацетил-ацетоната, кобальт карбонила (дикобальт октакарбонила), кобальт(II)1,1,1,5,5,5- гексафтор ацетил-ацетоната, кобальт(II) мезо-тетрафенилпорфина, гексафторфосфорной кислоты бис (пентаметил циклопента диенил) кобальта, N,N'-бис (салицилиден) этилен диамин кобальта(II), бис (2,2,6,6-тетраметил-3,5-гептандионато) кобальта(II), (хлорофталоцианиннато)-кобальта(II), хлоротрис (трифенилфосфин) кобальта(I), метилового комплекса кобальт(II) ацетата, кобальт(II) бензоата, кобальт(II) цианида, циклогексан кобальт(II) бутирата, 2-кобальт(II) этилгексаноата, мезо-тетраметоксифенил порфирин кобальта(II), кобальт нафтентата, кобальт(II) фталоцианина, метил кобальт(III) протопорфирина IX, кобальт стеарата, кобальт(II) сульфамата, (1R,2R)-(-)-1,2-циклогександиамино-N,N'-бис-(3,5-ди-t-бутилсалицилиден) кобальта(II), (1S,2S)-(+)-1,2-циклогександиамино N,N'-бис(3,5-ди-t-бутилсалицилиден) кобальта(II), циклопентадиенил бис-(трифенилфосфин) кобальта(I), циклопентадиенил кобальт дикарбонила, дибромо-бис-(трифенилфосфин) кобальта(II), (тетрааминохлоро фталоцианиннато) кобальта(II), (тетра-t-бутил фталоцианиннато) кобальта(II), или по меньшей мере одним соединением, выбранным из группы, включающей кобальт-метиловый комплекс, образованный из соединения кобальта с алкил-галоидом, в особенности с метил-галоидом. Метилкобаламин является предпочтительным для применения металлоорганическим комплексом, имеющим кобальт-углеродную связь, с точки зрения легкости его получения.
С помощью композиции для алкилирования в соответствии с данным изобретением можно алкилировать вредное соединение, содержащее по меньшей мере один элемент, выбранный из группы, включающей мышьяк, сурьму и селен, путем применения металлоорганического комплекса. Термин «вредное соединение», применяемый здесь, означает соединение, оказывающее любое неблагоприятное влияние на организм, при проникновении в окружающую среду.
В качестве вредного соединения, содержащего мышьяк, могут быть упомянуты мышьяковистая кислота, пентоксид мышьяка, трихлорид мышьяка, пентахлорид мышьяка, мышьяково-сульфидное соединение, цианисто-мышьяковое соединение, хлоро-мышьяковое соединение и другие неорганические соли мышьяка или тому подобное. В этих соединениях мышьяка, например LD50, доза, вызывающая (50% летальный исход у мышей), меньше или равна 20, и, таким образом, они обладают отравляющим действием для организма.
Далее, в качестве вредного соединения, содержащего сурьму, могут быть упомянуты триоксид сурьмы, пентоксид сурьмы, трихлорид сурьмы и пентахлорид сурьмы или тому подобное.
Далее, в качестве вредного соединения, содержащего селен, могут быть упомянуты диоксид селена и триоксид селена.
В предпочтительном воплощении композиция данного изобретения может дополнительно содержать восстанавливающий агент для восстановления по меньшей мере одного металла, выбранного из группы, включающей мышьяк, сурьму и селен. Присутствие восстанавливающего агента делает возможным дополнительное ускорение алкилирования. Хотя полагают, что способность к восстановлению для мышьяка или реакции трансметилирования, вероятно, регулируется скоростью превращения в арсенобетаин, превращение в арсенобетаин и т.д. может быть ускорено путем добавления восстанавливающих агентов. В качестве восстанавливающего агента, например, может быть упомянут материал, имеющий SH группу, который может быть по меньшей мере одним, выбранным из группы, включающей глутатион, восстановленный глутатион (GSH), цистеин, S-аденозил-цистеин, сульфорафан, гомоцистеин и тиогликоль. Далее, могут применяться любые комбинации этих материалов, имеющих SH группу. Например, могут быть упомянуты комбинации глутатион+гомоцистеин, или глутатион+тиогликоль.
Далее, в предпочтительном воплощении композиции для алкилирования в соответствии с данным изобретением отношение между молярностью редуцирующего агента для восстановления по меньшей мере одного металла, выбранного из группы, включающей мышьяк, сурьму и селен, и молярностью металла, выбранного из мышьяка, сурьмы и селена, то есть [редуцирующий агент]/[металл] больше или равно 1000. Более предпочтительно указанное отношение больше или равно 10000. Благодаря таким условиям можно добиться алкилирования с высокой скоростью и достичь эффективной детоксификации вредного соединения, содержащего мышьяк и т.д., с применением композиции данного изобретения в способе детоксификации вредного соединения, как упомянуто ниже.
Далее, в предпочтительном воплощении композиции для алкилирования по данному изобретению отношение между молярностью Со комплекса и молярностью металла, выбранного из мышьяка, сурьмы и селена, то есть [Со комплекс]/[Металл], больше или равно 100. Более предпочтительно указанное отношение больше или равно 1000. Благодаря таким условиям можно добиться алкилирования с высокой скоростью и достичь эффективной детоксификации вредного соединения, содержащего мышьяк и т.д., с применением композиции данного изобретения в способе детоксификации вредного соединения, как упомянуто ниже.
При применении указанного выше отношения молярности можно решить одну из главных задач данного изобретения, то есть превратить с высокой эффективностью крайне токсичный неорганический мышьяк (значение острой токсичности: LD50 0,03 г/кг) и т.д., в метилированный мышьяк и т.д., имеющий низкую токсичность, путем метилирования неорганического мышьяка. Метилированный мышьяк и т.д., обладающий низкой токсичностью и являющийся целевым продуктом, может быть триметиларсиноксидом (значение острой токсичности: LD50 10,6 г/кг) или арсенобетаином (значение острой токсичности: LD50 10,0 г/кг) и т.д. Можно снизить токсичность вплоть до 1/300 по сравнению с неорганическим мышьяком и т.д., и этот безвредный мышьяк и т.д. может быть получен с 10%, или более предпочтительно 50% и больше, или наиболее предпочтительно 90% и больше относительным выходом.
Далее, в предпочтительном воплощении композиции для алкилирования по данному изобретению композиция дополнительно содержит добавочный агент метилирования, имеющий S-Me группу. Присутствие добавочного агента метилирования, имеющего S-Me группу, позволяет производить больше алкильных групп, и таким образом добиться большего алкилирования и, соответственно, большей детоксификации. В качестве добавочного агента метилирования может быть упомянут по меньшей мере один, выбранный из группы, включающей метионин и S-аденозил-метионин.
Далее, композиция для алкилирования по данному изобретению может дополнительно содержать буферный раствор. В качестве буферного раствора можно применять буферные растворы, которые обычно применяют для выделения, очистки или консервации биомедицинских материалов, хотя они не ограничиваются конкретными растворами. Могут быть упомянуты такие буферные растворы, как Трис буфер, фосфатный буфер, карбонатный буфер и боратный буфер. Далее, с точки зрения более безопасного достижения детоксификации рН буферного раствора предпочтительно должен находиться в диапазоне 5-10. рН композиции для алкилирования более предпочтительно меньше 9. Композиция для алкилирования данного изобретения может дополнительно содержать Н2О2, которую можно добавлять для снижения острой токсичности путем повышения степени окисления (из трехвалентного в пятивалентное).
Далее, композиция для алкилирования по данному изобретению может дополнительно содержать органическое галоидное соединение. Для возможности легкого превращения диметильного соединения и/или триметильного соединения в арсенобетаин в качестве органического галоидного соединения может быть упомянут метил-галоид. С точки зрения высокой реактивности метилирования в качестве органического галоидного соединения может быть упомянуто по меньшей мере одно соединение, выбранное из группы, включающей метил-йодид, метил-бромид и метил-хлорид.
В дополнение, с точки зрения высокой реактивности алкилирования в качестве органического галоидного соединения может быть упомянуто по меньшей мере одно соединение, выбранное из группы, включающей йодоуксусную кислоту, йодоэтанол, бромуксусную кислоту, бромэтанол и йодопропионовую кислоту.
В предпочтительном воплощении органическим галоидом является галогенированная уксусная кислота. В качестве примера галогенированной уксусной кислоты может быть упомянута по меньшей мере одна, выбранная из группы, включающей хлоруксусную кислоту, бромуксусную кислоту и йодоуксусную кислоту.
Далее, в предпочтительном воплощении в качестве органического галоидного соединения может быть упомянуто по меньшей мере одно соединение, выбранное из группы, включающей метил-хлорид, метил-бромид, метил-йодид, хлоруксусную кислоту, бромуксусную кислоту, йодоуксусную кислоту, хлороэтанол, бромоэтанол, йодоэтанол, хлоропропионовую кислоту, бромопропионовую кислоту, йодопропионовую кислоту, хлоруксусной кислоты этиловый эфир, бромуксусной кислоты этиловый эфир и йодоуксусной кислоты этиловый эфир.
Далее, в данном изобретении органическим галоидным соединением может быть реактив Гриньяра, имеющий химическую формулу (1):
где R=Me, СН2СООН или СН2СООС2Н5, Х=Сl, Вr или I.
Применение органического галоидного соединения, упомянутого выше, объясняется главным образом тем, что можно метилировать вредное соединение более легко, т.е. превратить диметильное соединение и/или триметильное соединение в стабильный арсенобетаин.
С другой стороны, органическое галоидное соединение, как показано ниже в примерах, само способно быть предметом детоксификации за счет дегалогенирования, как описано ниже.
В качестве органического галоидного соединения, предназначенного для детоксификации, может быть выбрано соединение из группы, включающей пестицид, антипирен, диоксин, ПХД, ДДТ, тригалоидметан, трихлороэтил и хлороформ. В случае, если эти материалы не очищены, их можно привести в надлежащую форму (независимо от того, жидкость это, газ или твердое вещество), пригодную для введения в реакционную систему обычным путем, таким как экстракция и разделение и т.д. Поскольку в композиции для алкилирования по данному изобретению присутствует кобальтовый комплекс, каталитическое действие кобальтового комплекса делает возможным дегалогенирование вышеуказанного вредного органического галоида и, таким образом, детоксификацию вредного органического галоида путем дегалогенирования.
Композиция для алкилирования по данному изобретению может дополнительно содержать восстанавливающий агент для восстановления кобальтового комплекса. Преимуществом этого является возможность превращения состояния окисления кобальтового комплекса в активное состояние окисления за счет присутствия восстанавливающего агента, как описано ниже.
Восстанавливающий агент не ограничен конкретным соединением при условии, что он способен активировать кобальтовый комплекс, но можно упомянуть, например, по меньшей мере один, выбранный из группы, включающей оксид титана и комплекс рутения.
Далее, разъясняется способ детоксификации вредного соединения по данному изобретению, который характеризуется тем, что вредное соединение, содержащее по меньшей мере один элемент, выбранный из группы, включающей мышьяк, сурьму и селен, детоксифицируют путем алкилирования вредного соединения, в присутствии композиции для алкилирования по данному изобретению, как описано выше. Композиция для алкилирования по данному изобретению и вредное соединение, применяемые здесь, являются теми, которые раскрыты выше, и они могут применяться для способа детоксификации вредного соединения по данному изобретению.
Далее, в предпочтительном воплощении способа детоксификации вредного соединения по данному изобретению для достижения более высокой концентрации, приводящей к 50% ингибированию клеточного роста (IC50) или дозы, приводящей к 50% летальному исходу (LD50), и возможности достижения большей детоксификации, детоксификации вредного соединения предпочтительно проводят путем увеличения степени окисления элемента, содержащегося в вышеуказанном вредном соединении. Конкретно, можно увеличить степень окисления элемента путем алкилирования с применением описанной выше композиции данного изобретения в качестве катализатора реакции. Предпочтительно превратить степень окисления три в степень окисления пять в случае, если элемент является мышьяком или сурьмой, и предпочтительно превратить степень окисления четыре в степень окисления шесть.
В данном изобретении детоксификацию вредного соединения проводят путем алкилирования по меньшей мере одной связи одного элемента, содержащегося в вышеуказанном вредном соединении.
Конкретно, возможно алкилировать по меньшей мере одну связь одного элемента путем проведения реакции с применением описанной выше композиции для алкилирования данного изобретения. В качестве алкильной группы может быть упомянута метильная группа, этильная группа, пропильная группа и т.д. Для достижения более эффективной детоксификации в качестве алкильной группы предпочтительной является метильная группа.
В способе детоксификации вредного соединения по данному изобретению с точки зрения безопасности для живых организмов 50% летальная доза (LD50) (пероральная токсичность, вызывающая летальный исход у 50% мышей) соединения, детоксифицируемого путем алкилирования, предпочтительно больше или равна 1000 мг/кг, более предпочтительно больше или равна 5000 мг/кг.
Далее, в способе детоксификации вредного соединения по данному изобретению с точки зрения безопасности для живых организмов концентрация, приводящая к 50% ингибированию клеточного роста (IC50) соединения, детоксифицируемого путем вышеуказанного алкилирования или арилирования, предпочтительно больше или равна 1000 мкМ, более предпочтительно больше или равна 3000 мкМ. Термин «концентрация, приводящая к 50% ингибированию клеточного роста (IC50)», применяемый здесь, означает численное значение, выражающее концентрацию определенного вещества, необходимую для блокировки или ингибированию 50% от пролиферации 100 клеток при применении вещества. Показано, что чем меньше численное значение IC50, тем больше цитотоксичность. Далее, IC50 была подсчитана в результате оценки цитотоксичности, вызывающей повреждение плазмидной ДНК при температуре 37°С, в течение 24 часов.
IC50 каждого соединения мышьяка показана в таблице 1.
Таблица 1 |
Значение IC50 (мкМ) |
Соединения мы |