Полиморфы доцетаксела и способы их получения

Иллюстрации

Показать все

Изобретение относится к способу получения доцетаксела, включающему стадии:

а) проведение реакции соединения формулы V

с цинком и уксусной кислотой с получением соединения формулы VI

b) проведение реакции соединения формулы VI с кислотой с получением соединения формулы VIA

и

с) проведение реакции соединения формулы VIA с ди-трет-бутилдикарбанатом с получением доцетаксела. Изобретение также относится к способам получения кристаллических Форм I, II, III, IV, V доцетаксела, к кристаллическим Формам I, II, III, IV, V, VI, VII, VIII, IX доцетаксела, к способам получения твердого аморфного доцетаксела, к способу получения кристаллической Формы I доцетаксела, а также к способу получения кристаллической Формы II доцетаксела. Технический результат - получение доцетаксела и его полиморфов с желательной чистотой и выходом путем использования улучшенных методов получения, являющихся простыми, экологически безопасными, экономически эффективными, надежными и хорошо пригодными для использования в промышленных масштабах. 20 н. и 7 з.п. ф-лы, 31 ил.

Реферат

Настоящее изобретение относится к полиморфам доцетаксела, способам их приготовления и способам их использования для приготовления других полиморфов доцетаксела.

Настоящее изобретение также предусматривает способ получения доцетаксела. Доцетаксел - принятое наименование лекарственного соединения, имеющего химическое название (2R,3S)-N-карбокси-3-фенилизосерин, N-трет-бутиловый сложный эфир, 13-сложный эфир с 5β-20-эпокси-1,2α,4,7β,10β,13α-гексагидрокситакс-11-ен-9-он-4-ацетат-2-бензоатом, и структурную формулу I.

Доцетаксел представляет собой противоопухолевый агент, принадлежащий к семейству таксоидов и доступный на рынке под торговой маркой TAXOTERE® в форме стерильных, апирогенных инъекций во флаконах на одну дозу, содержащих 20 мг (0,5 мл) или 80 мг (2 мл) лекарственного препарата.

Ряд аналогов таксола были описаны F.Gueritte-Voegelein et al., "Relationships between the Structure of Taxol Analogues and Their Antimitotic Activity", Journal of Medicinal Chemistry, Vol.34, pages 992-998, 1991.

Патент США №4814470 раскрывает доцетаксел, его стереоизомерные формы, фармацевтические композиции, содержащие доцетаксел и их использование при лечении острых лейкемий и солидных опухолей.

Патент США №6197980 раскрывает доцетаксел тригидрат и способ его получения.

Способы получения доцетаксела тригидрата были описаны в патенте США №6022985 и публикации патентной заявки США №2006/0217436.

Публикация патентной заявки США №2005/0065138 раскрывает ацетоновый сольват диметоксидоцетаксела и способ его получения.

Публикация международной заявки №WO 2005/061474 раскрывает способ получения безводной, аморфной и тригидратной форм доцетаксела.

Патент США №6838569 раскрывает способ очистки доцетаксела тригидрата, включающий растворение доцетаксела в ацетонитриле с последующим осаждением очищенной водой.

Патент США №6002025 раскрывает способ очистки таксанов с помощью хроматографии на колонке, содержащей фенилалкильную смолу.

Патент США №5476954 раскрывает способ получения доцетаксела и его производных.

Патент США №5532388 раскрывает способ получения таксоида.

Регулятивные органы власти требуют, чтобы предпринимались усилия по идентификации всех полиморфных форм, например кристаллических, аморфных, сольватных и т.д., новых лекарственных веществ, поскольку полиморфные формы могут различаться по своим химическим и физическим свойствам. Эти различия часто приводят к отличиям по биодоступности, стабильности и другим свойствам между производственными партиями изготовленных в соответствии с рецептурами фармацевтических продуктов.

Однако существование и возможное число полиморфных форм данного соединения нельзя предсказать. Дополнительно, не существует "стандартных" процедур, которые могут быть использованы для приготовления полиморфных форм вещества.

Таким образом, существует необходимость в получении новых твердых форм лекарственного вещества и в способах их получения.

В соответствии с настоящим изобретением предлагается удобный способ получения доцетаксела и его полиморфов с желательной чистотой и выходом путем использования улучшенных методов получения, являющихся простыми, экологически безопасными, экономически эффективными, надежными и хорошо пригодными для использования в промышленных масштабах.

Сущность изобретения

Настоящее изобретение относится к полиморфам доцетаксела и способам их получения. Настоящее изобретение также предусматривает способ получения доцетаксела.

В одном аспекте, настоящее изобретение относится к полиморфам доцетаксела и способу их получения.

В варианте исполнения, настоящее изобретение предусматривает кристаллические полиморфы доцетаксела и способ их получения. Эти полиморфы называются далее Формой I, Формой II, Формой III, Формой IV, Формой V, Формой VI, Формой VII, Формой VIII и Формой IX.

Другой вариант исполнения настоящего изобретения относится к способу получения аморфной формы доцетаксела, включающему осаждение аморфного доцетаксела из раствора доцетаксела в тетрагидрофуране (ТГФ) путем объединения с антирастворителем, таким как углеводород, и выделение осажденного аморфного твердого вещества.

В другом аспекте, настоящее изобретение предусматривает способ получения доцетаксела, включающий:

а) проведение реакции соединения 4-ацетокси-2α-бензоилокси-5β,20-эпокси-1-гидрокси-9-оксо-7β,10β-бис(2,2,2-трихлорэтоксикарбонилокси)-такс-11-ен-13-α-ил-(4S,5R)-3-т-(бутоксикарбонил)-2,2-диметил-4-фенил-5-оксазолидин-карбоксилата (DCT-II) формулы V с цинком и уксусной кислотой для получения соединения 4-ацетокси-2α-бензоилокси-5β,20-эпокси-1β,7β,10β-тригидрокси-9-оксо-такс-11-ен-13-α-ил-(4S,5R)-3-т-(бутоксикарбонил)-2,2-диметил-4-фенил-5-оксазолидинкарбоксилата (DCT-III) формулы VI;

b) проведение реакции соединения DCT-III формулы VI с кислотой для получения соединения 4-ацетокси-2α-бензоилокси-5β,20-эпокси-1β,7β,10β-тригидрокси-9-оксо-такс-11-ен-13-α-ил-(2R,3S)-3-амино-2-гидрокси-3-фенил-пропионата (DCT-IV) формулы VIA; и

с) проведение реакции соединения DCT-IV формулы VIA с ди-т-бутилдикарбоната для получения доцетаксела формулы I.

Далее, аспект настоящего изобретения предусматривает фармацевтическую композицию, включающую одну или больше из кристаллических Формы I, Формы II, Формы III, Формы IV, Формы V, Формы VI, Формы VII, Формы VIII и Формы IX и аморфной формы, доцетаксела вместе с одним или больше фармацевтически приемлемыми эксципиентами.

Полиморфы доцетаксела по настоящему изобретению являются стабильными и хорошо пригодными для фармацевтических композиций, полезных для лечения болезни, включая, без ограничения, неопластические опухоли.

В варианте исполнения, изобретение предусматривает способ получения доцетаксела, включающий проведение реакции соединения, имеющего формулу

с кислотой, для получения соединения, имеющего формулу

В другом варианте исполнения, изобретение предусматривает способ получения кристаллической Формы 1 доцетаксела, включающий объединение раствора доцетаксела в кетоне с антирастворителем.

Следующий вариант исполнения изобретения предусматривает способ получения кристаллической Формы II доцетаксела, включающий объединение раствора доцетаксела в ацетонитриле с водой.

В следующем варианте исполнения, изобретение предусматривает способ получения кристаллической Формы III доцетаксела, включающий суспендирование твердого доцетаксела в изопропиловом спирте.

Следующий вариант исполнения изобретения предусматривает способ получения кристаллической Формы IV доцетаксела, включающий объединение раствора доцетаксела в N,N-диметилформамиде с водой.

В дополнительном варианте исполнения, изобретение предусматривает способ получения кристаллической Формы V доцетаксела, включающий объединение раствора доцетаксела в тетрагидрофуране с толуолом.

Вариант исполнения изобретения предусматривает способ получения кристаллической полиморфной формы доцетаксела, включающий:

а) обеспечение раствора доцетаксела в органическом растворителе;

б) удаление растворителя из раствора а) для образования кристаллов; и

в) выделение твердого кристаллического полиморфа доцетаксела.

Другие варианты исполнения изобретения предусматривают: кристаллическую Форму I доцетаксела; кристаллическую Форму II доцетаксела; кристаллическую Форму III доцетаксела; кристаллическую Форму IV доцетаксела; кристаллическую Форму V доцетаксела; кристаллическую Форму VI доцетаксела; кристаллическую Форму VII доцетаксела; кристаллическую Форму VIII доцетаксела; и кристаллическую Форму IX доцетаксела.

В следующем варианте исполнения, изобретение предусматривает способ получения твердого аморфного доцетаксела, включающий объединение раствора доцетаксела в тетрагидрофуране с антирастворителем.

В следующем варианте исполнения, изобретение предусматривает способ получения твердого аморфного доцетаксела, включающий удаление растворителя из раствора доцетаксела в спирте.

Краткое описание чертежей

Фиг.1 является схематическим представлением способа получения доцетаксела.

Фиг.2 представляет собой рентгеновскую порошковую дифрактограмму (XRPD) Формы I доцетаксела, приготовленной в соответствии с Примером 18.

Фиг.3 изображает кривую дифференциальной сканирующей калориметрии (ДСК) Формы I доцетаксела, приготовленной в соответствии с Примером 18.

Фиг.4 изображает кривую термогравиметрического анализа (ТГА) Формы I доцетаксела, приготовленной в соответствии с Примером 18.

Фиг.5 изображает XRPD рентгенограмму Формы II доцетаксела, приготовленной в соответствии с Примером 2.

Фиг.6 изображает кривую ДСК Формы II доцетаксела, приготовленной в соответствии с Примером 2.

Фиг.7 изображает кривую ТГА Формы II доцетаксела, приготовленной в соответствии с Примером 2.

Фиг.8 изображает XRPD рентгенограмму Формы III доцетаксела, приготовленной в соответствии с Примером 3.

Фиг.9 изображает кривую ДСК Формы III доцетаксела, приготовленной в соответствии с Примером 3.

Фиг.10 изображает кривую ТГА Формы III доцетаксела, приготовленной в соответствии с Примером 3.

Фиг.11 изображает XRPD рентгенограмму Формы IV доцетаксела, приготовленной в соответствии с Примером 4.

Фиг.12 изображает кривую ДСК Формы IV доцетаксела, приготовленной в соответствии с Примером 4.

Фиг.13 изображает кривую ТГА Формы IV доцетаксела, приготовленной в соответствии с Примером 4.

Фиг.14 изображает XRPD рентгенограмму Формы V доцетаксела, приготовленной в соответствии с Примером 5.

Фиг.15 изображает кривую ДСК Формы V доцетаксела, приготовленной в соответствии с Примером 5.

Фиг.16 изображает кривую ТГА Формы V доцетаксела, приготовленной в соответствии с Примером 5.

Фиг.17 изображает XRPD рентгенограмму Формы VI доцетаксела, приготовленной в соответствии с Примером 8.

Фиг.18 изображает кривую ДСК Формы VI доцетаксела, приготовленной в соответствии с Примером 8.

Фиг.19 изображает кривую ТГА Формы VI доцетаксела, приготовленной в соответствии с Примером 8.

Фиг.20 изображает XRPD рентгенограмму Формы VII доцетаксела, приготовленной в соответствии с Примером 9.

Фиг.21 изображает кривую ДСК Формы VII доцетаксела, приготовленной в соответствии с Примером 9.

Фиг.22 изображает кривую ТГА Формы VII доцетаксела, приготовленной в соответствии с Примером 9.

Фиг.23 изображает XRPD рентгенограмму Формы VIII доцетаксела, приготовленной в соответствии с Примером 10.

Фиг.24 изображает кривую ДСК Формы VIII доцетаксела, приготовленной в соответствии с Примером 10.

Фиг.25 изображает кривую ТГА Формы VIII доцетаксела, приготовленной в соответствии с Примером 10.

Фиг.26 изображает XRPD рентгенограмму Формы IX доцетаксела, приготовленной в соответствии с Примером 11.

Фиг.27 изображает кривую ДСК Формы IX доцетаксела, приготовленной в соответствии с Примером 11.

Фиг.28 изображает кривую ТГА Формы IX доцетаксела, приготовленной в соответствии с Примером 11.

Фиг.29 изображает ORTEP рентгенограмму Формы VIII доцетаксела, приготовленной в соответствии с Примером 10.

Фиг.30 изображает ORTEP рентгенограмму Формы IX доцетаксела, приготовленной в соответствии с Примером 11.

Фиг.31 изображает XRPD рентгенограмму аморфного доцетаксела, приготовленного в соответствии с Примером 6.

Детальное описание изобретения

Настоящее изобретение относится к полиморфным формам доцетаксела и способам их получения. Настоящее изобретение также предусматривает способ получения доцетаксела.

В одном варианте исполнения, настоящее изобретение предусматривает кристаллические полиморфы доцетаксела и способ их получения. Эти полиморфы называются ниже Формой I, Формой II, Формой III, Формой IV, Формой V, Формой VI, Формой VII, Формой VIII и Формой IX.

Кристаллические полиморфы, полученные способом по настоящему изобретению, если не указывается иное, характеризуются их рентгеновскими порошковыми дифрактограммами (XRPD), кривыми дифференциальной сканирующей калориметрии (ДСК) и кривыми термогравиметрического анализа (ТГА).

Все XRPD данные, описанные в настоящем изобретении, были получены с использованием Cu-Кα излучения, имеющего длину волны 1,541 А, и были получены с помощью порошкового рентгеновского дифрактометра Bruker AXS D8 Advance.

Дифференциальный сканирующий калориметрический анализ проводился с использованием инструмента DSC Q1000 фирмы ТА Instruments со скоростью нагрева 5°С/минуту при времени модуляции 60 секунд и температуре модуляции ±1°С. Начальная температура равнялась 0°С, и конечная температура равнялась 200°С.

ТГА анализ проводят с помощью инструмента TGAQ500V64 Build 193 со скоростью нагрева 10°С/минуту до 250°С.

Кристаллическая Форма I доцетаксела по настоящему изобретению характеризуется его XRPD рентгенограммой, которая по существу соответствует Фиг.2. Кристаллическая Форма I доцетаксела по настоящему изобретению характеризуется его XRPD рентгенограммой, имеющей характеристические пики при углах дифракции 2-тета примерно 8,0, 11,3, 12,5, 13,8, 15,4, 16,9, 20,3 и 23,3, ±0,2 градуса.

Кристаллическая Форма I доцетаксела по настоящему изобретению далее характеризуется его кривой ДСК, по существу соответствующей Фиг.3, имеющей эндотермический пик при примерно 165,05°С.

Кристаллическая Форма I доцетаксела по настоящему изобретению далее характеризуется его кривой ТГА, по существу согласно Фиг.4, соответствующей потере веса примерно 0,2% мас./мас.

Настоящее изобретение предусматривает способ получения кристаллической Формы I доцетаксела, включающий объединение раствора доцетаксела в кетоне с антирастворителем.

Раствор доцетаксела получают растворением доцетаксела в пригодном кетоне, таком как ацетон, метилизобутилкетон, метилэтилкетон и.т.д.

Концентрация доцетаксела в растворе не является критичной при условии использования достаточного количества растворителя для обеспечения полного растворения. Количество используемого растворителя обычно поддерживают как можно меньшим во избежание чрезмерных потерь продукта во время кристаллизации и выделения.

Количество растворителя, используемого для приготовления раствора, зависит от природы растворителя и температуры, принятой для приготовления раствора. Концентрация доцетаксела в растворе может обычно составлять от примерно 0,01 до примерно 0,15 г/мл в растворителе.

Пригодные температуры приготовления раствора могут составлять от примерно 20 до 120°С или от примерно 25 до примерно 35°С, в зависимости от используемого растворителя. Любая другая температура также является приемлемой, пока это не создает угрозы для стабильности доцетаксела.

Доцетаксел кристаллизуют из раствора путем объединения с антирастворителем. Пригодные антирастворители включают, без ограничения: эфиры, такие как диэтиловый эфир, диизопропиловый эфир, 1,4-диоксан, диметоксиэтан, метилтретбутиловый эфир и.т.д.; углеводороды, такие как н-пентан, н-гексан, н-гептан, циклогексан, бензол, толуол и.т.д.; низкокипящие смеси углеводородов, такие как петролейный эфир и.т.д.; и их комбинации.

Соотношение между растворителем и антирастворителем в растворе составляет от примерно 1:1 до примерно 1:10 или примерно 1:3 по объему.

Полученную Форму I, необязательно, суспендируют в пригодном растворителе для снижения содержания органических летучих примесей. Пригодные растворители, используемые для приготовления суспензии, включают н-гептан, н-гексан, циклогексан и.т.д. Пригодные температуры могут составлять от 20 до примерно 40°С или от примерно 25 до примерно 35°С. Суспензия может выдерживаться в течение периода времени от примерно 20 минут до примерно 24 часов или больше.

Кристаллическая Форма II доцетаксела по настоящему изобретению характеризуется его XRPD рентгенограммой, которая по существу соответствует Фиг.5. Кристаллическая Форма II доцетаксела по настоящему изобретению характеризуется его XRPD рентгенограммой, имеющей характеристические пики при углах дифракции 2-тета примерно 4,4, 7,2, 8,8, 10,4, 11,1, 14, 17,8 и 19,4, ±0,2 градуса.

Кристаллическая Форма II доцетаксела далее характеризуется его кривой ДСК, которая по существу соответствует Фиг.6, имеющей эндотермические пики при примерно 112 и 166°С.

Кристаллическая Форма II доцетаксела по настоящему изобретению имеет кривую ТГА, по существу совпадающую с Фиг.7, соответствующую потере веса примерно 6% мас./мас. Она имеет водосодержание примерно 7% мас./мас. при определении по метуду К.Фишера (KF).

Настоящее изобретение предусматривает способ получения кристаллической Формы II доцетаксела, включающий объединение раствора доцетаксела в ацетонитриле с водой при пригодной температуре.

Раствор доцетаксела получают путем растворения доцетаксела в ацетонитриле. Температуры приготовления раствора могут находиться в интервале значений от примерно 20 до 120°С или от примерно 40 до примерно 45°С. Концентрация доцетаксела в растворе может обычно составлять от примерно 0,05 до примерно 0,5 г/мл или 0,1 г/мл.

Доцетаксел кристаллизуют из раствора путем объединения с антирастворителем, таким как вода. Соотношение между ацетонитрилом и антирастворителем в растворе составляет от примерно 1:1 до примерно 1:10 или от примерно 1:4 до примерно 1:5 по объему.

Пригодные температуры кристаллизации Формы II доцетаксела составляют от примерно 25 до примерно 70°С или от примерно 40 до примерно 45°С.

Кристаллическая Форма III доцетаксела по настоящему изобретению характеризуется его XRPD рентгенограммой, которая по существу соответствует Фиг.8. Кристаллическая Форма III доцетаксела по настоящему изобретению характеризуется его XRPD рентгенограммой, имеющей характеристические пики при углах дифракции 2-тета примерно 4,3, 7,0, 8,7, 11, 12,3, 13,3, 14, 17,2, 17,3, 18,4 и 20,4, ±0,2 градуса.

Кристаллическая Форма III доцетаксела далее характеризуется его кривой ДСК, которая по существу соответствует Фиг.9, имеющей эндотермические пики при примерно 104 и 162°С.

Кристаллическая Форма III доцетаксела по настоящему изобретению имеет характеристическую кривую ТГА, по существу совпадающую с Фиг.10, соответствующую потере веса примерно 6% мас./мас. Она имеет содержание воды примерно 6% мас./мас. при определении по методу К.Фишера.

Настоящее изобретение предусматривает способ получения кристаллической Формы III доцетаксела, включающий суспендирование доцетаксела в изопропиловом спирте в течение периода времени от примерно 30 минут до примерно 5 часов или примерно 1 часа или дольше.

Количество изопропилового спирта может обычно составлять от примерно 1 л до примерно 5 л или примерно 2 л на 1 кг доцетаксела в растворе.

Пригодная температура суспендирования находится в интервале от примерно 20 до примерно 60°С или от примерно 25 до примерно 35°С.

Кристаллическая Форма IV доцетаксела по настоящему изобретению характеризуется его XRPD рентгенограммой, которая по существу соответствует Фиг.11. Кристаллическая Форма IV доцетаксела по настоящему изобретению характеризуется его XRPD рентгенограммой, имеющей характеристические пики при углах дифракции 2-тета примерно 4,3, 7,0, 8,7, 10,9, 12,2, 13,4, 14, 17,1, 17,2, 18,2, 20,2 и 20,4, ±0,2 градуса.

Кристаллическая Форма IV доцетаксела далее характеризуется его кривой ДСК, которая по существу соответствует Фиг.12, имеющей эндотермические пики при примерно 114 и 195°С.

Кристаллическая Форма IV доцетаксела по настоящему изобретению имеет характеристическую кривую ТГА, по существу совпадающую с Фиг.13, соответствующую потере веса примерно 6% мас./мас. Она имеет водосодержание примерно 1% мас./мас. при определении по методу К.Фишера.

Настоящее изобретение предусматривает способ получения кристаллической Формы IV доцетаксела, включающий объединение раствора доцетаксела в N,N-диметилформамиде (ДМФ) с водой.

Раствор доцетаксела может быть приготовлен растворением доцетаксела в ДМФ. Количество растворенного доцетаксела зависит от объема растворителя и от температуры. Концентрация доцетаксела в растворе может находиться в интервале значений от примерно 0,1 до примерно 1 г/мл или примерно 0,5 г/мл.

Кристаллическую Форму IV доцетаксела осаждают путем объединения воды с раствором доцетаксела в ДМФ.

Соотношение между ДМФ и водой может находиться в интервале значений от примерно 1:1 до примерно 1:15 или до примерно 1:10, по объему.

Пригодные температуры для образования Формы IV доцетаксела составляют примерно 20 до примерно 60°С или от примерно 25 до примерно 35°С.

Кристаллическая Форма V доцетаксела по настоящему изобретению характеризуется его XRPD рентгенограммой, которая по существу соответствует Фиг.14. Кристаллическая Форма V доцетаксела по настоящему изобретению характеризуется его XRPD рентгенограммой, имеющей характеристические пики при углах дифракции 2-тета примерно 4,4, 5,1, 8,8, 10,3, 11,1, 11,7, 12,4, 13,9, 14,4, 15,3, 17,0, 17,7, 18,5, 19,3, 20,8, 21,2 и 22, ±0,2 градуса.

Кристаллическая Форма V доцетаксела далее характеризуется его кривой ДСК, которая по существу соответствует Фиг.15, имеющей эндотермические пики при примерно 96 и 167°С.

Кристаллическая Форма V доцетаксела по настоящему изобретению имеет характеристическую кривую ТГА, по существу совпадающую с Фиг.16, соответствующую потере веса примерно 3% мас./мас. Она имеет водосодержание примерно 4% мас./мас. при определении по методу К.Фишера.

Настоящее изобретение предусматривает способ получения кристаллической Формы V доцетаксела, включающий объединение раствора доцетаксела в тетрагидрофуране с толуолом.

Раствор доцетаксела может быть приготовлен растворением доцетаксела в тетрагидрофуране. Количество растворенного доцетаксела зависит от объема растворителя и от температуры. Концентрация доцетаксела в растворе может находиться в интервале значений от примерно 0,1 до примерно 0,5 г/мл или составлять примерно 0,25 г/мл.

Осаждение кристаллической Формы V доцетаксела может быть осуществлено путем объединения раствора доцетаксела с толуолом.

Соотношение между ТГФ и толуолом может находиться в интервале значений от примерно 1:1 до примерно 1:35 или от примерно 1:20 до примерно 1:30, по объему.

Пригодные температуры для образования кристаллической Формы V доцетаксела составляют от примерно 20 до примерно 60°С или от примерно 25 до примерно 35°С.

Кристаллическая Форма VI доцетаксела по настоящему изобретению характеризуется его XRPD рентгенограммой, которая по существу соответствует Фиг.17. Кристаллическая Форма VI доцетаксела по настоящему изобретению характеризуется его XRPD рентгенограммой, имеющей характеристические пики при углах дифракции 2-тета примерно 4,3, 8,7, 10,8, 12,2, 14,1, 17,4, 17,6, 20,3, 21,3 и 43,7, ±0,2 градуса.

Кристаллическая Форма VI доцетаксела далее характеризуется его кривой ДСК, которая по существу соответствует Фиг.18, имеющей эндотермический пик при примерно 200°С.

Кристаллическая Форма VI доцетаксела по настоящему изобретению имеет характеристическую кривую ТГА, которая по существу совпадает с Фиг.19, соответствующую потере веса примерно 4% мас./мас.

Кристаллическая Форма VII доцетаксела по настоящему изобретению характеризуется его XRPD рентгенограммой, которая по существу соответствует Фиг.20. Кристаллическая Форма VII доцетаксела по настоящему изобретению характеризуется его XRPD рентгенограммой, имеющей характеристические пики при углах дифракции 2-тета примерно 4,6, 9,1, 10,3, 12,2, 14,1, 17,4, 17,8, 18,1, 18,7 и 22,6, ±0,2 градуса.

Кристаллическая Форма VII доцетаксела далее характеризуется его кривой ДСК, которая по существу соответствует Фиг.21, имеющей эндотермический пик при примерно 183°С.

Кристаллическая Форма VII доцетаксела по настоящему изобретению имеет характеристическую кривую ТГА, по существу совпадающую с Фиг.22, соответствующую потере веса примерно 4% мас./мас.

Кристаллическая Форма VIII доцетаксела характеризуется его XRPD рентгенограммой, которая по существу соответствует Фиг.23. Кристаллическая Форма VIII доцетаксела характеризуется его XRPD рентгенограммой, имеющей характеристические пики при углах дифракции 2-тета примерно 4,4, 7,0, 8,7, 11,0, 14,0, 17,5 и 20,3, ±0,2 градуса.

Кристаллическая Форма VIII доцетаксела далее характеризуется его кривой ДСК, которая по существу соответствует Фиг.24, имеющей эндотермический пик при примерно 193°С.

Кристаллическая Форма VIII доцетаксела по настоящему изобретению имеет характеристическую кривую ТГА, которая по существу совпадает с Фиг.25, соответствующую потере веса примерно 1% мас./мас.

Кристаллическая Форма VIII доцетаксела далее характеризуется его данными рентгеновской дифракции на монокристалле ("ORTEP"), по существу соответствующими Фиг.29, и имеет следующие характеристики:

Параметры элементарной ячейки

а 12,804(5)
b 8,743(3)
с 20,587(7)
альфа 90
бета 100,126(4)
гамма 90
объем 2268(1)

Информация о пространственной группе

Символ Р21
Число 4
Центричность ацентрическая
Значение Z 2
Формульный вес 880,98
Расчетная плотность 1,290
Мю (магнитная проницаемость) (см-1) 0,962
Кристаллографическая система моноклинная
Группа Лауэ 2/m
Тип решетки P

Кристаллическая Форма IX доцетаксела характеризуется его XRPD рентгенограммой, по существу соответствующей Фиг.26. Кристаллическая Форма IX доцетаксела характеризуется его XRPD рентгенограммой, имеющей характеристические пики при углах дифракции 2-тета примерно 4,6, 9,2, 11,3, 12,5, 14,2, 15,4, 17,1, 17,5, 18,4, 18,6, 18,8, 20,6 и 21,0, ±0,2 градуса.

Кристаллическая Форма IX доцетаксела далее характеризуется его кривой ДСК, которая по существу соответствует с Фиг.27, имеющей эндотермический пик при примерно 173°С.

Кристаллическая Форма IX доцетаксела имеет характеристическую кривую ТГА, по существу совпадающую с Фиг.28, имеющую потерю веса, равную примерно 4% мас./мас.

Кристаллическая Форма IX доцетаксела по настоящему изобретению далее характеризуется данными его рентгеновской дифракции на монокристалле (ORTEP), по существу соответствующей Фиг.30, и имеет следующие характеристики.

Параметры элементарной ячейки

а 12,958(4)
b 8,823(3)
с 20,666(7)
альфа 90
бета 98,764(4)
гамма 90
объем 2335(1)

Информация о пространственной группе

Символ Р21
Число 4
Центричность ацентрическая
Значение Z 2
Формульный вес 882,01
Расчетная плотность 1,254
Мю (магнитная проницаемость) (см-1) 0,929
Кристаллографическая система моноклинная
Группа Лауэ 2/m
Тип решетки P

Настоящее изобретение предлагает способ получения кристаллических Формы VI, Формы VII, Формы VIII и Формы IX доцетаксела, включающий:

а) обеспечение раствора доцетаксела в пригодном органическом растворителе;

б) удаление растворителя из раствора стадии а) для образования кристаллов; и

в) выделение желательного кристаллического полиморфа доцетаксела в твердом состоянии.

Стадия (а) включает обеспечение раствора доцетаксела в органическом растворителе в пригодных условиях.

Раствор доцетаксела может быть получен путем растворения соединения в органическом растворителе. Для приготовления раствора приемлема любая форма доцетаксела, такая как любая кристаллическая или аморфная форма доцетаксела.

Органические растворители, которые могут быть использованы для приготовления раствора доцетаксела, включают, без ограничения: диметилсульфоксид (ДМСО), ацетонитрил, N,N-диметилформамид (ДМФ), н-бутанол и т.д.

В варианте исполнения, кристаллическую Форму VI доцетаксела (ДМСО-сольват) получают при использовании ДМСО в качестве растворителя.

В другом варианте исполнения кристаллическую Форму VII доцетаксела (ацетонитрильный сольват) получают при использовании ацетонитрила в качестве растворителя.

В следующем варианте исполнения, кристаллическую Форму VIII доцетаксела (ДМФ-сольват) получают при использовании ДМФ в качестве растворителя.

В еще одном варианте исполнения кристаллическую Форму IX доцетаксела (н-бутанольный сольват) получают при использовании н-бутанола в качестве растворителя.

Концентрация доцетаксела в растворе не является критичной при условии использования достаточного количества растворителя для обеспечения полного растворения для получения гомогенного раствора. Количество растворителя, используемого для растворение доцетаксела, может находиться в интервале значений от примерно 1- до примерно 25-кратного по отношению к весу взятого доцетаксела.

Температура растворения доцетаксела может находиться в интервале значений от примерно 0°С до примерно 100°С или до температуры кипения с обратным холодильником используемого растворителя.

Полученный раствор, необязательно, может быть профильтрован, например, путем пропускания через фильтровальную бумагу, фильтровальную ткань, стекловолокно или другие мембранные материалы или через слой осветляющего агента, такого как целит, для обеспечения желательного гомогенного раствора.

Стадия (б) включает удаление растворителя из раствора стадии (а) в пригодных условиях для образования кристаллов.

Удаление растворителя может быть пригодно осуществлено с использованием испарения, перегонки при атмосферном давлении или перегонки под вакуумом при перемешивании или без перемешивания раствора.

Выпаривание растворителя может быть проведено при температуре от примерно 0°С до примерно 150°С. Может быть использована любая температура при условии, что концентрированно происходит без увеличения уровня содержания примесей.

Время выпаривания растворителя может находиться в интервале значений от примерно 1 часа до примерно 48 часов или дольше, в присутствии вакуума или без него и в присутствии инертной атмосферы, такой как азот, аргон, гелий и т.д., или без нее.

Стадия (с) включает выделение твердого вещества со стадии (б), которое представляет собой желательную полиморфную форму доцетаксела формулы I.

Кристаллическое состояние соединений может быть однозначно описано несколькими кристаллографическими параметрами: размеры элементарной ячейки, пространственная группа и положения всех атомов соединения по отношению к началу координат его элементарной ячейки. Эти параметры определяются экспериментально рентгеновским анализом монокристалла.

Результаты рентгеновского анализа монокристалла ограничены, как следует из названия методики, одним кристаллом, помещенным в пучок рентгеновских лучей. Кристаллографические данные для большой группы кристаллов дают информацию о рентгеновской порошковой дифракции. Если порошок состоит из чистого кристаллического соединения, то получают простую порошковую рентгенограмму. Для сравнения результатов анализа монокристалла и порошкового рентгеновского анализа могут быть выполнены простые расчеты для преобразования анализа монокристалла и порошковой рентгенограммы. Это преобразование является возможным потому, что эксперимент на монокристалле позволяет легко определить размеры элементарной ячейки, пространственную группу и положения атомов. Эти параметры создают основу для расчета рентгенограммы совершенного порошка. Сравнение этой расчетной порошковой рентгенограммы с порошковой рентгенограммой, полученной экспериментально для большой группы кристаллов, показывает, совпадают ли результаты для двух методик. Эта процедура была выполнена для сольватированных монокристаллов доцетаксела, имеющих Форму VIII и Форму IX.

Размер элементарной ячейки определяется тремя параметрами: длина сторон ячейки, относительные углы между сторонами по отношению друг к другу и объем ячейки. Длины сторон элементарной ячейка обозначаются a, b и с. Относительные углы между сторонами ячейки обозначаются α, β и γ. Объем ячейки обозначается V.

В варианте исполнения, настоящее изобретение предусматривает способ получения аморфной формы доцетаксела, включающий осаждение аморфного доцетаксела из раствора доцетаксела в ТГФ с помощью углеводородного антирастворителя и выделение осажденного аморфного твердого вещества.

Раствор доцетаксела может быть приготовлен путем растворения доцетаксела в ТГФ. Концентрация доцетаксела в растворе не является критичной при условии использования достаточного количества ТГФ для обеспечения полного растворения. Количество используемого ТГФ обычно поддерживают небольшим во избежание чрезмерных потерь продукта во время кристаллизации и выделения.

Количество ТГФ, используемого для приготовление аморфного доцетаксела, часто составляет от примерно 1- до примерно 12-кратного к весу доцетаксела.

Раствор может быть приготовлен при температуре в интервале значений от примерно 0°С до примерно 100°С. В зависимости от количества взятого растворителя данное количество доцетаксела может растворяться при температуре окружающей среды или раствор может потребовать нагревания до повышенной температуры, такой как от примерно 25°С до 100°С.

Аморфный доцетаксел может быть получен путем объединения раствор доцетаксела с антирастворителем.

Пригодные антирастворители, которые могут быть использованы при получении аморфного доцетаксела, включают, без ограничения: линейные или разветвленные или циклические алканы, содержащие от 4 до примерно 10 атомов углерода, такие как н-гексан, н-гептан, циклогексан, циклогептан и.т.д.; ароматические углеводороды, такие как бензол, толуол, ксилол и.т.д.; и их смеси.

Аморфная форма доцетаксела, полученная по настоящему изобретению, может быть выделена любым способом, таким как декантация растворителя или методом фильтрации, или путем испарения растворителя.

Настоящее изобретение также предусматривает другой способ получения аморфной формы доцетаксела, включающий удаление растворителя из раствора доцетаксела в спирте.

Раствор доцетаксела может быть приготовлен растворением доцетаксела в спирте, таком как этанол, метанол, н-бутанол и т.д. или любые их комбинации.

Растворитель может быть удален любыми способами, такими как перегонка, испарение под вакуумом, распылительная сушка, ATFD (сушка в тонком слое с перемешиванием), лиофилизация, мгновенное испарение и.т.д.

Пригодные температуры для образования аморфного доцетаксела составляют от примерно 25 до примерно 70°С или от примерно 35 до примерно 50°С.

Влажный осадок, полученный после удаления растворителя, необязательно, может быть дополнительно высушен. Высушивание может быть пригодно осуществлено в лотковой сушилке, вакуумной печи, сушильном шкафу, сушилке с псевдоожиженным слоем, вращающейся распылительной сушилке, распылительной сушилке и.т.д. Высушивание может быть осуществлено при температурах от примерно 35°С до примерно 70°С. Высушивание может проводиться в течение любых периодов времени, необходимых для получения желательной чистоты, таких как от примерно 1 до 25 часов или дольше.

Исходный материал, который может быть использован для приготовления полиморфных форм по настоящему изобретению, может быть неочищенным или чистым доцетакселем, полученным любым известным специалистам способом. Исходный материал для любого процесса может иметь любую полиморфную форму, такую как кристаллические формы доцетаксела, аморфный доцетаксел или смеси аморфной и кристаллических форм доцетаксела в любых пропорциях, полученных любым способом.

Выделение может быть осуществлено с помощью таких методик, как фильтрование, декантация, центрифугирование и.т.д., или путем фильтрования под инертной атмосферой с использованием таких газов, как, например, азот и.т.д.

В другом аспекте, настоящее изобретение также предусматривает способ получения доцетаксела, включающий:

а) проведение реакции соединения 4-ацетокси-2α-бензоилокси-5β,20-эпокси-1-гидрокси-9-оксо-7β,10β-бис(2,2,2-трихлорэтоксикарбонилокси)такс-11-ен-13-α-ил-(4S,5R)-3-т-(бутоксикарбонил)-2,2-диметил-4-фенил-5-оксазолидин-карбоксилат (DCT-II) формулы V с цинко