Система и/или способ для уменьшения неоднозначностей в принимаемых сигналах спутниковой системы определения местоположения (sps)
Иллюстрации
Показать всеИзобретение относится к определению местоположения на основе сигналов, принимаемых от геолокационных спутников. Техническим результатом является разрешение неоднозначностей гипотез псевдодальности, ассоциированных с обнаруженными сигналами глобальной навигационной спутниковой системы (GNSS) и снижение вычислительной сложность такой обработки. Указанный технический результат достигается тем, что ассоциируют первые гипотезы псевдодальности, выведенные из первого сигнала, полученного от первого космического аппарата (SV) в опорном местоположении, с одной или более вторых гипотез псевдодальности, выведенных из второго сигнала, принятого от упомянутого второго SV в упомянутом опорном местоположении, причем упомянутое ассоциирование основано, по меньшей мере, частично на оцененной разности между первой дальностью до упомянутого первого SV из упомянутого опорного местоположения и второй дальностью до второго SV из упомянутого опорного местоположения; и уменьшают неоднозначность фазы битового фронта сигнала данных, модулирующего упомянутый первый сигнал, по меньшей мере, частично на основе упомянутых ассоциированных первых гипотез псевдодальности. 12 н. и 19 з.п. ф-лы, 15 ил.
Реферат
Перекрестная ссылка на родственную заявку
По данной заявке испрашивается приоритет согласно предварительной патентной заявке США №60/839854, озаглавленной "FAST BIT EDGE DETECTION ON LEGACY GPS USING NEW GNSS SIGNALS", которая подана 23 августа 2006 г. Вышеупомянутая заявка полностью включена в данный документ посредством ссылки.
Область техники, к которой относится изобретение
Объект изобретения, раскрытый в данном документе, относится к определению местоположения на основе сигналов, принимаемых от геолокационных спутников.
Уровень техники
Спутниковая система определения местоположения (SPS) типично содержит систему орбитальных спутников Земли, дающих возможность объектам определять свое местоположение на Земле, по меньшей мере, частично на основе сигналов, принимаемых от спутников. Такой спутник SPS типично передает сигнал, маркированный кодом повторяющегося псевдослучайного шума (PN) из заданного числа элементарных посылок. Например, спутник в группировке глобальной навигационной спутниковой системы (GNSS), такой как GPS или Galileo, может передавать сигнал, маркированный PN-кодом, который отличается от PN-кодов, передаваемых посредством других спутников в группировке.
Чтобы оценить местоположение в приемном устройстве, навигационная система может выполнить измерения псевдодальности до спутников "в поле зрения" приемного устройства, используя известные методы, по меньшей мере, частично на основе обнаружений PN-кодов в сигналах, принимаемых от спутников. Такая псевдодальность до спутника может быть определена, по меньшей мере, частично на основе фазы кода, обнаруженного в принимаемом сигнале, маркированном PN-кодом, ассоциированным со спутником, во время процесса обнаружения принимаемого сигнала в приемном устройстве. Чтобы обнаружить принимаемый сигнал, навигационная система типично выполняет корреляцию принимаемого сигнала с локально формируемым PN-кодом, ассоциированным со спутником. Например, такая навигационная система типично выполняет корреляцию этого принимаемого сигнала с несколькими сдвинутыми по коду и/или времени версиями данного локально формируемого PN-кода. Обнаружение конкретной сдвинутой по времени и/или по коду версии, дающее в результате результат корреляции с самой высокой мощностью сигнала, может указать фазу кода, ассоциированную с обнаруженным сигналом, для использования при измерении псевдодальности, как пояснено выше.
После обнаружения фазы кода сигнала, принимаемого от GNSS-спутника, приемное устройство может сформировать несколько гипотез псевдодальности. Используя дополнительную информацию, приемное устройство может исключать такие гипотезы псевдодальности, чтобы фактически уменьшить неоднозначность, ассоциированную с истинным измерением псевдодальности. В дополнение к кодированию с помощью последовательности периодически повторяющегося PN-кода, сигнал, передаваемый посредством GNSS-спутника, также может модулироваться посредством дополнительной информации, такой как, например, сигнал данных и/или известная последовательность значений. Посредством обнаружения такой дополнительной информации в сигнале, принимаемом от GNSS-спутника, приемное устройство может исключить гипотезы псевдодальности, ассоциированные с принимаемым сигналом.
Фиг.1A иллюстрирует применение SPS-системы, посредством которого абонентская станция 100 в системе беспроводной связи принимает передачи от спутников 102a, 102b, 102c, 102d в линии прямой видимости до абонентской станции 100 и извлекает измерения времени из четырех или более из передач. Абонентская станция 100 может предоставлять эти измерения в объект определения местоположения (PDE) 104, который определяет положение станции из измерений. Альтернативно, абонентская станция 100 может определять собственное положение из этой информации.
Абонентская станция 100 может выполнять поиск передачи от конкретного спутника посредством коррелирования PN-кода для спутника с принимаемым сигналом. Принимаемый сигнал типично содержит комбинацию передач от одного или более спутников в пределах линии прямой видимости до приемного устройства в станции 100 при наличии шума. Корреляция может быть выполнена по диапазону гипотез фазы кода, известных как окно поиска фазы кода W CP, и по диапазону гипотез доплеровской частоты, известных как окно поиска Доплера W DOPP . Как указано выше, такие гипотезы фазы кода типично представляются как диапазон сдвигов PN-кода. Кроме того, гипотезы доплеровской частоты типично представляются как элементы разрешения доплеровской частоты.
Корреляция типично выполняется за время интегрирования I, которое может быть выражено как произведение Nc и М, где Nc - время когерентного интегрирования, М - число когерентных интегрирований, которые некогерентно комбинируются. Для конкретного PN-кода значения корреляции типично ассоциированы с соответствующими сдвигами PN-кода и элементами разрешения Доплера, чтобы задать двумерную корреляционную функцию. Пики корреляционной функции определяются и сравниваются с заранее определенным шумовым порогом. Порог типично выбирается так, чтобы вероятность ложного оповещения, вероятность ложного обнаружения спутниковой передачи была равна или ниже заранее определенного значения. Измерение времени для спутника типично выводится из местоположения самого раннего пика небокового лепестка вдоль измерения фазы кода, которое равняется или превышает порог. Измерение Доплера для абонентской станции может быть извлечено из местоположения самого раннего пика небокового лепестка по размерности доплеровской частоты, которое равняется или превышает порог.
Разрешение неоднозначностей гипотез псевдодальности, ассоциированных с обнаруженными GNSS-сигналами, потребляет ресурсы обработки и мощность. Это потребление мощности и ресурсов обработки типично является важнейшим проектным ограничением в портативных продуктах, таких как мобильные телефоны и другие устройства.
Краткое описание чертежей
Неограничивающие и неисчерпывающие признаки будут описаны со ссылкой на следующие чертежи, на которых аналогичные ссылочные позиции относятся к аналогичным элементам на всех чертежах.
Фиг.1A - схематичное представление спутниковой системы определения местоположения (SPS) согласно одному аспекту.
Фиг.1B - временная схема, иллюстрирующая гипотезы псевдодальности принимаемого GNSS-сигнала согласно одному аспекту.
Фиг.2 показывает схематичное представление системы, которая допускает определение местоположения в приемном устройстве посредством измерения псевдодальности до космических аппаратов (SV) согласно одному аспекту.
Фиг.3 - блок-схема последовательности операций, иллюстрирующая процесс для уменьшения неоднозначностей в сигнале, полученном от SV, согласно одному аспекту.
Фиг.4 - временная схема, иллюстрирующая ассоциацию гипотез псевдодальности, выведенных из сигналов, полученных от различных SV, согласно одному аспекту.
Фиг.5A - временная схема, иллюстрирующая ассоциацию гипотез псевдодальности, выведенных из сигналов, полученных от различных SV, согласно альтернативному признаку.
Фиг.5B - временная схема, иллюстрирующая использование обнаружения битового фронта сигнала данных, модулирующего первый сигнал SPS, при обнаружении второго SPS-сигнала согласно альтернативному признаку.
Фиг.6A - временная схема, иллюстрирующая ассоциацию гипотез псевдодальности, выведенных из сигналов, обнаруженных от различных SV, согласно альтернативному признаку.
Фиг.6B - временная схема, иллюстрирующая ассоциацию гипотез псевдодальности, выведенных из сигналов, полученных от различных SV, согласно альтернативному признаку.
Фиг.6C - временная схема, иллюстрирующая ассоциацию гипотез псевдодальности, выведенных из сигналов, полученных от различных SV, согласно альтернативному признаку.
Фиг.6D - временная схема, иллюстрирующая ассоциацию гипотез псевдодальности, выведенных из сигналов, полученных от различных SV, согласно альтернативному признаку.
Фиг.7 - схематичное представление двумерной области, в который следует выполнять поиск для обнаружения сигнала, передаваемого от космического аппарата, согласно одному аспекту.
Фиг.8 иллюстрирует перекрытие на назначенное число символов псевдошумовой последовательности в окне поиска, чтобы избежать пропуска пиков, которые появляются на границах сегмента, согласно одному аспекту.
Фиг.9 - схематичное представление системы для обработки сигналов, чтобы определять местоположение, согласно одному аспекту.
Фиг.10 - схематичное представление абонентской станции согласно одному аспекту.
Раскрытие изобретения
В одном аспекте первый SPS-сигнал, принимаемый в приемном устройстве из первого SV, модулируется посредством сигнала данных. В одном конкретном признаке, проиллюстрированном в данном документе, система и способ направлены на уменьшение неоднозначности битового фронта в сигналах данных, по меньшей мере, частично на основе информации во втором SPS-сигнале, принимаемом в приемном устройстве. Тем не менее, следует понимать, что это только один конкретный признак согласно конкретному примеру, проиллюстрированному в данном документе, и что заявленный объект изобретения не ограничен в этом отношении.
Подробное описание
Ссылки по всему данному подробному описанию на "один пример", "один признак", "пример" или "признак" означают, что конкретный признак, структура или характеристика, описанная в связи с признаком и/или примером, включена, по меньшей мере, в один признак и/или пример заявленного объекта изобретения. Таким образом, появления фразы "в одном примере", "пример", "в одном признаке" или "признак" в различных местах по всему данному подробному описанию не обязательно все ссылаются на один и тот же признак и/или пример. Кроме того, конкретные признаки, структуры или характеристики могут комбинироваться в одном или более примеров и/или признаков.
Методологии, описанные в данном документе, могут быть реализованы различными средствами в зависимости от вариантов применения согласно конкретным признакам и/или примерам. Например, эти методологии могут быть реализованы в аппаратных средствах, микропрограммном обеспечении, программном обеспечении и/или комбинациях вышеозначенного. При реализации в аппаратных средствах блоки обработки могут быть реализованы в одной или нескольких специализированных интегральных схемах (ASIC), процессорах цифровых сигналов (DSP), устройствах обработки цифровых сигналов (DSPD), программируемых логических устройствах (PLD), программируемых пользователем вентильных матрицах (FPGA), процессорах, контроллерах, микроконтроллерах, микропроцессорах, других электронных устройствах, предназначенных для того, чтобы выполнять описанные в данном документе функции, и/или в комбинациях вышеозначенного.
"Инструкции", упоминаемые в данном документе, относятся к выражениям, которые представляют одну или более логических операций. Например, инструкции могут быть "машиночитаемыми", будучи поддающимися интерпретации посредством машины для выполнения одной или более операций для одного или более объектов данных. Тем не менее, это просто пример инструкций, и заявленный объект изобретения не ограничен в этом отношении. В другом примере инструкции, упоминаемые в данном документе, могут относиться к кодированным командам, которые являются исполняемыми посредством схемы обработки, имеющей набор команд, который включает в себя кодированные команды. Такая инструкция может быть кодирована в форме машинного языка, понятного для схемы обработки. К тому же это просто примеры инструкций, и заявленный объект изобретения не ограничен в этом отношении.
"Носитель хранения данных", упоминаемый в данном документе, относится к носителям, допускающим хранение выражений, которые воспринимаются посредством одной или более машин. Например, носитель хранения данных может содержать одно или более устройств хранения для хранения машиночитаемых инструкций и/или информации. Эти устройства хранения могут содержать любой из нескольких типов носителей, включая, например, магнитные, оптические или полупроводниковые носители хранения данных. Эти запоминающие устройства также могут содержать любой тип долговременных, кратковременных, энергозависимых или энергонезависимых запоминающих устройств. Тем не менее, это просто примеры носителей хранения, и заявленный объект изобретения не ограничен в этом отношении.
Если прямо не указано иное, как очевидно от нижеследующего пояснения, следует принимать во внимание, что в данном подробном описании пояснения, использующие такие термины, как "обработка", "вычисление", "расчет", "выбор", "формирование", "предоставление", "запрещение", "определение местонахождения", "завершение", "идентификация", "инициализация", "обнаружение", "получение", "выступание в качестве хоста", "хранение", "представление", "оценка", "уменьшение", "ассоциативное связывание", "прием", "передача", "определение" и/или т.п., упоминаются как действия и/или процессы, которые могут быть выполнены посредством вычислительной платформы, такой как компьютер или аналогичное электронное вычислительное устройство, которое обрабатывает и/или преобразует данные, представленные как физические электронные и/или магнитные величины и/или другие физические величины, в процессорах, запоминающих устройствах, регистрах и/или других устройствах хранения информации, передачи, приема и/или отображения вычислительной платформы. Эти действия и/или процессы могут быть выполнены посредством вычислительной платформы под управлением машиночитаемых инструкций, сохраненных в носителе хранения данных, например. Эти машиночитаемые инструкции могут содержать, например, программное обеспечение или микропрограммное обеспечение, сохраненное в носителе хранения данных, включенном как часть вычислительной платформы (к примеру, включенном как часть схемы обработки или внешнем к такой схеме обработки). Дополнительно, если прямо не указано иное, процесс, описанный в данном документе в отношении блок-схем последовательности операций или иных элементов, также может выполняться и/или управляться, полностью или частично, посредством этой вычислительной платформы.
"Космический аппарат" (SV), упоминаемый в данном документе, относится к объекту, который допускает передачу сигналов в приемные устройства на поверхности Земли. В одном конкретном примере такой SV может содержать геостационарный спутник. Альтернативно, SV может содержать спутник, перемещающийся на орбите и двигающийся относительно постоянной позиции на Земле. Тем не менее, это просто примеры SV, и заявленный объект изобретения не ограничен в этом отношении.
"Местоположение", упоминаемое в данном документе, относится к информации, ассоциированной с местонахождением объекта или предмета согласно точке отсчета. При этом, например, такое местоположение может быть представлено как географические координаты, такие как широта и долгота. В другом примере такое местоположение может быть представлено как геоцентрические координаты XYZ. В еще одном примере это местоположение может быть представлено как фактический адрес, населенный пункт или другая подведомственная государственная территория, почтовый индекс и/или подобное. Тем не менее, это просто примеры того, как местоположение может быть представлено согласно конкретным примерам, и заявленный объект изобретения не ограничен в этих отношениях.
Методы определения и/или оценки местоположения, описанные в данном документе, могут использоваться для различных сетей беспроводной связи, таких как беспроводная глобальная вычислительная сеть (WWAN), беспроводная локальная вычислительная сеть (WLAN), беспроводная персональная сеть (WPAN) и так далее. Термины "сеть" и "система" могут быть использованы взаимозаменяемо в данном документе. WWAN может быть сетью множественного доступа с кодовым разделением (CDMA), сетью множественного доступа с временным разделением (TDMA), сетью множественного доступа с частотным разделением (FDMA), сетью множественного доступа с ортогональным частотным разделением (OFDMA), сетью множественного доступа с частотным разделением с одной несущей (SC-FDMA) и т.д. CDMA-сеть может реализовывать одну или более технологий радиосвязи, например, cdma2000, широкополосный CDMA (W-CDMA) и т.д., упоминая лишь некоторые из технологий радиосвязи. Здесь cdma2000 может включать в себя технологии, реализованные согласно стандартам IS-95, IS-2000 и IS-856. TDMA-сеть может реализовывать глобальную систему мобильной связи (GSM), цифровую усовершенствованную систему мобильной телефонной связи (D-AMPS) или какую-либо другую RAT. GSM и W-CDMA описываются в документах от консорциума с названием Проект партнерства по созданию третьего поколения (3GPP). Cdma2000 описывается в документах от консорциума с названием Проект партнерства по созданию третьего поколения 2 (3GPP2). Документы 3GPP и 3GPP2 являются общедоступными. WLAN может содержать сеть IEEE 802.11x, а WPAN может содержать, например, Bluetooth-сеть, IEEE 802.15x. Эти методы определения местоположения, описанные в данном документе, также могут использоваться для любой комбинации WWAN, WLAN и/или WPAN.
Согласно примеру, устройство и/или система могут оценивать свое местоположение, по меньшей мере, частично на основе сигналов, принимаемых от SV. В частности такое устройство и/или система могут получать измерения "псевдодальности", содержащие аппроксимации расстояний между ассоциированными SV и навигационным спутниковым приемным устройством. В конкретном примере такая псевдодальность может быть определена в приемном устройстве, которое допускает обработку сигналов из одного или более SV как часть спутниковой системы определения местоположения (SPS). Эта SPS может содержать, например, систему глобального позиционирования (GPS), Galileo, Glonass, среди прочего, или любую SPS, разработанную в будущем. Чтобы определять свое местоположение, спутниковое навигационное приемное устройство может получать измерения псевдодальности от трех или более спутников, а также их положения во время передачи. Зная орбитальные параметры SV, эти положения могут быть вычислены для любого момента времени. Измерение псевдодальности затем может быть определено, по меньшей мере, частично на основе времени, которое сигнал проходит от SV в приемное устройство, умноженного на скорость света. Хотя методы, описанные в данном документе, могут быть предоставлены как реализации определения местоположения в SPS типов GPS и/или Galileo в качестве конкретных иллюстраций согласно конкретным примерам, следует понимать, что эти методы также могут применяться к другим типам SPS, и что заявленный объект изобретения не ограничен в этом отношении.
Методы, описанные в данном документе, могут использоваться с любыми из нескольких SPS, включая, к примеру, вышеупомянутую SPS. Кроме того, такие методы могут использоваться в системах определения положения, которые используют псевдоспутники или комбинацию спутников и псевдоспутники. Псевдоспутники могут содержать наземные передающие устройства, которые передают в широковещательном режиме PN-код или другой код измерения дальности (к примеру, подобный GPS или сотовому сигналу CDMA), модулированный на несущем сигнале L-полосы (или другой частоты), который может синхронизироваться с GPS-временем. Такому передающему устройству может быть назначен уникальный PN-код, чтобы разрешить идентификацию посредством удаленного приемного устройства. Псевдоспутники используются в случаях, когда GPS-сигналы из орбитального спутника могут быть недоступны, например, в туннелях, шахтах, зданиях, городских "каньонах" или других огороженных участках. Другая реализация псевдоспутников известна как радиомаяки. Термин "спутник", при использовании в данном документе, имеет намерение включать в себя псевдоспутники, эквиваленты псевдоспутников и возможно другие элементы. Термин "сигналы SPS", при использовании в данном документе, имеет намерение включать в себя SPS-подобные сигналы от псевдоспутников или эквивалентов псевдоспутников.
Глобальная навигационная спутниковая система (GNSS), упоминаемая в данном документе, относится к SPS, содержащей SV, передающие синхронизированные навигационные сигналы согласно общему формату служебных сигналов. Такая GNSS может содержать, например, группировку SV на синхронизированных орбитах, чтобы передавать навигационные сигналы в местоположения на обширной части поверхности Земли одновременно из нескольких SV в группировке. SV, которое является членом конкретной группировки GNSS, типично передает навигационные сигналы в формате, который уникален для конкретного формата GNSS. Соответственно, методы для обнаружения навигационного сигнала, передаваемого посредством SV в первой GNSS, могут быть изменены для обнаружения навигационного сигнала, передаваемого посредством SV во второй GNSS. В конкретном примере, хотя заявленный объект изобретения не ограничен в этом отношении, следует понимать, что GPS, Galileo и Glonass все представляют GNSS, которая отличается от других двух названных SPS. Тем не менее, это просто примеры SPS, ассоциированной с различными GNSS, и заявленный объект изобретения не ограничен в этом отношении.
Согласно одному признаку, навигационное приемное устройство может получать измерение псевдодальности до конкретного SV, по меньшей мере, частично на основе обнаружения сигнала от конкретного SV, который кодирован с помощью последовательности периодически повторяющегося PN-кода. Обнаружение данного сигнала может содержать обнаружение "фазы кода", которая ориентирована на время и ассоциированную точку в последовательности PN-кода. В одном конкретном признаке, например, такая фаза кода может быть ориентирована на локально формируемый синхросигнал и конкретную элементарную посылку последовательности PN-кода. Тем не менее, это просто пример того, как фаза кода может быть представлена, и заявленный объект изобретения не ограничен в этом отношении.
Согласно примеру, обнаружение сдвига кода может предоставлять несколько неоднозначных вариантов псевдодальности или гипотез псевдодальности в интервалах PN-кода. Соответственно, навигационное приемное устройство может получать измерение псевдодальности до SV, по меньшей мере, частично на основе обнаруженной фазы кода и разрешения неоднозначностей, чтобы выбрать одну из гипотез псевдодальности в качестве "истинного" измерения псевдодальности до SV. Как указано выше, навигационное приемное устройство может оценивать свое местоположение, по меньшей мере, частично на основе измерений псевдодальности, полученных из нескольких SV.
Согласно примеру, хотя заявленный объект изобретения не ограничен в этом отношении, сигнал, передаваемый от SV, может модулироваться с помощью одного или более сигналов данных за заранее определенные периоды и в заранее определенной последовательности. В формате GPS-сигнала, например, SV может передавать сигнал, который кодирован с помощью известной последовательности PN-кода, которая повторяется с интервалами в миллисекунду. Помимо этого, такой сигнал может модулироваться с помощью сигнала данных, который может изменяться, например, с заранее определенными интервалами в 20 мс. Согласно конкретному примеру, хотя заявленный объект изобретения не ограничен в этом отношении, такой сигнал данных и последовательность повторяющегося PN-кода могут быть комбинированы в операции суммирования по модулю 2 до смешивания с радиочастотным несущим сигналом для передачи от SV.
Фиг.1B - это временная схема, иллюстрирующая гипотезы 152 псевдодальности, наложенные на сигнал 154 данных в сигнале, принимаемом в опорном местоположении от SV в группировке GPS согласно примеру. При этом битовый интервал в сигнале 154 данных может иметь длину 20 мс и распространяться более чем на двадцать гипотез 152 псевдодальности, которые определяются, по меньшей мере, частично на обнаружении сдвига кода в последовательности повторяющегося PN-кода в 1,0 мс. Посредством выбора одной из гипотез 156 псевдодальности в пределах битового интервала 20 мс приемное устройство может определить границы между интервалами битов данных в 20 мс или "битовые фронты", секционирующие последовательные биты в сигнале 154 данных.
Согласно примеру, хотя заявленный объект изобретения не ограничен в этом отношении, приемное устройство может обнаруживать битовый фронт и/или границу между битовыми интервалами в сигнале данных, модулирующем сигнал, принимаемый от одного SV, по меньшей мере, частично на основе сигнала, принимаемого от другого SV. При этом гипотезы псевдодальности первого сигнала могут быть ассоциированы с гипотезами псевдодальности второго сигнала. По меньшей мере, частично на основе такой ассоциации между гипотезами псевдодальности первого сигнала и гипотезами псевдодальности второго сигнала приемное устройство может разрешать неоднозначности в совмещении и/или фазе битового фронта в модулированном сигнале относительно истинной псевдодальности. Тем не менее, это просто пример, и заявленный объект изобретения не ограничен в этом отношении.
Фиг.2 показывает схематичное представление системы, которая допускает определение местоположения в приемном устройстве посредством измерения псевдодальности до SV согласно примеру. Приемное устройство в центре 166 опорного местоположения на поверхности 168 Земли может наблюдать и принимать сигналы от SV1 и SV2. Центр 166 опорного местоположения, как может быть известно, находится в пределах области 164 опорного местоположения, заданной, например, посредством окружности радиуса приблизительно 10 км. Следует понимать, тем не менее, что это просто пример того, как неопределенность оцененного местоположения может быть представлена согласно конкретному аспекту, и заявленный объект изобретения не ограничен в этом отношении. В одном примере область 164 может содержать зону покрытия конкретной соты сотовой сети беспроводной связи в известном местоположении.
Согласно примеру, приемное устройство в области 164 опорного местоположения может обмениваться данными с другими устройствами, такими как, например, сервер (не показан), по линии беспроводной связи, например, в сети спутниковой связи или наземной сети беспроводной связи. В одном конкретном примере такой сервер может передавать сообщение помощи в обнаружении (AA) в приемное устройство, содержащее информацию, используемую приемным устройством для того, чтобы обрабатывать сигналы, принимаемые от SV, и/или получать измерения псевдодальности. Альтернативно, такие сообщения AA могут быть предоставлены из информации, локально сохраненной в запоминающем устройстве приемного устройства. Здесь такая локально сохраненная информация может быть сохранена в локальном запоминающем устройстве со съемного запоминающего устройства и/или извлечена из предыдущего сообщения AA, принимаемого от сервера, если привести несколько примеров. В конкретном примере сообщения AA могут содержать такую информацию как, например, информация, указывающая местоположения SV1 и SV2, оценку местоположения центра 166 опорного местоположения, неопределенность, ассоциированную с оцененным местоположением, оценку текущего времени и/или т.п. Такая информация, служащая признаком позиций SV1 и SV2, может содержать информацию эфемериды и/или информацию календаря. Как указано ниже, согласно конкретным примерам приемное устройство может оценивать позиции SV1 и SV2 по меньшей мере, частично на основе такой эфемериды и/или календаря и грубой оценки времени. Эта оцененная позиция SV может содержать, например, оцененный азимутальный угол от опорного направления и угол возвышения от горизонта Земли в центре 166 опорного местоположения и/или геоцентрические координаты XYZ.
Согласно примеру, SV1 и SV2 могут быть членами одинаковых или различных группировок GNSS. В конкретных примерах, проиллюстрированных ниже, SV1 может быть членом группировки GPS, в то время как SV2 может быть членом группировки Galileo. Следует понимать, тем не менее, что это просто пример того, как приемное устройство может принимать сигналы от SV, принадлежащих различным группировкам GNSS, и заявленный объект изобретения не ограничен в этом отношении.
Фиг.3 - это блок-схема последовательности операций процесса 200 для уменьшения неоднозначностей в сигнале, принимаемом от SV, согласно примеру. При этом приемное устройство в области опорного местоположения может принимать первый сигнал, закодированный с помощью первого периодически повторяющегося PN-кода, от первого SV (к примеру, SV1), и принимать второй сигнал, закодированный с помощью второго периодически повторяющегося PN-кода, от второго SV (к примеру, SV2). Чтобы обнаруживать первый сигнал на этапе 202, это приемное устройство может обнаруживать доплеровскую частоту и фазу кода в принимаемом сигнале. Такое обнаружение фазы кода может содержать, например, корреляцию сдвинутых по коду и/или по времени версий локально формируемой кодовой последовательности с принимаемым первым сигналом, как проиллюстрировано ниже. В одном примере, если принимаемый сигнал передается от SV Galileo, например, такой сдвиг кода может быть обнаружен в пределах повторяющегося периода в 4,0 мс последовательности PN-кода. Альтернативно, если принимаемый сигнал передается от SV GPS, такой сдвиг кода может быть обнаружен в пределах повторяющегося периода в 1,0 мс последовательности PN-кода. Тем не менее, это просто пример того, как сигнал от SV конкретного GNSS может быть обнаружен, и заявленный объект изобретения не ограничен в этом отношении.
В одной конкретной альтернативе первый и второй SV могут быть из группировки GPS, в то время как, по меньшей мере, один из этих двух SV допускает передачу сигнала L1C. Аналогично навигационному сигналу от SV Galileo, навигационный сигнал L1C может содержать сигнал, закодированный с помощью последовательности периодически повторяющегося PN-кода в 4,0 мс. Соответственно, следует понимать, что, хотя конкретные примеры, поясненные в данном документе, могут относиться к использованию SV из группировок Galileo и GPS, такие методы также могут применяться к другим примерам, использующим два SV GPS, где, по меньшей мере, один из SV допускает передачу сигнала L1C. К тому же это просто примеры конкретных сигналов, которые могут быть приняты от SPS в приемном устройстве в области опорного местоположения, и заявленный объект изобретения не ограничен в этом отношении.
На этапе 204 может обнаруживаться второй сигнал, принимаемый от второго SV с использованием методов, поясненные выше в связи с этапом 202. Следует понимать, тем не менее, что второй принимаемый сигнал может быть передан согласно формату GNSS, который отличается от формата GNSS, используемого для передачи первого сигнала. При этом, например, первый принимаемый сигнал может быть передан от SV в группировке GPS, в то время как второй принимаемый сигнал может быть передан от SV в группировке Galileo. Альтернативно, первый принимаемый сигнал может быть передан от SV в группировке Galileo, в то время как второй принимаемый сигнал может быть передан из группировки GPS. Следует понимать, тем не менее, что это просто примеры того, как приемное устройство может принимать сигналы от SV, принадлежащих различным группировкам GNSS, и заявленный объект изобретения не ограничен в этом отношении.
При обнаружении сигнала от SV (к примеру, как проиллюстрировано выше в отношении этапов 202 и 204) приемное устройство может определить гипотезы псевдодальности из обнаружений фазы кода. В конкретном примере, если SV передает сигнал согласно формату GPS, например, приемное устройство может определять гипотезы псевдодальности с интервалами в 1,0 мс и/или с приращениями приблизительно в 3,0 x 105 метров, по меньшей мере, частично на основе фазы последовательности периодически повторяющегося PN-кода, обнаруженной в сигнале, обнаруженном в приемном устройстве. В другом примере, где SV передает сигнал согласно формату Galileo, например, гипотезы псевдодальности могут быть определены с интервалами в 4,0 мс и/или с приращениями приблизительно в 1,2 x 106 метров, по меньшей мере, частично на основе фазы последовательности периодически повторяющегося PN-кода, обнаруженной в сигнале, обнаруженном в приемном устройстве. При обнаружении фазы последовательности PN-кода в сигнале, передаваемом посредством SV, приемное устройство может использовать, например, информацию, предоставленную в приемное устройство в сообщении AA. Тем не менее, это просто пример того, как приемное устройство может обнаруживать фазу периодической последовательности PN-кода сигнала, передаваемого от SV, и заявленный объект изобретения не ограничен в этом отношении.
Согласно примеру, этап 206 может ассоциировать гипотезы псевдодальности сигнала, принимаемого от первого SV (SV1), с гипотезами псевдодальности сигнала, принимаемого от второго SV (SV2). Как проиллюстрировано на фиг.4, согласно конкретному примеру гипотезы 254 псевдодальности из сигнала, принимаемого в области опорного местоположения от первого SV в группировке GPS, ассоциированы с гипотезами 256 псевдодальности из сигнала, принимаемого в области опорного местоположения от второго SV в группировке Galileo, по меньшей мере, частично на основе оцененной разности между дальностью до первого SV от центра опорного местоположения и дальностью до второго SV от центра опорного местоположения. При этом следует заметить, что дальность от опорного местоположения до первого SV может отличаться от дальности от опорного местоположения до второго SV. В конкретном примере, информация, предоставленная в приемное устройство (к примеру, в области 164 опорного местоположения) в сообщении AA, может использоваться для того, чтобы оценивать эту разность в дальности до первого и второго SV от центра опорного местоположения.
Фактическая разность L может определять разность (например, в единицах времени) между дальностью до первого SV от опорного местоположения и дальностью до второго SV от опорного местоположения. При этом фактическая разность L может быть выражена следующим образом:
L=T2-T1,
где T1 - задержка распространения сигнала от SV1, измеренная в опорном местоположении в данное время; и
T2 - задержка распространения сигнала от SV2, измеренная в опорном местоположении в то же самое данное время.
Чтобы ассоциировать гипотезы 254 псевдодальности с гипотезами 256 псевдодальности, соответственно, приемное устройство может определить оценку разности L (например, в единицах времени) между дальностью до первого SV от центра опорного местоположения и дальностью до второго SV от опорного местоположения согласно соотношению (1) следующим образом:
E[L]=E[T2-T1](1)
Поскольку ошибки, ассоциированные с измерениями T2 и T1, могут предполагаться как практически независимые, выражение E[T2-T1] может быть аппроксимировано выражением E[T2]-E[T1]. При этом в конкретном примере значение для выражения E[T2]-E[T1] может быть известно и/или доступно для приемного устройства через сообщение AA в течение конкретного времени. Альтернативно, приемное устройство может извлечь это значение для выражения E[T2]-E[T1] в течение конкретного времени из информации, полученной в этом сообщении AA.
Оценка разности L, E[L], применяемая к ассоциированным гипотезам 254 псевдодальности из 256 согласно соотношению (1), может быть сведена к выражению, которое компенсирует погрешность t тактового генератора приемного устройства, следующим образом:
E[L]=E[T2]-E[T1]=(RSV2/c-τ)-(RSV1/c-τ)=(RSV2-RSV1)/c,
где c - скорость света;
τ - систематическая погрешность тактового генератора приемного устройства;
RSV1 - оценка дальности до SV1 от центра опорного местоположения; и
RSV2 - оценка дальности до SV2 от центра опорного местоположения.
При этом следует заметить, что значение для оценки E[L] разности может быть выражено в единицах или линейной длины, или времени, и это преобразование между единицами данного выражения для значения E[L] может быть предоставлено посредством скорости света, выраженной в соответствующих единицах. Соответственно, следует понимать, что это значение для оценки E[L] разности может выражаться взаимозаменяемо или