Оценка квадратурного дисбаланса с использованием несмещенных обучающих последовательностей
Иллюстрации
Показать всеИзобретение относится к беспроводной связи, а более конкретно к оценке канала связи. Достигаемый технический результат - удаление ошибок квадратурного дисбаланса в принимаемых данных. Изобретение заключается в том, что принимают несмещенную обучающую последовательность в приемнике с квадратурной демодуляцией. Несмещенная обучающая последовательность имеет однородную накопленную энергию, равномерно распределенную в комплексной плоскости, и включает в себя заранее определенные опорные сигналы (р) на частоте +f и заранее определенные зеркальные сигналы (рm) на частоте -f. Несмещенную обучающую последовательность обрабатывают, генерируя последовательность обработанных символов (у) на частоте +f, представляющую информацию в комплексной плоскости в несмещенной обучающей последовательности. Каждый обработанный символ (у) умножают на зеркальный сигнал (рm), и несмещенную оценку Вm квадратурного дисбаланса получают на частоте (-f). Используя оценки квадратурного дисбаланса, оценки канала и обработанные символы, можно генерировать символ, скорректированный по дисбалансу. 5 н. и 33 з.п. ф-лы, 4 табл., 14 ил.
Реферат
Заявление приоритета в соответствии с 35 U.S.C. §119
Настоящая заявка на патент притязает на приоритет в соответствии с Предварительной заявкой № 60/896,480, поданной 22 марта 2007 г., под названием QUADRATURE IMBALANCE MITIGATION USING UNBIASED TRAINING SIGNALS, статус - находится на экспертизе; Регистрационный номер патентного поверенного № 071040P1.
Заявление приоритета в соответствии с 35 USC §120
Настоящая заявка на патент представляет собой частичное продолжение заявки на патент № US, регистрационный № 11/684,566, поданной 9 марта 2007 г., под названием QUADRATURE MODULATION ROTATING TRAINING SEQUENCE, статус - находится на экспертизе; передана ее правопреемнику и, тем самым, полностью приведена здесь в качестве ссылочного материала.
Настоящая заявка на патент представляет собой частичное продолжение заявки на патент № и US № 11/755,719, поданной 30 мая 2007 г., под названием QUADRATURE IMBALANCE MITIGATION USING UNBIASED TRAINING SIGNALS, регистрационный номер патентного поверенного № 060395B1, статус - находится на экспертизе, передана ее правопреемнику и, тем самым, явно приведена здесь в качестве ссылочного материала.
Настоящая заявка на патент относится к заявке на патент США под названием CHANNEL ESTIMATION USING FREQUENCY SMOOTHING, имеющей регистрационный номер патентного поверенного № 060395B3, подана одновременно с этой заявкой и передана ее правопреемнику, которая, тем самым, приведена здесь полностью в качестве ссылочного материала.
Уровень техники
Область техники, к которой относится изобретение
Это изобретение, в общем, относится к оценке канала связи и, более конкретно, к системам и способам для улучшения использования несмещенных обучающих последовательностей квадратурной модуляции, при обучении оценок канала приемника, путем удаления ошибок квадратурного дисбаланса.
Описание предшествующего уровня техники
Фиг.1 является упрощенной блок-схемой традиционного входного каскада приемника (предшествующий уровень техники). Традиционный приемник беспроводной связи включает в себя антенну, которая преобразует излучаемый сигнал в проводимый сигнал. После некоторой исходной фильтрации проводимый сигнал усиливают. При достаточном уровне мощности несущую частоту сигнала можно преобразовать путем смешения сигнала (преобразования с понижением частоты) с сигналом гетеродина. Поскольку принятый сигнал квадратурно-модулирован, сигнал демодулируют через раздельные тракты I и Q до объединения. После преобразования частоты аналоговый сигнал может быть преобразован в цифровой сигнал, используя аналогово-цифровой преобразователь (ADC, АЦП), для обработки в основной полосе пропускания. Обработка может включать в себя быстрое преобразование Фурье (FFT, БПФ).
Существует множество ошибок, которые могут быть введены в приемник, которые оказывают отрицательное влияние на оценки канала и восстановление полезного сигнала. Ошибки могут быть введены из смесителей, фильтров и пассивных компонентов, таких как конденсаторы. Ошибки усугубляются, если они приводят к дисбалансу между трактами Q и I. В попытке оценить канал и, таким образом, исключить некоторые из этих ошибок в системах связи может использоваться формат сообщения, который включает в себя обучающую последовательность, которая может быть повторяющимся или заранее определенным символом данных. Используя систему мультиплексирования с ортогональным частотным разделением (OFDM, МОЧР), например, одну и ту же точку сигнального созвездия, IQ можно повторно передавать для каждой поднесущей.
В попытке экономии энергии в портативных устройствах, работающих от батареи, в некоторых системах OFDM используется только один символ модуляции для обучения. Например, возбуждают единственное направление в сигнальном созвездии (например, тракт I), в то время как другое направление (например, тракт Q) - нет. Такой же тип однонаправленного обучения также можно использовать с пилотными тонами. Примечание: скремблирование одиночного канала модуляции (например, канала I) со значениями символа ±1 не поворачивает точку сигнального созвездия и не обеспечивает возбуждения для квадратурного канала.
В присутствии квадратурного дисбаланса трактов, который превалирует в системах с большой полосой пропускания, описанная выше энергосберегающая обучающая последовательность приводит к смещенной оценке канала. Смещенная оценка канала может хорошо выравниваться с сигнальным созвездием IQ в одном направлении (то есть тракта I), но приводит к квадратурному дисбалансу в ортогональном направлении. Предпочтительно, чтобы любой дисбаланс был в равной степени распределен между двумя каналами.
Фиг.2 является упрощенной схемой, иллюстрирующей квадратурный дисбаланс на стороне приемника (предшествующий уровень техники). Хотя это и не показано, дисбаланс на стороне передатчика является аналогичным. Предположим, что тракт Q является опорным. Форма падающей волны представляет собой cos(ωt+θ), где θ - фаза канала. На тракте Q осуществляется преобразование с понижением частоты с использованием - sin(ωt). На тракте I осуществляется преобразование с понижением частоты с использованием (1+2ε)cos(ωt+2∆φ). Величины 2∆φ и 2ε представляют аппаратные дисбалансы соответственно ошибку фазы и ошибку амплитуды. Низкочастотные фильтры H1 и HQ являются разными для каждого тракта. Фильтры вводят дополнительные амплитудное и фазовое искажения. Однако эти дополнительные искажения сосредоточены внутри 2∆φ и 2∆ε. Примечание: эти два фильтра являются реальными и влияют как на +ω, так и на -ω идентичным образом.
Предположим, что ошибки малы:
(1+2ε)cos(ωt+2∆φ))≈(1+2ε)cos(ωt)-2∆φ·sin(ωt)
Первый компонент с правой стороны, cos(ωt), представляет идеальный тракт I, в незначительной степени масштабированный. Второй компонент - 2∆φ·sin(ωt) - представляет собой небольшую утечку из тракта Q. После преобразования с понижением частоты формы подающей волны:
в тракте I: (1+2ε)cos(θ)+2ε·sin(θ)
в тракте Q: sin(θ).
Ошибки приводят к неправильной интерпретации положений символов в сигнальном созвездии квадратурной модуляции, что, в свою очередь, приводит к неправильно демодулируемым данным.
Сущность изобретения
Приемники беспроводной связи подвержены ошибкам, вызванным недостатком устойчивости аппаратных компонентов, связанных со смесителями, усилителями и фильтрами. В квадратурных демодуляторах эти ошибки также могут привести к дисбалансу между трактами I и Q, что приводит к ошибочно обработанным данным.
Для калибровки каналов приемника можно использовать обучающий сигнал. Однако обучающий сигнал, который не возбуждает тракты как I, так и Q, не позволяет решить проблему дисбаланса между двумя трактами. Несмещенную обучающую последовательность можно использовать для возбуждения обоих трактов I и Q, в результате чего получают лучшую оценку канала. Обычно оценки канала выводят из заранее определенной информации, связанной с положительными (+f) поднесущими. Еще лучшие оценки канала могут быть получены, если используют отрицательные поднесущие (-f) для вывода оценки какого-либо остаточного квадратурного дисбаланса.
В соответствии с этим предложен способ для удаления ошибок квадратурного дисбаланса в принимаемых данных. В способе принимают несмещенную обучающую последовательность в приемнике с квадратурной демодуляцией. Несмещенная обучающая последовательность имеет однородную накопленную энергию, равномерно распределенную в комплексной плоскости, и включает в себя заранее определенные опорные сигналы (p) на частоте +f и заранее определенные зеркальные сигналы (pm) на частоте -f. Несмещенную обучающую последовательность обрабатывают, генерируя последовательность обработанных символов (y) на частоте +f, представляющей информацию в комплексной плоскости в несмещенной обучающей последовательности. Каждый обработанный символ (y) умножают на зеркальный сигнал (pm) и получают несмещенную оценку Bm квадратурного дисбаланса на частоте (-f).
Например, несмещенная обучающая последовательность может быть принята по первой поднесущей и по оценке квадратурного дисбаланса, полученного для первой поднесущей. Затем в способе принимают квадратурно-модулированные данные связи по первой поднесущей в периодах символов, следующих после приема несмещенной обучающей последовательности. Обработанный символ (yc) генерируют для каждого символа данных связи, и каждый обработанный символ (yc) умножают на оценку квадратурного дисбаланса для вывода символа, скорректированного по дисбалансу.
В способе также умножают обработанный символ (y) на сопряженную величину опорного сигнала (p*) для получения несмещенной оценки (hu) канала на частоте +f. Используя квадратурный дисбаланс и оценки канала, могут быть выведены символы, скорректированные по дисбалансу.
Дополнительные детали описанного выше способа и системы для удаления ошибок квадратурного дисбаланса в принимаемых данных представлены ниже.
Краткое описание чертежей
Фиг.1 является упрощенной блок-схемой традиционного входного каскада приемника (предшествующий уровень техники).
Фиг.2 является упрощенной схемой, иллюстрирующей квадратурный дисбаланс на стороне приемника (предшествующий уровень техники).
Фиг.3 является упрощенной блок-схемой, изображающей примерную систему передачи данных.
Фиг.4 является упрощенной блок-схемой системы или устройства для передачи несмещенной обучающей последовательности для передачи данных.
Фиг.5A является схемой, изображающей несмещенную обучающую последовательность, представленную как во временной, так и частотной областях.
Фиг.5B и 5C являются схемами, изображающими однородное накопление мощности, равномерно распределенной в комплексной плоскости.
Фиг.6 является схемой, изображающей несмещенную обучающую последовательность, используемую как последовательность пилотных тонов во временной области.
Фиг.7 является схемой, изображающей несмещенную обучающую последовательность, используемую как преамбула, предшествующая заранее не определенным данным связи.
Фиг.8 является схемой, изображающей несмещенную обучающую последовательность, используемую путем усреднения символов для множества сообщений.
Фиг.9 является блок-схемой системы для удаления ошибок квадратурного дисбаланса в принимаемых данных.
Фиг.10 изображает рабочие характеристики, обеспечиваемые в результате применения описанных выше алгоритмов к стандарту WiMedia UWB.
Фиг.11A и 11B являются блок-схемами последовательности операций, иллюстрирующими способ для удаления ошибок квадратурного дисбаланса в принимаемых данных.
Подробное описание изобретения
Различные варианты осуществления будут описаны ниже со ссылкой на чертежи. В следующем описании, с целью пояснения, различные конкретные детали представлены для обеспечения полного понимания одного или более аспектов. Может быть очевидно, что такой вариант (варианты) осуществления может быть выполнен на практике без этих конкретных деталей. В других случаях хорошо известные структуры и устройства представлены в форме блок-схемы для того, чтобы облегчить описание этих вариантов осуществления.
Используемые в данной заявке термины "процессор", "устройство обработки", "компонент", "модуль", "система" и т.п., предназначены для обозначения относящейся к компьютеру сущности, а именно либо аппаратных средств, встроенных программ, комбинации аппаратных и программных средств, программных средств или исполняемых программных средств. Например, компонентом может быть, но не ограничиваться этим, процесс, работающий в процессоре, генерирование, процессор, объект, исполняемый элемент, поток выполнения, программа и/или компьютер. В качестве иллюстрации, как приложение, работающее в вычислительном устройстве, так и вычислительное устройство, могут представлять собой компонент. Один или более компонентов могут находиться внутри процесса и/или потока выполнения, и компонент может быть локализован в одном компьютере и/или распределен между двумя или более компьютерами. Кроме того, эти компоненты могут выполняться с различных считываемых компьютером носителей, имеющих сохраненные на них различные структуры данных. Компоненты могут устанавливать связь посредством локальных и/или удаленных процессов, таких как в соответствии с сигналом, имеющим один или более пакетов данных (например, данных от одного компонента, взаимодействующего с другим компонентом, в локальной системе, распределенной системе и/или через сеть, такую как Интернет, с другими системами посредством сигнала).
Различные варианты осуществления будут описаны в виде систем, которые могут включать в себя множество компонентов, модулей и т.п. Следует понимать и принимать во внимание, что различные системы могут включать в себя дополнительные компоненты, модули и т.д., и/или могут не включать в себя все эти компоненты, модули и т.д., описанные в связи с фигурами. Комбинация этих подходов также может использоваться.
Различные иллюстративные логические блоки, модули и схемы, которые были описаны, могут быть воплощены или выполнены с использованием процессора общего назначения, цифрового сигнального процессора (DSP, ЦСП), специализированных интегральных микросхем (ASIC, СИМС), программируемой пользователем вентильной матрицы (FPGA, ППВМ) или другого программируемого логического устройства, дискретных ключей или транзисторной логики, дискретных аппаратных компонентов или любой их комбинации, разработанной для выполнения описанных здесь функций. Процессор общего назначения может представлять собой микропроцессор, но в качестве альтернативы, процессор может представлять собой любой обычный процессор, контроллер, микроконтроллер или конечный автомат. Процессор также может быть воплощен как комбинация вычислительных устройств, например, комбинация DSP и микропроцессора, множества микропроцессоров, одного или более микропроцессоров совместно с ядром DSP, или любой другой такой конфигурации.
Способы или алгоритмы, описанные в связи с раскрытыми здесь вариантами осуществления, могут быть воплощены непосредственно в виде аппаратных средств, в виде программного модуля, выполняемого процессором, или в комбинации этих двух подходов. Программный модуль может находиться в памяти RAM (ОЗУ, оперативное запоминающее устройство), флэш-памяти, в памяти ROM (ПЗУ, постоянное запоминающее устройство), в памяти EPROM (СППЗУ, стираемое программируемое постоянное запоминающее устройство), в памяти EEPROM (ЭСППЗУ, электрически стираемое программируемое постоянное запоминающее устройство), в регистрах, на жестком диске, на съемном диске, на CD-ROM (компакт-диск, предназначенный только для чтения) или в любой другой форме носителя данных, известного в данной области техники. Носитель данных может быть соединен с процессором таким образом, чтобы процессор мог считывать информацию с него и записывать информацию на носитель данных. В качестве альтернативы, носитель данных может быть выполнен интегрально с процессором. Процессор и носитель данных могут находиться в ASIC. ASIC может находиться в узле или в другом месте. В качестве альтернативы, процессор и носитель данных могут находиться как дискретные компоненты в узле или в другом месте в сети доступа.
Фиг.3 является упрощенной блок-схемой, изображающей примерную систему 300 передачи данных. Процессор 302 основной полосы пропускания имеет вход по линии 304 для приема цифровой информации из уровня управления доступом к среде (MAC, УДС) передачи данных. В одном аспекте процессор 302 основной полосы пропускания включает в себя кодер 306, имеющий вход по линии 304 для приема цифровой информации (MAC) и выход по линии 308 для вывода кодированной цифровой информации в частотной области. Перемежитель 310 можно использовать для перемежения кодированной цифровой информации, выдачи информации после перемещения в частотной области по линии 312. Перемежитель 310 представляет собой устройство, которое преобразует одиночный входной сигнал с высокой скоростью, во множество параллельных потоков с низкой скоростью, где каждый из потоков с более низкой скоростью связан с определенной поднесущей. Обратное быстрое преобразование Фурье (IFFT, ОБПФ) 314 принимает информацию в частотной области, выполняет операцию IFFT для входной информации и выдает цифровой сигнал во временной области по линии 316. Цифроаналоговый преобразователь 318 преобразует цифровой сигнал по линии 316 в аналоговый сигнал в основной полосе пропускания по линии 320. Как более подробно описано ниже, передатчик 322 модулирует сигнал в основной полосе пропускания и выдает сигнал в виде модулированных несущих, как выходной сигнал, по линии 324. Примечание: альтернативные схемные конфигурации, позволяющие выполнять те же функции, как описано выше, будут известны для специалистов в данной области техники. Хотя это и не явно представлено, система приемника могла бы быть составлена из аналогичного набора компонентов для обратной обработки информации, принятой из передатчика.
Фиг.4 является упрощенной блок-схемой системы или устройства для передачи несмещенной обучающей последовательности для передачи данных. Система 400 содержит передатчик или средство 402 передачи, имеющее вход по линии 404 для приема цифровой информации. Например, информация может быть выдана из уровня MAC. Передатчик 402 имеет выход по линии 406 для выдачи несмещенной обучающей последовательности с квадратурной модуляцией, представляющей однородную накопленную мощность, равномерно распределенную в комплексной плоскости.
Передатчик 402 может включать в себя подсистему 407 передатчика, такую как подсистема радиочастотного (RF, РЧ) передатчика, в которой используется антенна 408, для установления связи через воздух или вакуумную среду. Однако следует понимать, что изобретение применимо к любой среде передачи данных (например, беспроводной, проводной, оптической), которая позволяет переносить квадратурно-модулированную информацию. Подсистема 407 передатчика включает в себя тракт 410 синфазной (I) модуляции или средство для генерирования обучающей информации модуляции I во временной области, имеющей накопленную мощность. Подсистема 407 передатчика также включает в себя тракт 412 квадратурной (Q) модуляции или средство для генерирования обучающей информации модуляции Q во временной области, имеющей накопленную мощность, равную мощности тракта I модуляции. Информацию тракта I по линии 404a преобразуют с повышением частоты в смесителе 414 с использованием несущей fc, в то время как информацию тракта Q по линии 404b преобразуют с повышением частоты в смесителе 416 с использованием версии со сдвигом фазы несущей (fc+90°). Тракт 410 I и тракт 412 Q суммируют в сумматоре 418 и выдают по линии 420. В некоторых аспектах сигнал усиливают в усилителе 422 и выдают к антенне 408 по линии 406, из которой излучают несмещенные обучающие последовательности. Тракты I и Q, в качестве альтернативы, могут называться каналами I и Q. Несмещенная обучающая последовательность также может называться поворотным обучающим сигналом, квадратурно-сбалансированной обучающей последовательностью, сбалансированной обучающей последовательностью, сбалансированной обучающей последовательностью или несмещенным обучающим сигналом.
Например, несмещенная обучающая последовательность может быть первоначально послана через тракт 410 I модуляции с обучающей информацией, впоследствии посылаемой через тракт 412 Q модуляции. Таким образом, обучающий сигнал может включать в себя такую информацию как символ или повторяющуюся последовательность символов, посылаемых через тракт I модуляции, после чего передачу символа или повторяющиеся последовательности символов посылают только через тракт Q модуляции. В качестве альтернативы, обучающая информация может быть послана первоначально через тракт Q модуляции и впоследствии через тракт I модуляции. В случае, когда одиночные символы посылают поочередно через тракты I и Q, передатчик посылает поворотный обучающий сигнал. Например, первый символ всегда может быть (1,0), второй символ всегда может быть (0,1), третий символ (-1,0) и четвертый символ (0,-1).
Однако нет необходимости просто чередовать передачу символов через тракты I и Q модуляции для получения поворота символа, как описано выше. Например, передатчик может посылать обучающую информацию одновременно через оба тракта I и Q модуляции и комбинировать модулированные сигналы I и Q.
Описанный выше тип поворота несмещенной обучающей последовательности, при котором первоначально посылают обучающий сигнал через (только) тракт I модуляции, может быть выполнен путем возбуждения тракта I модуляции, но без возбуждения тракта Q модуляции. Затем передатчик посылает обучающий сигнал через тракт Q модуляции путем возбуждения тракта Q модуляции после посылки обучающей информации через тракт I модуляции. Обучающие символы можно также поворачивать путем выдачи символов, каждый с компонентами как I, так и Q, как обычно связано с квадратурной модуляцией.
Как правило, передатчик 402 также посылает квадратурно-модулированные (заранее не определенные) данные связи. Несмещенную обучающую последовательность используют приемником (не показан) для формирования несмещенных оценок канала, что позволяет более точно восстанавливать заранее не определенные данные связи. В одном аспекте квадратурно-модулированные данные связи посылают после посылки несмещенной обучающей последовательности. В другом аспекте несмещенную обучающую последовательность посылают одновременно с данными связи в форме пилотных сигналов. Система не ограничивается какой-либо конкретной временной взаимосвязью между обучающим сигналом и квадратурно-модулированными данными связи.
Для того чтобы быть несмещенными, значения символа, связанные с любой конкретной поднесущей, могут периодически изменяться. Самое простое средство равномерного распределения информации в комплексной плоскости, когда существует нечетное количество символов на сообщение, состоит в повороте значения символа на 90 градусов в каждый период. Как используется здесь, сообщение представляет собой группировку символов в заранее определенном формате. Сообщение имеет длительность несколько периодов символов. Один или более символов могут быть переданы в каждый период символа. Некоторые сообщения включают в себя преамбулу, которая предшествует основной части сообщения. Например, сообщение может быть сформировано как длинный пакет, содержащий много символов OFDM. Каждый символ OFDM содержит много поднесущих. В некоторых аспектах преамбула сообщения включает в себя несмещенную обучающую последовательность. В других аспектах несмещенная обучающая последовательность представляет собой последовательность из пилотных сигналов, которые передают одновременно с заранее не определенными данными связи.
Если нечетное количество символов используют в обучающей последовательности сообщения, методология, которая поворачивает фазу символа на 90 градусов каждый период, не всегда полезна. Для последовательности из 3 символов можно использовать поворот на 60 градусов или 120 градусов для равномерного распределения значений символа в комплексной плоскости. Для 5 символов можно использовать поворот на 180/5 градусов или 360/5 градусов. Если количество символов в обучающей последовательности представляет собой простое число, можно использовать решения, представляющие собой комбинацию. Например, если в сумме сообщение содержит 7 символов, тогда можно использовать поворот на 90 градусов для первых 4 символов и поворот на 120 (или 60) градусов для следующих трех символов. В другом аспекте несмещенная обучающая последовательность может быть усреднена по более чем одному сообщению. Например, если сообщение включает в себя 3 обучающих символа, тогда комбинация из 2 сообщений включает в себя 6 символов. В контексте обучающего сигнала из 6 символов можно использовать поворот на 90 градусов между символами.
Поскольку мощность представляет собой меру, зависящую от квадрата комплексного значения символа, мощность, связанную с вектором символа под углом θ, представленную в комплексном пространстве, также можно рассматривать как мощность при (θ+180). Следовательно, накопленная мощность под углом 60 градусов представляет собой тоже, что и мощность под углом 240 градусов. Другими словами, мощность, связанная с символом под углом θ, может быть суммирована с мощностью под углом (θ+180). В результате суммирования мощности под углами θ и (θ+180) комплексное пространство, если его рассматривать в перспективе мощности, простирается только на 180 градусов. По этой причине равномерное накопление мощности равномерно распределено в комплексном пространстве, когда несмещенная обучающая последовательность состоит только из 2 ортогональных символов или 3 символов, разделенных 60 градусами.
Фиг.5A является схемой, изображающей несмещенную обучающую последовательность, представленную как во временной области, так и в частотной области. В одном аспекте передатчик генерирует пару сигналов, включающую в себя опорный сигнал (p) с комплексным значением на частоте +f и зеркальный сигнал (pm) с комплексным значением на частоте -f, с нулевым произведением (p·pm). Например, в момент времени i=1 произведение (p1·p1m)=0. Как отмечено выше, p и pm представляют собой комплексные значения с компонентами амплитуды и фазы. В другом аспекте передатчик генерирует i экземпляров опорного сигнала (p) и зеркального сигнала (pm) и сводит к нулю сумму произведений (Pi·Pim). Другими словами, сумма (Pi·Pim)=0 для i=1-N. Следует отметить, что символ "точки" между Pi·Pim представляют обычную операцию умножения между скалярными числами.
Аналогично, когда передатчик генерирует i экземпляров опорного сигнала и зеркального сигнала, значения p и pm пары сигналов могут, но не обязательно, изменяться для каждого экземпляра. Например, передатчик может сводить к нулю сумму произведений (pi·pim) путем генерирования информации в виде комплексного значения, которое остается постоянным для каждого экземпляра, для представления p. Для представления pm передатчик может генерировать информацию как комплексное значение, которое поворачивается на 180 градусов в каждом экземпляре. Однако существует почти бесконечное количество других способов, с помощью которых произведение (pi·pim) может быть сделано равным нулю.
В другом аспекте передатчик генерирует i экземпляров опорного сигнала (p) и зеркального сигнала (pm), и произведение (pi·pim) для каждого экземпляра. Передатчик соединяет попарно экземпляры и делает равными нулю сумму произведений от каждого сдвоенного экземпляра.
Например, одно или более сообщений могут содержать временную последовательность из N пилотных тонов для данной поднесущей f, с N пилотными тонами для зеркальной поднесущей -f. Как отмечено выше, при описании фиг.5A, для формирования несмещенной обучающей последовательности, используя этот пилотный тон, общее решение состоит в том, что сумма (pi·pim)=0 для i=1-N. Для одного конкретного решения пилотные тоны соединяют попарно для i=1 и 2. Таким образом, p1·p1m+p2·p2m=0. Аналогично, пилотные тоны для i=3 и 4 могут быть соединены попарно следующим образом: p3·p3m+p4·p4m=0. Такое попарное соединение может продолжаться до i=N. Если каждая пара имеет сумму, равную нулю, тогда общая сумма также будет равна нулю, то есть сумма pi·pim=0. Попарное соединение упрощает проблему обнуления. Вместо поиска N пилотных сигналов, которые удовлетворяют сумме pi·pim=0, достаточно, чтобы можно было обнулить 2 пары пилотных сигналов.
Как описано выше, простые примеры формирования несмещенной обучающей последовательности включают в себя либо поворот символов на 90 градусов во временной области, или в частотной области, поддержания опорного символа на +f, но замену знака зеркального сигнала на -f. В обоих этих примерах используют 2 пары тонов, и они удовлетворяют уравнению p1·p1m+p2·p2m=0.
В качестве альтернативы, несмещенная обучающая последовательность может включать в себя:
Время 1: p1 для +f и p1m для -f;
Время 2: p2 для +f и p2m для -f;
Время 3: p3 для +f и P3m для -f; и
Время 4: p4 для +f и p4m для -f.
Несмещенная обучающая последовательность может быть получена путем усреднения. Принцип несмещенной обучающей последовательности диктует, что пилотный сигнал должен удовлетворять следующему уравнению:
p1·p1m+p2·p2m+p3·p3m+p4·p4m=0.
В качестве варианта, несмещенная обучающая последовательность может быть организована следующим образом:
p1·p1m+p2·p2m=0 и p3·p3m+p4·p4m=0.
Фиг.5B и 5C являются схемами, изображающими однородное накопление мощности, равномерно распределенной в комплексной плоскости. Комплексную плоскость можно использовать для представления информации действительной оси (R) и мнимой оси (I). Круг представляет границу однородной мощности или энергии с нормализованным значением 1. На фиг.5B несмещенная обучающая последовательность сформирована из 3 символов: первый символ (A) при 0 градусах; второй символ (B) при 120 градусах; и третий символ (C) при 240 градусах. Такое же распределение мощности получают, когда первый символ (A) остается в позиции 0 градусов, второй символ (B') находится под 60 градусов и третий символ (C') при 120 градусов. Мощность, связанная с каждым символом, равна 1.
На фиг.5C несмещенную обучающую последовательность формируют из 5 символов: 2 символа при 0 градусов, каждый с мощностью 0,5, таким образом, что накопленная мощность составляет 1; символ при 90 градусов с мощностью 1; символ при 180 градусов с мощностью 1; и символ при 270 градусов с мощностью 1.
Используемый здесь упомянутый выше термин "однородное накопление мощности" может точно соответствовать накоплению в каждом направлении комплексной плоскости, поскольку во многих обстоятельствах возможно передавать и принимать несмещенную обучающую последовательность с нулевой ошибкой. Таким образом, обучающая последовательность будет смещена на 100%. Другими словами, сумма pi·pim=0, как описано выше. При анализе наихудшего случая усредняют L пилотных символов, причем каждый имеет однородную накопленную мощность, следующим образом:
|sum pi·pim|=sum |pi|2=L.
Если L составляет 100%, и если |sum pi·pim|=L/4, тогда (однородная накопленная мощность) ошибка составляет 25%. Несмещенная обучающая последовательность с ошибкой 25% все еще представляет отличный результат. Если используют L/2 (ошибка 50%), получают хороший результат, поскольку интерференция IQ по оценке канала все еще уменьшается на 6 дБ.
Фиг.6 является схемой, изображающей несмещенную обучающую последовательность, выполненной как последовательность пилотных тонов во временной области. Передатчик может генерировать несмещенную обучающую последовательность, выдавая P пилотных символов за период символа во множестве периодов символа. Каждый импульс на чертеже представляет символ. Передатчик генерирует (N-P) квадратурно модулированных символов данных связи на период символа и одновременно выдает N символов на период символа во множестве периодов символов. Во многих системах передачи данных, таких, которые соответствуют стандартам IEEE 802.11 и UWB, пилотные тоны используют с обучающей целью канала.
Фиг.7 является схемой, изображающей несмещенную обучающую последовательность, выполненной как преамбула, предшествующая не определенным заранее данным связи. Передатчик генерирует квадратурные модулированные данные связи и выдает несмещенную обучающую последовательность в первом множестве периодов символов (например, во время 1-4), после чего следуют квадратурно-модулированные данные связи во втором множестве периодов символов (например, во время от 5 до N). И снова импульсы на чертеже представляют символы.
Например, в системе ультраширокополосной радиосвязи (UWB, УШП) используют 6 символов, передаваемых перед передачей данных связи или сигнала маяка. Поэтому 3 последовательных символа могут быть сгенерированы в тракте I модуляции, после которых следуют 3 последующих в тракте Q модуляции. Используя такую обработку, Q канал требуется активировать на короткий период для 3 символов, перед возвращением в режим ожидания. Однако существует много других комбинаций символов, которые можно использовать для генерирования несмещенной обучающей последовательности.
Или на фиг.5B или 5C можно видеть, что передатчик генерирует временную последовательность символов в комплексной плоскости с равной накопленной мощностью в множестве направлений (в комплексной плоскости). Используемый здесь термин "направление" относится к суммированию векторов под каждым углом θ и (θ+180). Например, мощность, связанную с символом под 0 градусов, накапливают с мощностью символа под 180 градусов, и 0 и 180 градусов представляют собой одно и то же направление. Вследствие такой взаимосвязи временная последовательность символов в несмещенной обучающей последовательности имеет совокупную мощность, связанную с информацией действительной оси во временной области, и равную совокупную мощность, связанную с информацией мнимой оси во временной области, как выдаваемых во множестве периодов символов посредством передатчика. В другом аспекте несмещенная обучающая последовательность, представляющая однородную накопленную мощность, равномерно распределенную в комплексной плоскости, может быть выражена как временная последовательность i комплексных символов (a) во временной области, следующим образом:
сумма ai(k)·ai(k)=0;
где k представляет собой количество выборок на период символов. Следует отметить, что "точка" между символами ai и ai предназначена для представления обычной операции умножения между скалярными числами.
Следовательно, символ ai типично представляет собой поднесущую с формой периодической волны, а не имеет какое-либо одно конкретное значение для а. Таким образом, ai изменяется с течением времени, и может быть представлено как ai(t). Однако если получены t выборок, символ может быть представлен как ai(kT), или ai(k), если предполагать, что T нормализовано до 1. Для систем во временной области суммирование по k исчезает. При использовании только одной выборки на символ, символ и выборка становятся одинаковыми, и уравнение может быть записано следующим образом:
сумма ai·ai=0.
Для иллюстрации с использованием простой 2-символьной ортогональной несмещенной обучающей последовательности, если первый символ (i=1) имеет угол 0 градусов, равная величина мощности должна существовать под углом 180 градусов, для удовлетворения уравнению. Аналогично, если второй символ находится под 90 градусов, равная величина мощности должна существовать под углом 270 градусов. Другие более сложные примеры могут потребовать суммирования символов по индексам i для получения обнуленного конечного результата.
Если рассмотреть альтернативно, формула сумма ai·ai=0 относится к тому факту, что если проекция будет выполнена в любом направлении в комплексной плоскости, и будет рассчитана мощность, эта мощность всегда остается одинаковой, независимо от угла. Мощность в направлении φ составляет:
Эта мощность остается постоянной для всех φ, если и только если сумма ai·ai=0.
Можно показать, что формула в частотной области (сумма pi·pim=0) эквивалентна сумме ai·ai=0. Сигнал во временной области, соответствующий pi и pim, представляет собой:
поскольку pi модулирует +f и pim модулирует -f.
В пределах одного символа i интеграл по времени ai·ai представляет собой:
поскольку exp(j4πft) поворачивается несколько раз и исчезает при интегрировании в один символ.
Тогда ai·ai, накопленное в одном символе равно pi·pim, если прос