Способ получения крупнодисперсного сферического пороха
Изобретение относится к области получения сферических порохов (СФП) для стрелкового оружия и малокалиберной артиллерии. Способ получения крупнодисперсного сферического пороха включает приготовление порохового лака при перемешивании нитратцеллюлозных ингредиентов в воде с этилацетатом, диспергирование лака и удаление растворителя. Приготовление порохового лака осуществляют в 6-10 мас.ч. воды по отношению к нитратцеллюлозным ингредиентам, вводят эмульгатор в количестве 2,0-4,0 мас.% по отношению к воде, проводят диспергирование лака и удаляют растворитель в количестве 40…50% от общего залитого объема, охлаждают содержимое реактора до 50°С, останавливают процесс, декантируют избыток воды в количестве 3-6 мас.ч., затем проводят формообразование гранул в течение 60-180 мин при температуре 50-69°С в присутствии 3-6 мас.% эмульгатора и 4-10 мас.% сернокислого натрия по отношению к воде и последующее удаление остаточного количества растворителя. Изобретение обеспечивает увеличение выхода фракции пороха с размером гранул более 1,5 мм и снижение полидисперсности. 1 табл.
Реферат
Изобретение относится к области получения сферических порохов (СФП) для стрелкового оружия и малокалиберной артиллерии.
Известны способы получения крупнодисперсных порохов по экструзионной (лаковой и дисперсионной) и водно-дисперсионной технологиям [1-3]. Суть экструзионных технологий заключается в том, что формирование частиц пороховой массы выделено в отдельную стадию экструзии шнуров и их резки, а операция формообразования гранул происходит в объемных аппаратах, где исключены условия вторичного диспергирования. Недостатками экструзионных технологий являются достаточно высокая трудоемкость процессов и опасность чистки оборудования от лаков при ремонте.
При изготовлении СФП путем растворения нитратов целлюлозы (НЦ) или НЦ с нитроглицерином в этилацетате (ЭА) в водной среде, диспергировании порохового лака в присутствии эмульгаторов на сферические частицы отмечается низкий выход целевой фракции гранул с диаметром более 1,5 мм.
Наиболее близким техническим решением является способ получения сферического пороха для стрелкового оружия [4], включающий перемешивание в течение 10-15 минут в водной среде смеси пироксилина с возвратно-технологическими отходами и водной суспензией технического углерода, приготовление порохового лака в ЭА, диспергирование лака на сферические частицы и удаление ЭА при нагревании смеси до 92-94°C, отличающийся тем, что перемешивают в течение 10-15 минут в водной среде смесь пироксилина с возвратно-технологическими отходами или возвратно-технологические отходы и водную суспензию технического углерода, при этом в качестве возвратно-технологических отходов используют пироксилиновые и/или баллиститные пороха в количестве 10-100 мас.%, а приготовление лака в ЭА ведут в течение 60-180 минут.
Недостатком способа является низкий выход фракции пороха с диаметром частиц 1,5 мм и более (10-15%).
Целью изобретения является увеличение выхода фракции пороха с размером гранул более 1,5 мм и снижение полидисперсности.
Данная цель достигается тем, что способ получения крупнодисперсного СФП, включающий приготовление порохового лака при перемешивании нитратцеллюлозных ингредиентов в воде с ЭА, диспергирование лака и удаление растворителя, отличается тем, что приготовление порохового лака осуществляют в 6-10 мас.ч. воды по отношению к нитратцеллюлозным ингредиентам, вводят эмульгатор в количестве 2,0-4,0 мас.% по отношению к воде, проводят диспергирование лака и удаляют растворитель в количестве 40…50% от общего залитого объема, охлаждают содержимое реактора до 50°C, останавливают процесс, декантируют избыток воды в количестве 3-6 мас.ч., затем проводят формообразование гранул в течение 60-180 мин при температуре 50-69°C в присутствии 3-6 мас.% эмульгатора и 4-10 мас.% сернокислого натрия по отношению к воде и последующее удаление остаточного количества растворителя.
На первом этапе процесса использование воды в количестве 6-10 мас.ч. необходимо не только для получения гранул сферической формы с диаметром 1,5 мм и более, но и позволяет увеличить выход целевой фракции и обеспечить устойчивость водной дисперсии лаковых частиц. Увеличение содержания воды более 10 мас.ч. нецелесообразно, так как необходимый эффект скругления частиц до сферических достигается. Снижение модуля воды менее 6 мас.ч. приводит к частичной коалесценции крупных лаковых частиц и получению формы, отличной от сферической.
Ввод эмульгатора составляет 2,0-4,0 мас.% по отношению к воде. Уменьшение содержания менее 2,0 мас.% снижает устойчивость дисперсии лаковых частиц и вызывает необходимость в повышении интенсивности перемешивания, приводящей к уменьшению размеров лаковых частиц. Увеличение ввода более 4,0 мас.% вызывает повышенное пенообразование в начале процесса удаления растворителя.
После диспергирования удаляют 40-50% растворителя от общего залитого количества. Увеличение степени отгонки нецелесообразно, так как у частиц уже зафиксирована форма, а остаточное количество ЭА в объеме частицы обеспечивает в дальнейшем возможность изменения формы сферических гранул в дисковые. Недостаточная отгонка растворителя приводит к слипанию частиц в момент остановки мешалки.
На втором этапе осуществляется изменение формы частиц от сферической в дискообразную. Для этого объем декантируемой воды после частичного удаления растворителя составляет 3-6 мас.ч., пропорционально исходному объему, чтобы обеспечить остаточное содержание воды в реакторе 3,0-4,0 мас.ч. Это создает условия формообразования гранул в виде дисков. Увеличение объема декантируемой воды более 6 мас.ч. (при вводе 10 мас.ч.) и уменьшение воды менее 3 мас.ч. не позволяет обеспечить требуемую форму гранул, т.е. соотношение диаметр/ толщина горящего свода. В первом - это соотношение превышает 2,5, во втором - менее 1,8, в результате чего пороха имеют низкую насыпную плотность или дегрессивную форму соответственно.
Формообразование гранул проводят в течение 60-180 мин при температуре 50-69°С в присутствии 3-6 мас.% эмульгатора и 4-10 мас.% сернокислого натрия по отношению к воде. Чем больше размер частиц, тем выше ввод сернокислого натрия и эмульгатора и большая длительность процесса. Повторный ввод эмульгатора необходим в связи с тем, что при повышенных температурах он теряет свою активность. Увеличение повторного ввода эмульгатора до 6 мас.% вместо 4,0 мас.% по отношению к воде обусловлено также более высокой концентраций дисперсии в связи с декантацией воды.
Температура процесса в пределах 50-69°C дает возможность варьировать вязкость сферических частиц в зависимости от остаточного содержания ЭА. Верхний температурный предел ограничен температурой кипения азеотропной смеси ЭА - вода, которая составляет 70,6°C. Снижение температуры менее 50°C не обеспечивает условий протекания деформации сферических частиц из-за уменьшения подвижности системы полимер - остаточный растворитель.
Примеры выполнения способа получения крупнозерненного СФП в пределах граничных условий, за их пределами, а также по известному способу приведены в таблице.
Пример 1. В реактор заливается 60 л воды (6 мас.ч.), загружается 10 кг НЦ-ингредиентов (например, пироксилин 1Пл или НЦ с возвратно-технологическими отходами или баллиститная масса). Смесь перемешивается 10 мин. Затем заливается 40 л ЭА и в течение 30-40 мин готовится пороховой лак. После ввода 120 г (2,0 мас.%) эмульгаторов (мездрового клея и КМЦ) ведется диспергирование порохового лака на сферические частицы, а затем температура в реакторе повышается до 74-76°C и ведется отгонка ЭА (40% от общего количества). Температура в реакторе снижается до 50°C, мешалка останавливается, декантируется 3 мас.ч. воды, мешалка включается, вводится 90 г (3 мас.%) мездрового клея и 120 г сульфата натрия (4 мас.% к воде) и проводится перемешивание в течение 60 мин при температуре 50°C. Затем температура постепенно поднимается до 92-96°C, при этой температуре отгоняется ЭА. Выдержка в конце процесса в течение 20-30 мин. Полученный СФП промывается, фракционируется и сушится.
Остальные примеры выполняются аналогично.
Из данных таблицы видно, что при изготовлении пороха в пределах заявленных параметров (примеры 1, 2, 3) выход целевой фракции увеличивается до 55-65%. Декантация меньшего количества воды, т.е. оставшийся модуль 5,0-7,0 мас.ч. по отношению к НЦ-ингредиентам, приводит к отсутствию деформации частиц (D/2e1=1,0-1,1), что снижает кажущуюся и насыпную плотности пороха (примеры 4, 5). Изготовление пороха по штатным режимам приводит к низкому выходу целевой фракции.
Таблица | ||||||
Режимы изготовления и характеристики пороха, изготовленного по разработанному и известному способам | ||||||
Наименование показателя | По разработанному способу | За пределами граничных условий | По известному способу | |||
Пр.1 | Пр.2 | Пр.3 | Пр.4 | Пр.5 | ||
1 | 2 | 3 | 4 | 5 | 6 | 7 |
Масса НЦ, кг | 10 | 10 | 10 | 10 | 10 | 10 |
Количество воды, л (мас.ч.) | 60 (6,0) | 80 (8,0) | 100 (10,0) | 80 (8,0) | 120 (12,0) | 40 (4,0) |
Перемешивание компонентов, мин. | 10 | 10 | 10 | 10 | 10 | 10 |
Ввод ЭА, л | 40 | 42 | 45 | 40 | 50 | 40 |
Ввод сернокислого натрия, г (%) | - | - | - | - | - | 100 (1,0) |
Отгонка растворителя при температуре, °C | 74-76 | 74-76 | 74-76 | 74-76 | 74-76 | 75-94 |
Объем отогнанного ЭА, % от залитого | 40 | 45 | 50 | 40 | 50 | 100 |
Снижение температуры до, °C | 50 | 50 | 50 | 45 | 50 | - |
Остановка мешалки и декантация воды, мас.ч. | 30 (3,0) | 50 (5,0) | 60 (7,0) | 20 (2,0) | 70 (7,0) | - |
Включение мешалки и ввод мездрового клея, г (мас.%) | 120 (4,0) | 150 (5,0) | 180 (6,0) | 180 (3,0) | 250 (5,0) | - |
Ввод сульфата натрия, г (%) | 120 (4) | 210 (7) | 300(10) | 180 (2) | 500 (10) | - |
Подъем температуры до, °C | 50 | 65 | 69 | 65 | - | - |
Перемешивание, мин. | 60 | 25 | 180 | 40 | 200 | - |
Отгонка растворителя, °C | 74-96 | 74-96 | 74-96 | 74-96 | 74-96 | - |
Фракция, мм | 1,5-1,8 | 1,8-2,0 | 2,0-3,0 | 1,8-2,0 | 2,0-3,0 | 1,5-1,8 |
Выход, % | 60-65 | 55-60 | 55-60 | 20-30 (частичное образование слипков) | 20-30 (несоответствие формы) | 10-15 |
Физико-химические характеристики пороха: | ||||||
- плотность кажущаяся, г/см3 | 1,64 | 1,63 | 1,62 | 1,38 | 1,56 | 1,47 |
- насыпная плотность, г/см3 | 1,02 | 0,99 | 0,98 | 0,56 | 0,86 | 0,65 |
- соотношение D/2e1 | 1,8 | 2,2 | 2,5 | 1,0-1,1 | 1,0-1,1 | 1,5 |
Примечания: 1. В качестве стабилизатора химической стойкости вводится дифениламин 0,5 мас.% по отношению к НЦ, сверх 100 мас.% | ||||||
2. D - диаметр зерна, 2e1 - толщина горящего свода |
ЛИТЕРАТУРА
1. Dietman Muller. Изготовление пороха методом экструдирования. Fh G-Berichter. - 1984. - №3-4. - Р.14-17.
2. Патент 2256636 (Россия). МПК7 C06B 21/00, 25/24, C06D 5/06. Способ получения сферического пороха. - Заявка №2003134274 от 26.11.2006.
3. Патент №4285743 (США). Кл. 149/2. МКИ C06B 45/00. Гранулированный порох и метод его приготовления. - РЖХим. - 1982. - 11Н 235П.
4. Патент 2226184 (Россия). МПК7 C06B 21/00, 25/18. Способ получения сферического пороха для стрелкового оружия / Н.М.Ляпин, А.А.Староверов, В.Ф.Сопин и др. - Заявка №2002108855 от 05.04.2002.
Способ получения крупнодисперсного сферического пороха, включающий приготовление порохового лака при перемешивании нитратцеллюлозных ингредиентов в воде с этилацетатом, диспергирование лака и удаление растворителя, отличающийся тем, что приготовление порохового лака осуществляют в 6-10 мас.ч. воды по отношению к нитратцеллюлозным ингредиентам, вводят эмульгатор в количестве 2,0-4,0 мас.% по отношению к воде, проводят диспергирование лака и удаляют растворитель в количестве 40-50% от общего залитого объема, охлаждают содержимое реактора до 50°С, останавливают процесс, декантируют избыток воды в количестве 3-6 мас.ч., затем проводят формообразование гранул в течение 60-180 мин при температуре 50-69°С в присутствии 3-6 мас.% эмульгатора и 4-10 мас.% сернокислого натрия по отношению к воде и последующее удаление остаточного количества растворителя.