Бетатрон с простым возбуждением

Иллюстрации

Показать все

Изобретение относится бетатронным электронным ускорителям. Магнит бетатрона содержит два направляющих магнита с полюсными наконечниками и зазором между ними, сердечник с зазором сердечника, возбуждающую катушку, катушку орбитального управления, схему выдачи импульсов напряжения и электронный ускорительный канал. Катушка орбитального управления имеет участок сжимающей катушки, намотанной вокруг зазора сердечника, и участок катушки смещения, намотанной вокруг полюсных наконечников. Участок сжимающей катушки и участок катушки смещения соединены последовательно в противоположной полярности. Площадь, заключенная в пределах возбуждающей катушки и катушки смещения, разделена на секцию сердечника и секцию направляющего магнита, на границе между которыми расположена сжимающая катушка. Способ для генерации рентгеновских лучей содержит этапы создания потока посредством катушки смещения, формирования первого магнитного потока, возбуждения сжимающей катушки, возбуждения возбуждающей катушки и инжекции электронов при минимальной напряженности первого магнитного потока. Затем осуществляют формирование второго магнитного потока противоположной полярности для сжатия орбит инжектированных электронов до оптимальной орбиты, ускорение электронов, обращение полярности второго магнитного потока при приближении первого магнитного потока к максимальной напряженности для расширения электронной орбиты и столкновения электронов с мишенью, что вызывает эмиссию рентгеновских лучей. Изобретение позволяет повысить эффективность управления орбитальным положением потока электронов. 2 н. и 14 з.п. ф-лы, 10 ил.

Реферат

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ

Эта патентная заявка связана с находящейся в общей собственности патентной заявкой, № в реестре поверенных США 49.0348 US NP, озаглавленной "Двунаправленный диспенсерный катод"; Luke T. Perkins, поданной 14 декабря 2007.

УРОВЕНЬ ТЕХНИКИ

1. Область техники

Изобретение в целом относится к компактному бетатронному электронному ускорителю. Более конкретно, единственная катушка возбуждает и участок сердечника, и направляющее поле, избавляя от необходимости в отдельных возбуждающих катушках, разделенных воздушным зазором, и не требуя соответствующего места для них.

2. Уровень техники

Каротаж буровой нефтяной скважины представляет собой процесс, посредством которого измеряются свойства пластов земли в зависимости от глубины в буровой скважине. Геолог, анализирующий каротажные данные, может определить глубины, на которых наиболее вероятно располагаются нефтеносные формации. Одна из важных частей каротажных данных - плотность формации. Большинство современных каротажных исследований основано на регистрации гамма-лучей от химических радиационных источников, с помощью которых определяется объемная плотность окружающей буровую скважину формации. Эти источники представляют собой радиационную опасность и требуют строгого контроля для избежания нежелательного случайного облучения или некорректного использования. Кроме того, большинство источников имеет длительный период полураспада, и возможность их утилизации представляет собой существенную проблему. Для некоторых каротажных применений при конкретном определении плотности формации для ее облучения используется источник Cs137 или Co60. Интенсивность и проникающая способность радиации позволяют быстрое и точное измерение плотности формации. В связи с проблемами с химическими радиационными источниками важно, чтобы химические радиационные источники были бы заменены электронными радиационными источниками. Главное преимущество последних заключается в том, что они могут быть выключены, когда измерение не выполняется, и то, что с ними имеется минимальная возможность некорректного использования.

Одна из предлагаемых замен химических источников гамма-лучей - это бетатронный ускоритель. В этом устройстве электроны ускоряются по циркулярной траектории переменным магнитным полем и затем направляются на мишень. Взаимодействие электронов с мишенью приводит к генерации тормозного излучения и характеристического рентгеновского излучения материала мишени. Прежде чем электроны ускоряются, они инжектируются в магнитное поле между двумя круглыми полюсными наконечниками в определенный момент времени, с определенной энергией и под определенным углом. Правильный выбор времени, энергии и угла инжекции позволяет максимизировать число электронов, захватываемых на главную электронную орбиту и затем ускоряемых.

Типичный бетатрон, как раскрыто в Патенте США 5122662, авт. Chen и др., имеет диаметр полюсного наконечника приблизительно 4,5 дюймов. Магнит состоит из двух разделенных магнитно-изолированных частей: сердечник с магнитной цепью, которая представляет собой почти замкнутый контур и магнит направляющего поля, который включает в себя два противостоящих полюсных наконечника, разделенных зазором приблизительно в 1 сантиметр. Полюсные наконечники, которые охватывают сердечник, имеют тороидальную форму. Зазор приблизительно 0,5 см отделяет сердечник от внутренних оправ полюсных наконечников. Эти две части возбуждаются посредством двух раздельных наборов катушек, соединенных параллельно: полевая катушка наматывается вокруг внешних оправ полюсных наконечников, и катушка сердечника наматывается на центральную секцию сердечника. Полевой магнит и сердечник магнитно развязаны с катушкой обратного поля, намотанной поверх катушки сердечника. И катушка сердечника, и катушка обратного поля располагаются в зазоре 0,5 см. Патент США № 5122662 полностью включен в настоящее описание посредством ссылки.

Типичный работающий бетатрон удовлетворяет бетатронному условию и ускоряет электроны до релятивистской скорости. Бетатронное условие удовлетворяется, когда:

(1)

где:

r0 - радиус бетатронной орбиты, расположенной приблизительно в центре полюсных наконечников;

Δφ0 - изменение потока, заключенного в пределах r0; и

ΔBy0 - изменение направляющего поля в r0.

Бетатронное условие может быть соблюдено посредством регулировки отношения витков катушки сердечника и катушки направляющего поля, как раскрыто в Патенте США № 5122662. Удовлетворение бетатронного условия не гарантирует, что машина будет работать. Зарядовый захват, инжекция электронов на бетатронную орбиту в оптимальный момент времени, является другой важной операцией. В 4.5-дюймовом бетатроне это достигается поддержанием постоянного потока в сердечнике при увеличении направляющего поля. Это оказывается возможным потому, что сердечник и направляющее поле возбуждаются независимо.

Большие бетатроны подходят для тех применений, где не критичны ограничения размеров, например при генерации рентгеновских лучей для медицинских целей. Однако в таких применениях, как буровые нефтяные скважины, где имеются серьезные ограничения размеров, желательно использовать меньшие бетатроны, обычно с диаметром магнитного поля в три дюйма или менее. Обычная конструкция для больших бетатронов трудно применима для меньших бетатронов по ряду причин.

(1) Если инжектор электронов расположен в зазоре между полюсными наконечниками, то высота зазора должна быть больше размера инжектора перпендикулярно к полюсным наконечникам. При этом для поддержания разумной апертуры пучка ширина полюсных наконечников не может быть сделана слишком малой. Таким образом, главную роль в ограничении размера играет сердечник, что приводит к значительно более низкой энергии пучка.

(2) Если инжектор электронов расположен в зазоре между полюсными наконечниками, необходимо в пределах периода времени, сопоставимого с орбитальным периодом электронов, изменить траектории инжектированных электронов таким образом, чтобы они не соударялись с инжектором. Те электроны, траектории которых не пересекаются ни со структурой инжектора, ни со стенками вакуумной камеры, считаются захваченными. Только захваченные электроны могут быть ускорены до полной энергии и приведены в столкновение с мишенью, чтобы создать радиацию. Механизм захвата заряда таков, что вероятность захвата любого заряда в 3-дюймовой машине почти нулевая, если частоту модуляции главного возбудителя не увеличить приблизительно до 24 кГц (утроенной относительно частоты, используемой в 4,5-дюймовой машине) и энергию инжекции уменьшить приблизительно до 2,5 кэВ (1/2 относительно энергии, используемой в 4,5-дюймовой машине). Даже в этом случае возможность захвата заряда, сопоставимого с захватом в 4,5-дюймовой машине, неудовлетворительна.

(3) Более высокая плотность потока требуется для удержания электронов той же самой энергии на меньшем радиусе. Более высокие плотность потока и частота модуляции приводят к большим потерям мощности в трехдюймовом бетатроне, даже при том, что он имеет меньший объем, чем 4,5-дюймовый бетатрон.

С учетом (1)-(3) установлено, что полезное радиационное излучение на выходе трехдюймового бетатрона обычной конструкции должно быть на три порядка ниже, чем для 4,5-дюймового бетатрона. Таким образом, имеется потребность в бетатроне малого диаметра, имеющем выходную радиацию, сопоставимую с таковой для 4,5-дюймового бетатрона.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В соответствии с вариантом реализации изобретения изобретение включает в себя магнит бетатрона, имеющий кольцевой, тороидальный направляющий магнит, и сердечник, расположенный в центре и примыкающий к направляющему магниту и к одному или нескольким периферическим ярмам. Зазор направляющего магнита разделяет направляющий манит на верхний участок и нижний участок с противостоящими полюсными наконечниками. Возбуждающая катушка намотана вокруг полюсных наконечников направляющего магнита. Катушка орбитального управления имеет участок сжимающей катушки, намотанный вокруг сердечника, и участок управления смещением, намотанный вокруг полюсных наконечников направляющего магнита.

Участок сжимающей катушки и участок управления смещением могут быть соединены последовательно, но с противоположными полярностями. Однако следует отметить, что участок сжимающей катушки и участок управления смещением могут возбуждаться независимо. Кроме того, схема обеспечивает импульсы напряжения на возбуждающую катушку и катушку орбитального управления. Магнитные потоки в сердечнике и в направляющем магните возвращаются через два периферических участка, или ярма, магнита бетатрона. Вакуумированный электронный ускорительный канал, расположенный в зазоре направляющего магнита, содержит электроны, которые ускоряются до релятивистской скорости и затем приводятся в столкновение с мишенью, тем самым создавая рентгеновское излучение.

Работа этого бетатрона включает в себя формирование первого магнитного потока первой полярности, который проходит через направляющий магнит, электронный ускорительный канал и сердечник и затем возвращается через ярма, и второго магнитного потока, имеющего либо первую полярность, либо противоположную вторую полярность, который проходит через сердечник и возвращается через зазор отклоняющего магнита и электронный ускорительный канал. В начале каждого цикла импульс высокого напряжения (обычно несколько кВ) подается на инжектор и приводит к инжектированию электронов в электронный ускорительный канал. Чтобы достигнуть быстрого ограничения, не снижая максимальной энергии, сердечник является гибридным сердечником, имеющим расположенный по периметру участок, выполненный из быстрого феррита, окружающего более медленный материал, но с более высокой плотностью потока насыщения. Во время первого периода времени большая часть потока, требуемого для уменьшения радиуса электронных орбит, проходит через быстрый феррит. После этого первого периода времени периметр сердечника с быстрым ферритом магнитно насыщается, и второй магнитный поток проходит затем через внутренний участок сердечника и в комбинации с первым магнитным потоком ускоряет электроны. Полярность второго магнитного потока обращается, когда скорость электронов приближается к максимальной, тем самым расширяя электронную орбиту и приводя электроны в столкновение с мишенью, создавая рентгеновское излучение.

В соответствии с одним из аспектов изобретения изобретение может включать в себя гибридный сердечник, имеющий центральный участок с высокой плотностью потока насыщения, и периметр, сформированный из магнитного материала высокой проницаемости с быстрым откликом. Кроме того, центральный участок может быть аморфным металлом, и периметр может быть ферритом с магнитной проницаемостью выше 100. Кроме того, согласно изобретению совокупная ширина, по меньшей мере, одного зазора сердечника может быть выполнена такой, что это позволяет удовлетворить бетатронное условие. Согласно изобретению совокупная ширина упомянутого по меньшей мере одного зазора сердечника может составлять приблизительно от 2 миллиметров до 2,5 миллиметров. Кроме того, согласно изобретению упомянутый по меньшей мере один зазор сердечника может быть сформирован из множественных зазоров. Кроме того, согласно изобретению диаметры и первого полюсного наконечника, и второго полюсного наконечника могут составлять приблизительно от 2,75 дюймов и 3,75 дюймов. Также согласно изобретению отношение количества витков участка сжимающей катушки к количеству витков участка управления смещением может составлять 2:1. Кроме того, согласно изобретению отношение количества витков возбуждающей катушки к количеству витков катушки смещения может составлять, по меньшей мере, 10:1, и число витков возбуждающей катушки может составлять, по меньшей мере, 10. Кроме того, изобретение может включать в себя схему, обеспечивающую номинальный пиковый ток 170 А и номинальное пиковое напряжение 900 В. Также возможно, что изобретение может включать в себя прикрепление на зонд, эффективный при вставке в буровую нефтяную скважину.

В соответствии с вариантом реализации изобретения изобретение может включать в себя способ, создающий рентгеновское излучение. Способ может включать в себя этапы предоставления магнита бетатрона, который включает в себя первый направляющий магнит, имеющий первый полюсный наконечник, и второй направляющий магнит, имеющий второй полюсный наконечник. Кроме того, и первый направляющий магнит, и второй направляющий магнит могут иметь центрально расположенную апертуру, причем первый полюсный наконечник отделен от второго полюсного наконечника зазором направляющего магнита. Кроме того, способ может включать в себя этапы расположения сердечника в пределах центрально расположенных апертур, примыкающего и к первому направляющему магниту, и ко второму направляющему магниту. Кроме того, сердечник может иметь, по меньшей мере, один зазор сердечника, который окружен зазором направляющего магнита с электронным каналом. Кроме того, способ включает в себя этапы формирования первого магнитного потока первой полярности, которой соответствует противоположная вторая полярность, который проходит через центральные участки магнита бетатрона и сердечник, а также через электронный канал и затем возвращается через периферические участки магнита бетатрона. Способ дополнительно включает в себя этапы инжекции электронов на электронную орбиту в пределах электронного канала, когда первый магнитный поток имеет приблизительно минимальную напряженность при первой полярности. Кроме того, способ включает в себя этапы формирования второго магнитного потока с противоположной второй полярностью, который проходит через периметр сердечника и возвращается через электронный канал при первой полярности, в первый период, чтобы эффективно сжать орбиты инжектированных электронов до оптимальной бетатронной орбиты. Способ также включает в себя этапы, на которых после первого периода периметр сердечника магнитно насыщается, и второй магнитный поток проходит через внутренний участок сердечника и в комбинации с первым магнитным потоком ускоряет электроны, посредством чего осуществляет условие форсинга потока. Способ дополнительно включает в себя этапы обращения полярности второго магнитного потока, когда первый магнитный поток приближается к максимальной напряженности, тем самым расширяя электронную орбиту, приводящую электроны в столкновение с мишенью, вызывая эмиссию рентгеновских лучей.

Раскрытый бетатрон компактен и подходит для закрепления на зонде для погружения в буровую нефтяную скважину. Результаты взаимодействия произведенных рентгеновских лучей с грунтовыми формациями полезны для геологов при определении особенностей земных формаций, таких как плотность, а также вероятных местоположений подземных нефтяных залежей.

Дополнительные признаки и достоинства изобретения станут более очевидными из следующего подробного описания при его рассмотрении с сопровождающими чертежами.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Настоящее изобретение подробно описано ниже со ссылками на чертежи посредством неограничивающих примерных вариантов реализации настоящего изобретения, причем подобные цифровые обозначения отображают подобные же части на различных видах, причем:

Фиг.1 изображает поперечное сечение конфигурации магнита и возбуждающей катушки конструкции бетатрона малого диаметра в соответствии с вариантом реализации изобретения;

Фиг.2 - конфигурация линий магнитного потока, созданных возбуждающей катушкой в соответствии с одним из аспектов изобретения, для магнита, показанного на Фиг.1;

Фиг.3 - траектория электронов, инжектированных в бетатрон на Фиг.1 в соответствии с одним из аспектов изобретения;

Фиг.4 - сечение конфигурации катушки отбора и катушки смещения бетатрона на Фиг.1 в соответствии с одним из аспектов изобретения;

Фиг.5 - устройство форсинга потока, где катушка отбора и катушка смещения соединены последовательно с противоположными полярностями в соответствии с вариантом реализации изобретения;

Фиг.6 - магнитный поток, связанный с бетатроном на Фиг.1 в соответствии с одним из аспектов изобретения;

Фиг.7 - вид сверху альтернативного магнитного сердечника в соответствии с вариантом реализации изобретения;

Фиг.8 - магнитный поток в магнитном сердечнике на Фиг.7 до насыщения компоненты сердечника в соответствии с одним из аспектов изобретения;

Фиг.9 - магнитный поток в магнитном сердечнике на Фиг.7 после насыщения компоненты сердечника в соответствии с одним из аспектов изобретения;

Фиг.10 - схема возбуждения малого бетатрона в соответствии с вариантом реализации изобретения.

ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ РЕАЛИЗАЦИИ

Рассмотренные ниже варианты представляют собой примеры, приведенные только с целью иллюстрации вариантов реализации настоящего изобретения, для облегчения понимания описания принципов и концептуальных аспектов настоящего изобретения. При этом конструктивные детали настоящего изобретения не показываются подробнее, чем это необходимо для ясного понимания настоящего изобретения, при этом описание в сочетании с чертежами делает очевидным для специалистов в данной области техники то, как несколько форм настоящего изобретения могут быть воплощены практически. Кроме того, цифровые обозначения на различных чертежах указывают на подобные элементы.

В соответствии с вариантом реализации изобретения изобретение включает в себя магнит бетатрона, который включает в себя кольцевой, тороидальной формы, направляющий магнит и сердечник, расположенный в центре и примыкающий к направляющему магниту, и один или несколько периферических ярм. Зазор направляющего магнита разделяет направляющий магнит на верхние и нижние участки с противостоящими полюсными наконечниками. Возбуждающая катушка намотана вокруг полюсных наконечников направляющего магнита. Катушка орбитального управления имеет участок сжимающей катушки, намотанный вокруг сердечника, и участок управления смещением, намотанный вокруг полюсных наконечников направляющего магнита. Участок сжимающей катушки и участок управления смещением могут быть соединены последовательно, но при противоположных полярностях. Однако следует отметить что участок сжимающей катушки и участок управления смещением могут возбуждаться независимо. Кроме того, схема обеспечивает импульс напряжения на возбуждающую катушку и катушку орбитального управления. Магнитные потоки в сердечнике и направляющих магнитах возвращаются через периферические участки магнита бетатрона, которые называются ярмами. Вакуумированная трубка охватывает электронный ускорительный канал и расположена в пространстве между полюсными наконечниками направляющих магнитов. Электроны ускоряются до релятивистской скорости в этом канале и затем приводятся в столкновение с мишенью. Когда электроны быстро тормозятся при столкновении и ионизированные атомы мишени восстанавливаются и возвращаются к более низкому энергетическому состоянию, то испускаются рентгеновские лучи.

Работа бетатрона включает в себя формирование первого магнитного потока первой полярности, который проходит через полюсные наконечники направляющего магнита, электронный ускорительный канал и сердечник и затем возвращается через ярма, и формирование второго магнитного потока, имеющего либо первую полярность, либо противоположную вторую полярность, который проходит через сердечник и возвращается через полюсные наконечники направляющего магнита и электронный ускорительный канал.

В начале каждого цикла импульс высокого напряжения (обычно несколько кВ), подается на инжектор и заставляет электроны инжектироваться в электронный ускорительный канал. Предпочтительно, но не необходимо, создать такую форму импульса напряжения инжектора, чтобы энергия инжектированных электронов увеличивалась по соответствующему соотношению с возрастанием направляющего магнитного поля в ускорительном канале в течение 100 наносекунд или более. Период, в течение которого существует условие согласования между импульсом напряжения инжектора и первым магнитным потоком в канале, обозначается как диапазон инжекции. Электроны, инжектированные в пределах диапазона инжекции, имеют наибольшую вероятность того, чтобы быть захваченными. Условие согласования лучше всего описывается представлением о мгновенной равновесной орбите радиуса ri. При мгновенной равновесной орбите закручивающая магнитная сила равна центробежной силе. При r>ri закручивающая магнитная сила больше, тогда как для r<ri справедливо противоположное. Таким образом, электроны, связанные с данным ri, связаны с этим ri подобно шарику, закрепленному пружинкой в точке. Диапазон инжекции - это период времени, в течение которого ri располагается внутри канала. В отличие от r0, который определяется конструкцией магнита и определяет то, как главный возбуждающий поток (первый магнитный поток) разделяется между различными частями магнита, ri является функцией энергии электронов и значения магнитного поля в ri.

Если электрон инжектируется при r=ri по касательной к окружности, его траектория будет следовать по окружности и пересекать инжектор в его первом обороте. Поэтому предпочтительно инжектировать электроны так, чтобы ri было всегда меньше (если инжектор расположен вблизи внешнего края канала) или больше (если инжектор расположен вблизи внутреннего края канала) радиуса инжекции. Траектории электронов, инжектированных при r≠ri и/или под углом к касательной к окружности инжекции, r будет осциллировать относительно ri (бетатронная осцилляция). Когда первый магнитный поток увеличивается, амплитуда осцилляций уменьшается и ri приближается к r0 (демпфирование бетатрона). Осцилляционные траектории могут заставить электроны пропускать инжектор при первых нескольких оборотах, но электроны в конечном счете попадут в инжектор, если демпфирование бетатрона не будет достаточно быстрым или не будет введен второй магнитный поток, чтобы изменить ri так, чтобы определенные электронные траектории не пересекали бы инжектор.

Для иллюстрации последовательности операций рассмотрим пример, в котором инжекция имеет место вблизи внешнего края канала и ri находится только в структуре инжектора. В начале диапазона инжекции в течение первого периода формируется второй магнитный поток, который проходит главным образом через периметр сердечника при противоположной второй полярности и возвращается через электронный канал при первой полярности. Уменьшающийся поток в пределах сердечника индуцирует электрическое поле замедления в канале, и в то же самое время возвращающийся второй магнитный поток через канал вызывает увеличение магнитного поля вблизи электронных траекторий.

Объединенный эффект приводит к быстрому ограничению ri и электронные траектории отодвигаются от инжектора. Для эффективного ограничения в течение этого первого периода (то есть ограничения ri примерно до 2 мм за оборот) второй магнитный поток в сердечнике должен возрастать очень быстро. Обычно магнитный материал с быстрым откликом имеет низкую плотность потока насыщения, недостаточную, чтобы поддержать поток, необходимый для ускорения электронов до требуемой энергии. Для достижения быстрого ограничения, без снижения максимальной энергии, сердечник представляет собой гибридную конструкцию с быстрым ферритовым периметром, окружающим более медленную, но с более высокой плотностью потока насыщения, внутреннюю часть. Во время первого периода времени большая часть потока, требуемая для уменьшения ri, проходит через быстрый ферритовый периметр. По истечении этого первого периода периметр магнитно насыщается и второй магнитный поток течет затем через внутреннюю часть сердечника и, объединяясь с первым магнитным потоком, ускоряет электроны. Полярность второго магнитного потока обращается, когда скорость электронов приближается к максимальной, тем самым расширяя электронную орбиту и заставляя электроны сталкиваться с мишенью, производящей рентгеновские лучи.

Описываемый здесь бетатрон малого диаметра характеризуется, помимо прочих, следующими признаками:

(i) магнит состоит из единственной детали, а не двух раздельных деталей, и зазор 0,5 см между деталями магнита устраняется; (ii) единственная возбуждающая катушка возбуждает и секцию сердечника, и направляющий магнит. Бетатронное условие соблюдается посредством включения малого зазора в пределах центрального сердечника, и (iii) катушка орбитального управления, состоящая из немногих, например двух витков, намотанная вокруг сердечника, обеспечивает поток для ограничения орбиты. Другая катушка с одним витком вокруг полюсных наконечников может быть соединена последовательно, но при противоположной полярности, с обмоткой сердечника, и развязывает главную возбуждающую катушку и катушку орбитального управления, и наоборот. Однако следует отметить, что участок сжимающей катушки и участок управления смещением могут возбуждаться независимо.

Эти признаки приводят к нескольким преимуществам по сравнению с конструкцией с двумя деталями, особенно для малых 3-дюймовых бетатронов: (i) из-за большей площади сердечника, энергия значительно выше; (ii) зазор в сердечнике значительно уменьшает нелинейность замкнутого сердечника и должен поэтому иметь пониженную чувствительность к температуре. При работе в действующей нефтяной буровой скважине магнит бетатрона подвержен рабочим температурам до 200°C в центре и 150°C в окружении, так что магнит и сердечник изготовлены из материалов, имеющих температуры Кюри выше этих ожидаемых максимумов; и (iii) захват заряда достигается при механизме, который не зависит от быстрого повышения направляющего поля, чтобы отдалить электроны от инжектора, главная возбуждающая катушка может иметь высокую индуктивность. Это позволяет использовать низкие возбуждающий ток и частоту модуляции, приводя к более низкому расходу энергии и лучшему согласованию с формой импульса напряжения инжектора.

На Фиг.1 показан вид сечения магнита бетатрона, который включает в себя ярма 10, первый направляющий магнит 16 и второй направляющий магнит 17, окружающие магнитный сердечник 12. И направляющие магниты 16, 17, и сердечник 12 имеют по существу радиальную симметрию вокруг продольной оси 13 и зеркальную симметрию вокруг серединной плоскости 15. Направляющие магниты 16, 17 сформированы из мягкого магнитного материала, такого как феррит MND5700, изготовленного Ceramic Magnetics, Inc. из Фэрфилда, Нью-Джерси, имеющего высокую проницаемость, например приблизительно 2000, чтобы легко провести магнитный поток. Из-за одного или нескольких зазоров 26 в магнитном сердечнике 12 магнитная проницаемость магнита бетатрона мало влияет на магнитные свойства, которые отвечают за ускорение и направление электронов, пока проницаемость достаточно высока, например приблизительно 2000. Зазоры 26 могут быть воздушными зазорами или разделителями, выполненными из немагнитного и непроводящего материала. Ярма 10 могут быть сформированы из магнитного материала, такого как феррит, или из материала, подобного материалу сердечника, описанного ниже как гибридный, имеющий и аморфный металл, и ферритовую компоненту.

Снова обращаясь к Фиг.1, магнитный сердечник 12 описан ниже и может быть композитным, имеющим внутреннюю часть с высокой плотностью потока насыщения и быструю периферию, но с более низкой плотностью потока насыщения, или наоборот. Главная возбуждающая катушка 14 намотана вокруг обоих направляющих магнитов 16, 17 во внутреннем участке магнита бетатрона. Как правило, но не обязательно, главная возбуждающая катушка 14 имеет десять или больше витков, чтобы уменьшить расход энергии и иметь подходящее время первого нарастания магнитного потока относительно времени нарастания импульса инжектора. Активация главной возбуждающей катушки 14 создает магнитный поток, который ограничивает и ускоряет электроны, содержащиеся в пределах канала 20. Канал 20 является областью в пространстве между полюсными наконечниками 21, 23 направляющих магнитов. Устойчивые мгновенные равновесные орбиты электронов и условия фокусировки электронов существуют в пределах границ канала 20.

На Фиг.1 показана содержащаяся в пределах канала 20 тороидальная трубка 22, выполненная из стекла или керамики с низким коэффициентом теплового расширения, внутренние поверхности которой покрыты подходящим резистивным покрытием, например 100-1000 островков на квадратные сантиметры. При заземлении покрытие предотвращает чрезмерное накопление поверхностного заряда, который оказывает нежелательное влияние на циркулирующий электронный пучок. Во время работы бетатрона внутренний объем трубки 22 находится под вакуумом приблизительно от 1x10-8Торр и приблизительно до 1x10-9Торр, чтобы минимизировать электронные потери от столкновений с остаточными газовыми молекулами. Внутренний объем трубки 22 перекрывает канал 20 таким образом, что устойчивые мгновенные орбиты не пересекают стенку трубки.

Для удовлетворения бетатронного условия и ускорения электронов до релятивистской скорости следующее условие должно быть удовлетворено.

(1)

где:

r0 - радиус оптимальной бетатронной орбиты, расположенной приблизительно в центре полюсных наконечников направляющего магнита;

Δφ0 - изменение потока, заключенного в пределах r0; и

ΔBy0 - изменение в направляющего поля в r0.

Бетатронное условие для Δφ0 и ΔBy0 удовлетворяется соответствующим выбором совокупной ширины одного или нескольких зазоров 26 сердечника. Зазоры 26 сердечника могут быть воздушными зазорами или заполненными неметаллическим, немагнитным материалом, имеющим температуру плавления выше рабочей температуры, которая для работы буровой скважины составляет приблизительно 150°C. Подходящими материалами для зазора являются политетрафторэтилен и подобные полимеры. Совокупная ширина одного или нескольких зазоров устанавливает магнитное сопротивление для сердечника 12 и определяет относительную величину потока, который проходит через сердечник 12 и канал 20. Чем больше совокупная ширина зазора, тем больший поток проходит через канал. Для трехдюймового диаметра полюсного наконечника и средней высоты зазора магнита приблизительно 1 см в канале зазор 26 сердечника имеет совокупную ширину приблизительно 2,5 мм.

На Фиг.2 показан магнит бетатрона с линиями 18 потока, показывающими магнитное поле, созданное возбуждением главной возбуждающей катушки 14.

На Фиг.3 показан внутренний объем трубки 22 в сечении по ширине. Электроны 28 инжектируются в объем из электронного эмиттера 30, такого как термоэмиссионный диспенсерный катод. Для электронов 28, инжектированных при определенной энергии, имеется соответствующая орбита при мгновенном равновесном радиусе ri 32, так чтобы магнитная закручивающая сила была равна и противоположно направлена центробежной силе. Электроны, инжектированные в магнит бетатрона в местоположении, или внутри, или вне ri 32, имеют осциллирующую траекторию вблизи ri, и эта осцилляция обозначается как осцилляция бетатрона. Частота осцилляции бетатрона ниже орбитальной частоты так, чтобы электрон завершил один или несколько оборотов вокруг объема за время осцилляции бетатрона. Когда магнитное поле возрастает, амплитуда осцилляций бетатрона уменьшается и ri 32 сдвигается ближе к орбите 36 бетатрона r0 (демпфирование бетатрона) конец радиуса (22 на Фиг.1). Для избежания столкновения с инжектором 30 в малом бетатроне необходимо изменять ri с большей скоростью, чем характерная скорость демпфирования бетатрона.

Что касается Фиг.4, в отличие от 4,5-дюймового бетатрона предшествующего уровня техники, где захват заряда осуществляется посредством возбуждения поля сердечника и направляющего поля независимо, для захвата инжектированных электронов в малом бетатроне и заполнения доступного объема в трубке 22, определяющей канал 20, ri управляется или его быстрым ограничением (для инжекции вблизи внешнего края), или его быстрым увеличением (для инжекции вблизи внутреннего края). Ограничение орбиты достигается или снижением потока в сердечнике 12 (замедление электронов), или увеличением направляющего поля в области орбиты (увеличение закручивающей силы), или и то, и другое. На Фиг.4 показан способ, который включает в себя ограничивающую катушку 38, которая намотана вокруг зазора 26 сердечника и может быть соединена последовательно, но в противоположной полярности, с катушкой 40 смещения. Однако следует отметить, что участок сжимающей катушки и участок управления смещением могут возбуждаться независимо. Кроме того, комбинация сжимающей катушки 38 и катушки 40 смещения (вместе обозначаемые как катушка орбитального управления) используется для изменения и Δφ0 и ΔBy0 в желаемых направлениях.

На Фиг.5 показана общая картина связи между катушкой 38, 40 орбитального управления и главной возбуждающей катушкой 14. Площадь, заключенная в пределах главной возбуждающей катушки и катушки смещения, разделена на основную секцию 12a и секцию 16a направляющего магнита, с сжимающей катушкой, расположенной точно на границе между этими двумя секциями. Поток ϕс,c=aNcic из-за тока ic, текущего через ограничивающую катушку, должен пройти через секцию 12a сердечника, где Nc - число витков сжимающей катушки и a - конструктивный параметр, который зависит только от геометрии. Этот поток обычно возвращается через два ярма, поскольку эти пути имеют самое низкое магнитное сопротивление и связывают главную возбуждающую катушку.

Снова обращаясь к Фиг.5, следует отметить, что нежелательно иметь ограничивающую катушку и главную возбуждающую катушку связанными между собой из-за индуцируемых напряжений от одной к другой. Для реализации низкого расхода энергии главная возбуждающая катушка 14 имеет много витков, обычно десять или более. Следовательно, маленький импульс напряжения на сжимающей катушке приведет к высокому индуцированному напряжению на главной возбуждающей катушке 14, что не только приводит к усложнению конструкции возбудителя катушки, но также препятствует и ограничению потока.

Также обращаясь к Фиг.5, катушка 40 смещения, намотанная вокруг полюсных наконечников направляющего магнита 16a, развязывает ограничивающую катушку от главной возбуждающей катушки 14 посредством подавления второго магнитного потока в ярмах. Поскольку катушка 40 смещения заключает и основную секцию 12a, и секцию 16a направляющего магнита, ее поток ϕb может быть выражен как сумма потоков в этих двух секциях:

ϕ b= ϕ b,С + ϕ b,g = aN b i b +bN b i b =-aN b i c -bN b i c (2)

где Nb является числом витков катушки смещения, b является конструктивным параметром, который зависит только от геометрии, и ib=-ic - ток, текущий через катушку смещения, который тот же самый, что и ток сжимающей катушки (они могут быть соединены последовательно или возбуждаться раздельно), но при противоположной полярности. Условие смещения (хорошее подавление потока в ярмах) выполняется, когда

ϕ b + ϕ c,c =a(N C -N b )i c -bN b i c =0 (3)

или

a(N C -N b )=bN b (4)

Поскольку правая сторона должна быть положительной, из этого следует, что Nc>Nb.

Из-за ограниченного доступного пространства вокруг сердечника желательно иметь Nc как можно меньшим. Малое число Nc также приводит к низкой индуктивности, что является существенным для до