Система предоставления позиционной информации, устройство и передатчик предоставления позиционной информации

Иллюстрации

Показать все

Изобретение относится к области навигации и позиционирования, а именно к предоставлению позиционной информации в местах недосягаемости радиосигналов, и может быть использовано в терминале с возможностью приема позиционного сигнала, а также в устройствах передачи. Технический результат заключается в предоставлении позиционной информации без потери точности даже в местах вне досягаемости радиосигналов спутника, обеспечении отсутствия необходимости синхронизации во времени со спутником. Для этого процесс, выполняемый с помощью устройства предоставления позиционной информации, включает в себя этапы: получения принятого сигнала позиционирования (S610), специфицирования источника излучения сигнала позиционирования (S612), получения, когда источник излучения сигнала позиционирования находится вне помещения, сообщения навигации, включенного в сигнал позиционирования (S622), выполнения процесса, предназначенного для вычисления позиции на основании сигнала (S624), получения, когда источник излучения сигнала позиционирования находится внутри помещения, данных сообщения из сигнала позиционирования (S630), получения значения координат из данных (S632) и отображения позиционной информации на основании значений координат (S650). 3 н. и 14 з.п. ф-лы, 15 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к способу, предназначенному для предоставления позиционной информации. Более конкретно, настоящее изобретение относится к способу, предназначенному для предоставления позиционной информации, даже в среде вне досягаемости сигнала, переданного из спутника, излучающего сигнал позиционирования.

УРОВЕНЬ ТЕХНИКИ

GPS (глобальная система позиционирования) известна в качестве традиционной системы позиционирования. Спутник (далее упоминаемый как “спутник GPS”), передающий сигнал, используемый для GPS (далее упоминаемый как «сигнал GPS»), летит на высоте, приблизительно 20000 км от земли. С помощью приема и демодуляции сигнала, излучаемого из спутника GPS, пользователь может измерять расстояние между спутником GPS и пользователем. Следовательно, если между землей и спутником GPS нет препятствия, возможно позиционирование с использованием сигнала, излучаемого из спутника GPS. Предположим, однако, использование GPS в городском районе. Часто может иметь место, что сигнал, излучаемый из спутника GPS, не может быть принят с помощью устройства предоставления позиционной информации пользователя, ввиду препятствий, создаваемых высокими зданиями, имеющимися в большом количестве. Кроме того, дифракция или отражение сигнала зданием может вызывать ошибку в измерении расстояния с использованием сигнала и в результате часто ухудшается точность позиционирования.

Несмотря на то, что известны способы приема в помещении слабого сигнала GPS, который прошел через стену или крышу, состояние приема является нестабильным, и точность позиционирования является низкой.

В дальнейшем в качестве примера описано позиционирование с использованием GPS. Однако явление, описанное выше, является общим вообще для систем позиционирования, использующих спутники. Спутниковая система позиционирования не ограничена GPS и может включать в себя системы, такие как GLONASS (глобальная навигационная спутниковая система) Российской Федерации или Европейская Galileo.

Способы, связанные с предоставлением позиционной информации, например, раскрыты в выложенной патентной заявке Японии №2006-67086 (патентный документ 1).

Патентный документ 1: выложенная патентная заявка Японии №2006-67086.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Проблемы, решаемые изобретением

Однако, в соответствии со способом, раскрытым в выложенной патентной заявке Японии №2006-67086, устройство чтения или устройство записи является уникальным для системы, предназначенной для предоставления позиционной информации, и испытывает недостаток универсальности. Для того чтобы предотвратить помехи, необходимо ограничить выходную мощность передачи и, следовательно, область, в которой позиционная информация является доступной для приема, является ограниченной, и трудно постоянно получать позиционную информацию. Кроме того, требуется большое число передатчиков, чтобы охватить широкую область.

Кроме того, в связи со сбором или регистрацией позиционной информации можно определить местоположение источника передачи сигнала, если телефонный вызов произведен со стационарного телефона, так как местоположение стационарного телефона является известным заранее. Однако широко распространенное использование портативных телефонов делает мобильную связь все более и более распространенной, и становится все труднее регистрировать позиционную информацию звонящего абонента, в отличие от стационарного телефона. С другой стороны, что касается экстренного вызова, законодательство приняло во внимание включить позиционную информацию в вызов из портативного телефона.

Традиционный портативный телефон, имеющий функцию позиционирования, получает позиционную информацию, если сигнал из спутника является доступным для приема, и, следовательно, можно зарегистрировать позицию портативного телефона. Однако там, где невозможно принять радиосигналы, например в подземном месте для гулянья или внутри помещения, позиционная информация не может быть получена с помощью традиционного способа позиционирования.

Ввиду вышеизложенного, может быть рассмотрен способ, в котором множество передатчиков, которые могут излучать сигналы, подобные сигналу GPS, расположены внутри помещения, чтобы находить позицию на основании принципа трилатерации, подобного GPS. Однако такой подход требует, чтобы передатчики были синхронизированы во времени, при этом увеличивается стоимость передатчиков.

Кроме того, отражение внутри помещения и тому подобное делает трудным распространение радиосигналов, в результате легко давая ошибки приблизительно 10 м.

Настоящее изобретение было создано, чтобы решить вышеописанную проблему, и его задачей является предоставить систему предоставления позиционной информации, предоставляющую позиционную информацию без потери точности, даже в месте вне досягаемости радиосигналов из спутника, излучающего сигнал позиционирования.

Другой задачей является предоставить систему предоставления позиционной информации, предоставляющую позиционную информацию на основании сигнала, который не требует синхронизации во времени со спутником, излучающим сигнал позиционирования.

Дополнительной задачей является предоставить устройство предоставления позиционной информации, которое может предоставлять позиционную информацию без потери точности, даже в месте вне досягаемости радиосигналов из спутника, излучающего сигнал позиционирования.

Еще дополнительной задачей является предоставить устройство предоставления позиционной информации, которое может предоставлять позиционную информацию на основании сигнала, который не требует синхронизации во времени со спутником, излучающим сигнал позиционирования.

Еще дополнительной задачей является предоставить передатчик, который может передавать сигнал, предоставляющий позиционную информацию без потери точности, даже в месте вне досягаемости радиосигналов из спутника, излучающего сигнал позиционирования.

Еще дополнительной задачей является предоставить передатчик, который может передавать сигнал, предоставляющий позиционную информацию на основании сигнала, который не требует синхронизации во времени со спутником, излучающим сигнал позиционирования.

Средства, предназначенные для решения проблем

Для того чтобы решить вышеописанные проблемы, в соответствии с одним аспектом, настоящее изобретение предоставляет систему предоставления позиционной информации, предназначенную для предоставления позиционной информации. Система включает в себя передатчик. Передатчик включает в себя блок памяти, хранящий позиционные данные, предназначенные для определения местоположения, где установлен передатчик, блок генерации, генерирующий первый сигнал позиционирования, имеющий позиционные данные, как сигнал расширенного спектра, и блок передачи, передающий сигнал расширенного спектра. Система предоставления позиционной информации дополнительно включает в себя устройство предоставления позиционной информации. Устройство предоставления позиционной информации включает в себя блок приема, принимающий сигнал расширенного спектра, блок памяти, хранящий шаблон кода, связанный с первым сигналом позиционирования, блок специфицирования, специфицирующий на основании шаблона кода, сохраненного в устройстве памяти, шаблон кода, который соответствует сигналу расширенного спектра, принятому с помощью блока приема, блок определения, определяющий, принят ли первый сигнал позиционирования или нет, на основании сигнала, демодулированного с использованием шаблона кода, специфицированного с помощью блока специфицирования, блок получения, получающий позиционные данные из демодулированного сигнала, когда принят первый сигнал позиционирования, и блок вывода, выводящий позиционный сигнал, полученный блоком получения.

Предпочтительно первый сигнал позиционирования имеет тот же формат, что и формат второго сигнала позиционирования, излучаемого спутником, передающим сигнал для позиционирования, и включает в себя позиционные данные вместо сообщения навигации, включенного во второй сигнал позиционирования. Устройство предоставления позиционной информации дополнительно сохраняет в блоке памяти шаблон кода каждого из вторых сигналов позиционирования. Устройство памяти информации позиционирования дополнительно включает в себя блок вычисления, вычисляющий позицию устройства предоставления позиционной информации на основании каждого сообщения навигации, когда принимается множество вторых сигналов позиционирования.

Предпочтительно закодированный позиционный сигнал имеет центральную частоту, равную 1574,42 MHz. Расширение частоты сигнала позиционирования составляет 1,023 MHz.

В соответствии с другим аспектом настоящее изобретение предоставляет устройство предоставления позиционной информации, предназначенное для предоставления позиционной информации. Устройство включает в себя блок приема, принимающий сигнал расширенного спектра, и блок памяти, хранящий шаблон кода, связанный с первым сигналом позиционирования. Первый сигнал позиционирования излучается из передатчика, установленного в местоположении, точно определенном заранее, и включает в себя позиционные данные для точного определения местоположения. Устройство включает в себя блок специфицирования, предназначенный для специфицирования на основании шаблона кода, сохраненного в блоке памяти, шаблона кода, соответствующего сигналу расширенного спектра, принятому блоком приема, блок определения, определяющий на основании сигнала, демодулированного с использованием шаблона кода, специфицированного блоком специфицирования, принят ли первый сигнал позиционирования, блок получения, получающий, когда принят первый сигнал позиционирования, позиционные данные из демодулированного сигнала, и блок вывода, выводящий позиционный сигнал, полученный блоком получения.

Предпочтительно первый сигнал позиционирования имеет тот же формат, что и формат второго сигнала позиционирования, излучаемого спутником, передающим сигнал для позиционирования, и включает в себя позиционные данные вместо сообщения навигации, включенного во второй сигнал позиционирования. Устройство предоставления позиционной информации дополнительно хранит в блоке памяти шаблон кода каждого из вторых сигналов позиционирования, излучаемых множеством спутников. Блок памяти информации позиционирования дополнительно включает в себя блок вычисления, вычисляющее позицию устройство предоставления позиционной информации на основании каждого сообщения навигации, когда принимается множество вторых сигналов позиционирования. Шаблон кода отличается от спутника к спутнику. Устройство предоставления информации позиционирования дополнительно включает в себя блок вычисления, вычисляющий позицию устройства предоставления позиционной информации на основании каждого сообщения навигации, когда принимается множество вторых сигналов позиционирования.

Предпочтительно блок приема принимает каждый из первых сигналов позиционирования, излучаемых из передатчиков, установленных в множестве местоположений, точно определенных заранее. Устройство предоставления позиционной информации дополнительно включает в себя блок обнаружения, определяющий интенсивность сигнала, принятого блоком приема. Блок получения специфицирует из первых сигналов позиционирования первый сигнал позиционирования, интенсивность которого является самой высокой, и получает позиционные данные, включенные в специфицированный первый сигнал позиционирования.

Предпочтительно позиционные данные включают в себя информацию, представляющую местоположение, в котором установлен передатчик. Блок вывода включает в себя блок отображения, отображающий местоположение, в котором установлен передатчик, на основании информации.

Предпочтительно позиционные данные включают в себя идентификационные данные, предназначенные для идентификации передатчика. Устройство включает в себя блок передачи, передающий, когда принят первый сигнал позиционирования, идентификационные данные и запрос передачи позиционной информации передатчика через линию связи на сервер, который предоставляет позиционную информацию в ответ на внешний запрос. Позиционная информация и идентификационные данные сохраняются во взаимосвязи друг с другом на сервере. Устройство дополнительно включает в себя блок ввода, принимающий ввод позиционной информации, переданной сервером в ответ на запрос передачи, через линию связи. Блок вывода включает в себя блок отображения, предназначенный для отображения позиционной информации.

Предпочтительно устройство предоставления позиционной информации включает в себя любое из следующих устройств: портативный телефон, портативный информационный терминал, портативное устройство позиционирования и система позиционирования, установленная на транспортном средстве.

Предпочтительно передатчик соединен с устройством тактового генератора, выводящим информацию времени. Выходные данные сигнала позиционирования из передатчика включают в себя данные времени, представляющие время, синхронизированное с временем устройства тактового генератора. Устройство предоставления позиционной информации дополнительно включает в себя блок тактового генератора, поддерживающий время и выводящий информацию времени, и блок калибровки, калибрующий время блока тактового генератора на основании данных времени, включенных в сигнал позиционирования, принятый блоком приема.

Предпочтительно устройство предоставления позиционной информации дополнительно включает в себя блок памяти, хранящий атрибутные данные, представляющие атрибут устройства предоставления позиционной информации, блок запроса, передающий запрос информации распределения в соответствии с атрибутными данными в устройство предоставления информации, которое может передавать информацию в соответствии с атрибутными данными на основании запроса, и блок ввода, принимающий ввод информации, переданной устройством предоставления информации на основании запроса распределения. Блок вывода включает в себя блок отображения, предназначенный для отображения информации.

В соответствии с еще одним дополнительным аспектом передатчик включает в себя блок памяти, хранящий позиционные данные, предназначенные для специфицирования местоположения, в котором установлен передатчик, блок генерации, генерирующий сигнал, имеющий позиционные данные, как сигнал расширенного спектра, и блок передачи, передающий сигнал расширенного спектра.

Предпочтительно блок генерации генерирует сигнал того же формата, что и формат сигнала позиционирования, излучаемого с помощью спутника, передающего сигнал для позиционирования, как сигнал расширенного спектра.

РЕЗУЛЬТАТЫ ИЗОБРЕТЕНИЯ

Система предоставления позиционной информации в соответствии с настоящим изобретением может предоставлять позиционную информацию с использованием сигнала, не синхронизированного во времени со спутником

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 изображает конфигурацию системы 10 предоставления позиционной информации в соответствии с первым вариантом осуществления настоящего изобретения.

Фиг.2 - блок-схема, изображающая конфигурацию аппаратного обеспечения передатчика 200-1, предназначенного для установки внутри помещения.

Фиг.3 - концептуальная схема, изображающая способ сохранения данных в EEPROM 240, обеспеченной в передатчике 200-1, предназначенном для установки внутри помещения.

Фиг.4 - блок-схема, изображающая конфигурацию аппаратного обеспечения устройства 100-1 предоставления позиционной информации.

Фиг.5 представляет сигналы позиционирования, передаваемые из передатчика.

Фиг.6 - блок-схема последовательности этапов, представляющая процедуру процесса, выполняемого с помощью устройства 100 предоставления позиционной информации.

Фиг.7 изображает отображение изображения на дисплее 440 устройства 100 предоставления позиционной информации.

Фиг.8 - первая схема, представляющая структуру сигнала в соответствии с другим аспектом первого варианта осуществления настоящего изобретения.

Фиг.9 - вторая схема, представляющая структуру сигнала в соответствии с другим аспектом первого варианта осуществления настоящего изобретения.

Фиг.10 - блок-схема, изображающая конфигурацию устройства 1000 предоставления позиционной информации в соответствии с модификацией первого варианта осуществления настоящего изобретения.

Фиг.11 изображает ситуацию, в которой используют устройство предоставления позиционной информации в соответствии с модификацией первого варианта осуществления настоящего изобретения.

Фиг.12 изображает способ использования устройства предоставления позиционной информации в соответствии со вторым вариантом осуществления настоящего изобретения.

Фиг.13 - блок-схема, представляющая конфигурацию аппаратного обеспечения портативного телефона 1200 в соответствии с третьим вариантом осуществления настоящего изобретения.

Фиг.14 - блок-схема, представляющая конфигурацию аппаратного обеспечения сервера 1230 предоставления информации в соответствии с третьим вариантом осуществления настоящего изобретения.

Фиг.15 - концептуальная схема, изображающая способ сохранения данных на жестком диске 1450 на сервере 1230 предоставления информации.

Описание ссылочных обозначений

10 - система предоставления позиционной информации, 110, 111, 112 - спутник GPS, 120, 121, 122 - передатчик, 100-1, 100-2, 100-3, 100-4, 1000, 1160, 1170 - устройство предоставления позиционной информации, 130 - здание, 200-1, 200-2, 200-3, 1110, 1120, 1130, 1210 - передатчик, предназначенный для установки внутри помещения, 1010, 1308 - антенна, 1140, 1150 - область, 1220 - Интернет, 1382 - карта памяти, 1462 - CD-ROM.

НАИЛУЧШИЕ СПОСОБЫ ДЛЯ ВЫПОЛНЕНИЯ ИЗОБРЕТЕНИЯ

В дальнейшем будут описаны варианты осуществления настоящего изобретения со ссылкой на чертежи. В дальнейшем описании одинаковые компоненты обозначены с помощью одинаковых ссылочных символов. Их названия и функции также являются одинаковыми. Следовательно, их подробное описание не будет повторено.

Первый вариант осуществления

Ссылаясь на фиг.1, будет описана система 10 предоставления позиционной информации в соответствии с первым вариантом осуществления настоящего изобретения. Фиг.1 изображает конфигурацию системы 10 предоставления позиционной информации. Система 10 предоставления позиционной информации включает в себя спутники 110, 111, 112 и 113 GPS (глобальной системы позиционирования), летящие на высоте, равной 20000 м, над землей, излучающие сигналы, предназначенные для позиционирования (далее упомянутые как сигналы позиционирования), и устройства с 100-1 по 100-4 предоставления позиционной информации, действующие как устройства, предназначенные для предоставления позиционной информации. Устройства с 100-1 по 100-4 предоставления позиционной информации вообще будут упомянуты как устройство 100 предоставления позиционной информации. Устройство 100 предоставления позиционной информации, например, является терминалом, имеющим традиционное устройство позиционирования, таким как портативный телефон, автомобильная система навигации или другое подвижное устройство позиционирования.

В настоящем описании сигнал является так называемым сигналом расширенного спектра и, в качестве примера, он является так называемым сигналом GPS. Однако сигнал не ограничен сигналом GPS. В дальнейшем для простоты описания в качестве примера система позиционирования будет описана с использованием GPS. Настоящее изобретение также является применимым к другим спутниковым системам позиционирования (таким как Galileo и GLONASS).

Центральная частота сигнала позиционирования в качестве примера равна 1547,42 MHz. Расширение частоты сигнала позиционирования в качестве примера равно 1,023 MHz. В настоящем описании частота позиционирования становится такой же, как у сигнала С/А (грубый сбор данных и доступ) в диапазоне L1 существующей GPS. Это значит, что может быть использована существующая схема приема сигнала позиционирования (такая как схема приема сигнала GPS), и, следовательно, устройство 100 предоставления позиционной информации может принимать сигнал позиционирования без добавления любых новых схем.

Сигнал позиционирования может быть модулирован с помощью прямоугольного сигнала 1,023 MHz. В этом случае, если канал данных модулированного сигнала является тем же самым, что и канал данных сигнала позиционирования, запланированного для новой передачи в диапазоне L1, пользователь может принимать сигнал позиционирования с использованием приемника, который может принимать и обрабатывать новый сигнал GPS. Частоту модуляции определяют на основании компромисса со спектральным разделением для исключения взаимных помех демодулированного сигнала с сигналом С/А и/или другим сигналом.

Спутник 110 GPS имеет передатчик 120, установленный в нем, предназначенный для излучения сигнала позиционирования. Спутники 111, 112 и 113 GPS имеют подобные установленные передатчики 121, 122 и 123 соответственно. Устройства 100-2, 100-3 и 100-4 предоставления позиционной информации, имеющие подобные функции, что и устройство 100-1 предоставления позиционной информации, применяются в местах, где затруднен прием радиосигналов, таких как здание 130. На потолке первого этажа здания 130 прикреплен передатчик 200-1, предназначенный для установки внутри помещения. Устройство 100-4 предоставления позиционной информации принимает сигнал позиционирования, излучаемый из передатчика 200-1, предназначенного для установки внутри помещения. Подобным образом передатчики 200-2 и 200-3, предназначенные для установки внутри помещения, соответственно, прикреплены к потолкам второго и третьего этажей здания 130. В настоящем описании время каждого из передатчиков 200-1, 200-2 и 200-3, предназначенных для установки внутри помещения (далее упоминаемое как “земное время”) может быть независимым от времени спутников 110, 111, 112 и 113 GPS (далее упоминаемого как “спутниковое время”) и не требует быть синхронизированным. Желательно, чтобы спутники были синхронизированы во времени друг с другом.

Сигнал расширенного спектра, излучаемый как сигнал позиционирования из каждого передатчика, генерируется модуляцией сообщения навигации кодом PRN (псевдослучайного шума). Сообщение навигации включает в себя данные времени, информацию об орбите, справочник и данные ионосферной коррекции. Каждый передатчик 120 дополнительно имеет данные (PRN-ID (идентификации)), предназначенные для идентификации самого передатчика 120 или для идентификации спутника, на котором установлен передатчик 120.

Устройство 100 предоставления позиционной информации имеет данные, предназначенные для генерации каждого кода псевдослучайного шума, и генератор кода. Принимая сигнал позиционирования, устройство 100 предоставления позиционной информации выполняет процесс демодуляции, который будет описан позже, с использованием шаблона кода псевдослучайного шума, назначенного каждому спутнику, в соответствии с чем оно может идентифицировать, из какого спутника излучен принятый сигнал. Кроме того, новый сигнал GPS включает в себя PRN-ID в данных, следовательно, можно предотвратить обнаружение и отслеживание сигнала с использованием ошибочного шаблона кода, что является вероятным, когда уровень приема является низким.

Схематическая конфигурация передатчика, установленного на спутнике GPS, является следующей. Каждый из передатчиков 120, 121 и 122 включает в себя атомные часы, память, хранящую данные, схему генерации, схему обработки, предназначенную для генерации сигнала позиционирования, схему кодирования, предназначенную для кодирования расширенного спектра сигнала, генерируемого с помощью схемы обработки, и передающую антенну. Память хранит сообщение навигации, имеющее эфемериды, справочник каждого спутника, данные ионосферной коррекции и тому подобное, и PRN-ID.

Схема обработки генерирует сообщение для передачи с использованием информации времени из атомных часов и различных данных, сохраненных в памяти.

Следует заметить, что шаблон кода для кода псевдослучайного шума для кодирования расширенного спектра предварительно определен для каждого передатчика 120. Каждый шаблон кода отличается от передатчика к передатчику (то есть от спутника к спутнику GPS). Схема кодирования выполняет расширение спектра сообщения, по существу, с использованием кода псевдослучайного шума. Передатчик 120 преобразует таким образом закодированный сигнал на высокую частоту и излучает результирующий сигнал в пространство через передающую антенну.

Как описано выше, передатчик 120 излучает сигнал расширенного спектра, не вызывая вредных помех с другими передатчиками. В настоящем описании отсутствие “вредных помех” может быть гарантировано уровнем выходной мощности, ограниченным таким образом, чтобы предотвращать любые помехи. В качестве альтернативы, это может быть реализовано способом расширения спектра. Сигнал передается, например, с использованием сигнала несущей, упоминаемого как диапазон L1. Передатчики 120, 121 и 122 излучают сигналы позиционирования, имеющие одну и ту же частоту, например, в соответствии с системой связи расширенного спектра. Следовательно, когда сигналы позиционирования, переданные из соответствующих спутников, принимаются с помощью устройства 100-1 предоставления позиционной информации, соответствующие сигналы позиционирования могут быть приняты без перекрестных помех. Что касается сигналов позиционирования из передатчиков, предназначенных для установки внутри помещения, на земле, подобно сигналам, передаваемым из спутников, сигналы позиционирования из множества передатчиков, предназначенных для установки внутри помещения, могут быть приняты без перекрестных помех.

Ссылаясь на фиг.2, будет описан передатчик 200-1, предназначенный для установки внутри помещения. Фиг.2 является блок-схемой, представляющей конфигурацию аппаратного обеспечения передатчика 200-1, предназначенного для установки внутри помещения.

Передатчик 200-1, предназначенный для установки внутри помещения, включает в себя цифровой блок 210 обработки, EEPROM 240 (электрически стираемое и программируемое ПЗУ), электрически соединенное с цифровым блоком 210 обработки, UART 250, электрически соединенный с цифровым блоком 210 обработки, тактовый генератор 280, электрически соединенный с цифровым блоком 210 обработки, аналоговый блок 290 обработки, электрически соединенный с цифровым блоком 210 обработки, антенну 292, электрически соединенную с аналоговым блоком 290 обработки, и источник 294 питания. Цифровой блок 210 обработки включает в себя CPU (центральный процессор) 220 и RAM 230 (память с произвольным доступом).

EEPROM 240 хранит программу, выполняемую с помощью CPU 220, данные, представляющие местоположение, где установлен передатчик 200-1, предназначенный для установки внутри помещения, и т. д. Программа или данные считываются из EEPROM 240 и передаются в RAM 230, когда включается питание передатчика 200-1, предназначенного для установки внутри помещения. EEPROM 240 дополнительно может охранять данные, введенные извне передатчика 200-1, предназначенного для установки внутри помещения. Память, предназначенная для хранения программы или данных, не ограничена EEPROM 240. Может быть использована память, которая, по меньшей мере, может хранить данные энергонезависимым способом. Как будет описано позже, когда данные выводят извне, может быть использована любая память, которая дает возможность сохранения данных. Структура данных EEPROM 240 описана ниже.

Цифровой блок 210 обработки генерирует данные, как источник сигнала, передаваемого с помощью передатчика 200-1, предназначенного для установки внутри помещения, в качестве сигнала для позиционирования. Цифровой блок 210 обработки посылает сгенерированные данные как битовый поток в аналоговое устройство 290 обработки.

Тактовый генератор 280 подает тактовый сигнал, определяющий работу CPU 220, или тактовый сигнал, предназначенный для генерации сигнала несущей, в цифровой блок 210 обработки.

Цифровой интерфейс 260 ввода/вывода может осуществлять мониторинг внутреннего состояния (такого как сигнал “PLL Cntrl”) передатчика. В качестве альтернативы, цифровой интерфейс 260 ввода/вывода может принимать извне ввод шаблона кода псевдослучайного кода для модуляции расширения сигнала, излучаемого из передатчика 200-1, предназначенного для установки внутри помещения, или ввод данных, определяющих выходную мощность передачи. Кроме того, он может принимать ввод других данных, выдаваемых из передатчика 200-1, предназначенного для установки внутри помещения. Другие данные включают в себя текстовые данные, представляющие местоположение, в котором установлен передатчик 200-1, предназначенный для установки внутри помещения. Если передатчик 200-1, предназначенный для установки внутри помещения, установлен в коммерческих объектах, таких как универмаг, данные рекламы могут быть введены в передатчик 200-1, предназначенный для установки внутри помещения, как другие данные.

После ввода в передатчик 200-1, предназначенный для установки внутри помещения, шаблон кода псевдорасширенного кода записывается в предварительно определенной области EEPROM 240. После этого записанный PRN-ID включается в сигнал для позиционирования. Другие данные также записываются в областях, закрепленных заранее, в зависимости от типа данных, в EEPROM 240.

UART 250 используется для настройки передатчика 200-1, предназначенного для установки внутри помещения. Внешний тактовый генератор 270 используется для настройки передатчика 200-1, предназначенного для установки внутри помещения, подобно UART 250. В качестве примера, внешний тактовый генератор 270 используется для приема частоты линии питания (не изображена) и калибровки частоты передачи сигнала для позиционирования.

Аналоговый блок 290 обработки модулирует сигнал несущей 1,57542 GHz с использованием битового потока, выведенного из цифрового блока 210 обработки, чтобы сгенерировать сигнал передачи, и выводит его в антенну 292. Сигнал излучается из антенны 292. Таким образом, сигнал, имеющий такую же конфигурацию, что и конфигурация сигнала для позиционирования, излучается из передатчика 200-1, предназначенного для установки внутри помещения. В настоящем описании содержимое сигнала предпочтительно не является тем же самым, что и содержимое сигнала позиционирования, излучаемого из спутника. Пример конфигурации сигнала, излучаемого из передатчика 200-1, предназначенного для установки внутри помещения, описан ниже (фиг.5).

Источник 294 питания подает электрическое питание в различные компоненты передатчика 200-1, предназначенного для установки внутри помещения. Источник 294 питания может быть встроен в передатчик 200-1, предназначенный для установки внутри помещения, как изображено на фиг.2, или электрическое питание может быть подано извне.

В дальнейшем описании CPU 220 используется в качестве блока арифметической обработки, предназначенного для реализации процесса в цифровом блоке 210 обработки. Может быть использован другой блок арифметической обработки. Кроме того, так как операции, реализуемые в передатчике 200-1, предназначенном для установки внутри помещения, являются несложными, цифровой блок 210 обработки может быть осуществлен с помощью электрических схем, созданных с возможностью реализации различных процессов, вместо CPU 220.

Кроме того, хотя тактовый сигнал (Clk) подается из цифрового блока 210 обработки в аналоговый блок 290 обработки на фиг.2, он может быть непосредственно подан из тактового генератора 280 в аналоговый блок 290 обработки.

В настоящем варианте осуществления цифровой блок 210 обработки и аналоговый блок 290 обработки изображены отдельно для более понятного описания. Физически эти блоки могут быть установлены вместе в одной микросхеме.

Ссылаясь на фиг.3, будет описана структура данных в передатчике 200-1, предназначенном для установки внутри помещения. Фиг.3 является концептуальной иллюстрацией, изображающей способ сохранения данных в EEPROM 240, обеспеченный в передатчике 200-1, предназначенном для установки внутри помещения. EEPROM 240 включает в себя области с 310 по 340 для хранения данных.

Область 300 сохраняет переданный ID как число для идентификации передатчика. Переданный ID, например, является цифрами и/или буквами или другой комбинацией, записанной энергонезависимым способом в памяти, при изготовлении передатчика. PRN-ID псевдорасширенного кода, выделенного передатчику, сохраняется в области 310. Имя передатчика сохраняется как текстовые данные в области 320.

Шаблон кода псевдорасширенного кода, выделенного передатчику, сохраняется в области 330. Шаблон кода псевдорасширенного кода выбирается из множества конечного числа шаблонов кодов, выделенных заранее для системы предоставления позиционной информации, в соответствии с вариантом осуществления настоящего изобретения, и он является шаблоном кода, отличным от шаблона кода псевдорасширенного кода, выделенного каждому спутнику. Кроме того, как описано выше, шаблон кода псевдорасширенного кода может изменяться на другой шаблон кода, введенный через цифровой интерфейс 260 ввода/вывода.

Шаблон кода псевдорасширенного кода, выделенный для настоящей системы предоставления позиционной информации, является конечным числом. Число передатчиков, предназначенных для установки внутри помещения, является разным в зависимости от места установки (например, номера этажа здания). Множество передатчиков, предназначенных для установки внутри помещения, численно больше, чем число шаблонов кода, которые, возможно, могут быть использованы. Следовательно, может быть множество передатчиков, имеющих один и тот же шаблон кода псевдорасширенного кода. В этом случае место установки передатчиков, имеющих один и тот же шаблон кода, может быть определено с учетом выходной мощности сигнала. Это предотвращает одновременный прием множества сигналов позиционирования с использованием одного и того же шаблона кода псевдорасширенного кода с помощью одного и того же устройства предоставления позиционной информации.

Позиционные данные, предназначенные для определения местоположения, в котором установлен передатчик 200-1, предназначенный для установки внутри помещения, сохраняются в области 340. Позиционные данные в качестве примера представлены как комбинация широты, долготы и высоты. В области 320, дополнительно или вместо позиционных данных, может быть сохранен адрес или название здания.

Ссылаясь на фиг.4, будет описано устройство 100-1 предоставления позиционной информации. Фиг.4 является блок-схемой, представляющей конфигурацию аппаратного обеспечения устройства 100-1 предоставления позиционной информации.

Устройство 100 предоставления позиционной информации включает в себя антенну 402, RF (радиочастотную) входную схему 404, электрически соединенную с антенной 402, устройство 406 преобразования с понижением частоты, электрически соединенное с RF входной схемой 404, A/D (аналого-цифровой) преобразователь 408, электрически соединенный с устройством 406 преобразования с понижением частоты, процессор 410 основной полосы частот, электрически соединенный с A/D преобразователем 408, память 420, электрически соединенную с процессором 410 основной полосы частот, процессор 430 навигации, электрически соединенный с процессором 410 основной полосы частот, и дисплей 440, электрически соединенный с процессором 430 навигации.

Память 420 включает в себя множество областей, предназначенных для хранения шаблонов кода псевдошумовых кодов в качестве данных, предназначенных для идентификации каждого источника излучения сигнала позиционирования. В качестве примера, в соответствии с одним аспектом, когда используется 48 шаблонов кода, память 420 включает в себя области с 421-1 по 421-8, как изображено на фиг.4. В соответствии с другим аспектом, когда используется большее число шаблонов кода, большее число областей обеспечивается в памяти 420. Наоборот, также возможно, что используется меньше шаблонов кода, чем число областей, обеспеченных в памяти 420.

Рассмотрим пример, в котором используют 48 шаблонов кода. В данном пр