Подавление утечки передаваемого сигнала в устройстве беспроводной связи

Иллюстрации

Показать все

Изобретение относится к беспроводной связи, а более конкретно к способам снижения отрицательного воздействия утечки передаваемого сигнала в системе полнодуплексной беспроводной связи. Достигаемый технический результат - снижение отрицательного воздействия искажения второго порядка и искажения от перекрестной модуляции утечки сигнала от передающего устройства. Технический результат достигается за счет приема принимаемого (RX) входного RF-сигнала, имеющего сигнал ТХ-утечки; вычитания оценки сигнала ТХ-утечки из входного сигнала и формирования оценки сигнала ТХ-утечки, не включающего в себя собственно ТХ-сигнал, на основе выходного сигнала и не модулированного опорного сигнала на несущей частоте сигнала ТХ-утечки. 4 н. и 43 з.п. ф-лы, 12 ил.

Реферат

Область техники, к которой относится изобретение

Данное раскрытие сущности, в общем, относится к устройствам беспроводной связи, а более конкретно к способам снижения отрицательного воздействия утечки передаваемого сигнала в системе беспроводной полнодуплексной связи.

Уровень техники

Система беспроводной полнодуплексной связи может одновременно передавать и принимать сигналы, чтобы поддерживать двустороннюю связь. В тракте передачи усилитель мощности усиливает радиочастотный (RF) сигнал для передачи. Передаваемый (TX) сигнал маршрутизируется через дуплексор и передается через антенну. В тракте приема, полезный принимаемый (RX) сигнал принимается через антенну и связывается через дуплексор с малошумящим усилителем (LNA). После усиления посредством LNA, RX-сигнал может быть фильтрован и преобразован с понижением частоты в базовую полосу посредством смесителя. Преобразованный с понижением частоты RX-сигнал обрабатывается посредством других компонентов, чтобы восстанавливать принимаемые данные.

В системе полнодуплексной связи тракт передачи может создавать помехи для RX-тракта. Часть TX-сигнала может быть связана из дуплексора с RX-трактом, приводя к утечке TX-сигнала. Утечка TX-сигнала может вызывать помехи в полезном сигнале, обрабатываемом посредством RX-тракта. Помехи могут включать в себя искажение второго порядка и искажение от перекрестной модуляции (XMD). Поскольку частота передающего устройства отличается от частоты приемного устройства, утечка TX-сигнала может фильтроваться. Тем не менее, даже при фильтрации обычно остается остаточная величина утечки TX-сигнала, вызывая потенциальное ухудшение качества полезного RX-сигнала, принимаемого через антенну. Полезный RX-сигнал - это сигнал, принимаемый через антенну, в отличие от TX-сигнала, принимаемого через утечку в дуплексоре.

Сущность изобретения

В общем, это раскрытие сущности описывает способы снижения отрицательного воздействия утечки TX-сигнала в устройстве полнодуплексной беспроводной связи. В частности, раскрытие сущности описывает способы снижения отрицательного воздействия искажения второго порядка и искажения от перекрестной модуляции (XMD) утечки TX-сигнала от передающего устройства через дуплексор. Способы могут быть эффективными для подавления, по меньшей мере, части сигнала TX-утечки, тем самым уменьшая или исключая искажение утечки TX-сигнала в RX-тракте.

Заявленное изобретение обеспечивает, в различных аспектах, схему фильтра для радиочастотного (RF) приемного устройства, причем схема фильтра содержит сумматор, который принимает принимаемый (RX) входной RF-сигнал, имеющий сигнал утечки при передаче (TX), и вычитает оценку сигнала TX-утечки из входного RX-сигнала, чтобы формировать выходной RX-сигнал, и модуль оценки, который формирует оценку сигнала TX-утечки на основе выходного RX-сигнала и опорного сигнала на несущей частоте сигнала TX-утечки.

В других аспектах, заявленное изобретение обеспечивает способ фильтрации сигнала утечки при передаче (TX) из принимаемого входного сигнала в радиочастотном (RF) приемном устройстве, при этом способ содержит этапы приема принимаемого (RX) входного RF-сигнала, имеющего сигнал TX-утечки, вычитания оценки сигнала TX-утечки из входного сигнала, чтобы формировать выходной сигнал, и формирования оценки сигнала TX-утечки на основе выходного сигнала и опорного сигнала на несущей частоте сигнала TX-утечки.

В дополнительных аспектах, заявленное изобретение обеспечивает радиочастотное (RF) приемное устройство, при этом приемное устройство содержит антенну, которая принимает принимаемый (RX) входной сигнал, малошумящий усилитель, который усиливает входной RX-сигнал, дуплексор, который связывает входной RX-сигнал от антенны с малошумящим усилителем и передает сигнал утечки при передаче (TX) в малошумящий усилитель как часть входного RX-сигнала, сумматор, который вычитает оценку сигнала TX-утечки из входного RX-сигнала, чтобы формировать выходной RX-сигнал, модуль оценки, который формирует оценку сигнала TX-утечки на основе выходного RX-сигнала и опорного сигнала на несущей частоте сигнала TX-утечки, и смеситель, который преобразует с понижением частоты выходной RX-сигнал в базовую полосу.

Подробности одного или более примеров изобретения изложены на прилагаемых чертежах и в нижеследующем описании. Другие признаки, цели и преимущества должны стать очевидными из описания и чертежей и из формулы изобретения.

Краткое описание чертежей

Фиг.1 является блок-схемой, иллюстрирующей примерный RF-модуль устройства беспроводной связи.

Фиг.2A-2C являются графиками частоты в зависимости от амплитуды, иллюстрирующими искажение от утечки TX-сигнала в пределах RX-тракта устройства по фиг.1.

Фиг.3 является блок-схемой, иллюстрирующей устройство беспроводной связи, включающее в себя примерное приемное устройство с адаптивным фильтром для подавления TX-утечки в соответствии с этим раскрытием сущности.

Фиг.4A является схематичным представлением, иллюстрирующим примерный адаптивный фильтр для подавления TX-утечки в приемном устройстве по фиг.3.

Фиг.4B является схематичным представлением, иллюстрирующим примерный адаптивный фильтр с I- и Q-ветвями с перекрестными обратными связями для подавления TX-утечки в приемном устройстве по фиг.3.

Фиг.4C является схематичным представлением, иллюстрирующим другой примерный адаптивный фильтр с I- и Q-ветвями с перекрестными обратными связями для подавления TX-утечки в приемном устройстве по фиг.3.

Фиг.5 является блок-схемой, иллюстрирующей устройство беспроводной связи, включающее в себя примерное приемное устройство с комбинированным адаптивным фильтром/LNA для подавления TX-утечки в соответствии с раскрытием сущности изобретения.

Фиг.6 является схематичным представлением, иллюстрирующим примерный комбинированный фильтр/LNA для подавления TX-утечки в приемном устройстве по фиг.5.

Фиг.7 является схематичным представлением, иллюстрирующим примерный комбинированный фильтр/LNA, включающий в себя активное дифференциально-несимметричное преобразование для использования с несимметричным LNA.

Фиг.8 является схематичным представлением, иллюстрирующим примерный комбинированный фильтр/LNA, включающий в себя пассивное дифференциально-несимметричное преобразование для использования с несимметричным LNA.

Фиг.9 является схематичным представлением, иллюстрирующим примерный комбинированный фильтр/LNA для использования с дифференциальным LNA.

Фиг.10 является другим схематичным представлением, иллюстрирующим примерный комбинированный фильтр/LNA для использования с дифференциальным LNA.

Фиг.11 является схематичным представлением, подробнее иллюстрирующим примерную ветвь адаптивного фильтра.

Фиг.12 является блок-схемой последовательности операций, иллюстрирующей способ адаптивной фильтрации для исключения или уменьшения утечки передаваемого сигнала.

Подробное описание

В общем, настоящее раскрытие описывает способы адаптивного фильтра для снижения отрицательного воздействия утечки передаваемого (TX) сигнала в тракте принимаемых (RX) сигналов устройства полнодуплексной беспроводной связи. В частности, настоящее раскрытие сущности изобретения описывает способы снижения отрицательного воздействия искажения второго порядка и искажения от перекрестной модуляции при утечке TX-сигнала от передающего устройства через дуплексор. Способы могут быть эффективными для подавления, по меньшей мере, части сигнала TX-утечки, тем самым уменьшая или исключая искажение от утечки TX-сигнала.

В соответствии с различными аспектами этого раскрытия, беспроводное приемное устройство может включать в себя адаптивный фильтр, который подавляет, по меньшей мере, часть сигнала TX-утечки, присутствующего во входном RX-сигнале. Адаптивный фильтр может включать в себя схему модуля оценки, которая формирует оценку сигнала TX-утечки. Сумматор вычитает оценку из входного RX-сигнала, чтобы подавлять TX-утечку и формировать выходной RX-сигнал. Подавление утечки TX-сигнала может быть выражено в терминах отношения подавления TX (TXRR), которое задает отношение мощности сигнала TX-утечки на выходе адаптивного фильтра к мощности сигнала TX-утечки на входе адаптивного фильтра.

Схема модуля оценки формирует оценку сигнала TX-утечки на основе опорного сигнала и выходного RX-сигнала. Опорный сигнал аппроксимирует несущий сигнал, используемый для того, чтобы формировать TX-сигнал в передающем устройстве. Альтернативно, опорный сигнал может быть идентичным несущим сигналом, используемым для того, чтобы формировать TX-сигнал. Например, опорный сигнал может предоставляться посредством того же генератора, который используется для того, чтобы формировать несущий TX-сигнал, который может упоминаться как управляемый напряжением генератор TX (VCO) или TX-гетеродин (LO).

Адаптивный фильтр может включать в себя синфазную (I) ветвь и квадратурную (Q) ветвь, которые вместе формируют модуль оценки сигнала утечки при передаче. Каждая ветвь принимает выходной RX-сигнал как сигнал обратной связи. I-ветвь принимает синфазную версию опорного сигнала (опорный I-сигнал), а Q-ветвь принимает задержанную на 90 градусов квадратурную версию опорного сигнала (опорный Q-сигнал). Каждая ветвь включает в себя первый умножитель, который умножает опорный сигнал (I- или Q-) и выходной RX-сигнал, чтобы формировать преобразованный с понижением частоты сигнал TX-утечки в базовой полосе, т.е. сигнал TX-утечки базовой полосы. Каждая ветвь включает в себя фильтр нижних частот, который фильтрует сигнал TX-утечки базовой полосы, чтобы подавлять частоты вне базовой полосы, включающие в себя преобразованный с понижением частоты RX-сигнал.

В каждой ветви второй умножитель умножает сигнал TX-утечки базовой полосы на опорный сигнал, чтобы формировать преобразованный с повышением частоты сигнал в полосе TX-частот, т.е. сигнал полосы TX-частот на несущей TX-частоте. Первый сумматор комбинирует выходные сигналы полосы TX-частот из I- и Q-ветвей, чтобы формировать оценку сигнала TX-утечки. Второй сумматор вычитает оценку сигнала TX-утечки из принимаемого сигнала, к примеру, на входе или выходе LNA, чтобы подавлять, по меньшей мере, существенную часть сигнала TX-утечки, передаваемого посредством дуплексора. Посредством подавления сигнала TX-утечки способы могут уменьшать искажение второго порядка и искажение от перекрестной модуляции, которое может быть сформировано при преобразовании с понижением частоты сигнала TX-утечки в базовую полосу. В некоторых реализациях, как описывается ниже, I- и Q-ветви могут иметь перекрестные обратные связи, к примеру, чтобы предоставлять дополнительную гибкость в формировании частотной характеристики.

Как пояснено выше, адаптивный фильтр применяет несущий TX-сигнал или аппроксимацию несущего TX-сигнала. Следовательно, первый умножитель в каждой ветви (I- и Q-) умножает выходной RX-сигнал на несущий TX-сигнал. Как результат, первый умножитель преобразует с понижением частоты модулированный сигнал TX-утечки от несущей частоты к DC, создавая сигнал в базовой полосе TX-утечки. Фильтр нижних частот выполнен с возможностью подавлять преобразованные с понижением частоты компоненты сигнала вне базовой полосы частот сигнала TX-утечки. Таким образом, фильтр нижних частот формирует фильтрованный сигнал в базовой полосе TX-утечки. Второй умножитель умножает фильтрованный сигнал в базовой полосе TX-утечки на несущий TX-сигнал, чтобы воспроизводить оценку сигнала TX-утечки на несущей TX-частоте. Оценка сигнала TX-утечки затем может вычитаться из входного RX-сигнала, к примеру, на входе или выходе LNA, чтобы подавлять сигнал TX-утечки.

В частности, адаптивный фильтр использует несущий TX-сигнал в качестве опорного сигнала вместо выходного TX-сигнала. Таким образом, адаптивный фильтр может исключать эффекты групповой задержки, обусловленной дуплексором. В частности, если выходной TX-сигнал использовался в качестве опорного сигнала, то групповая задержка между сигналом утечки при передаче, распространяемым через дуплексор, и опорным сигналом, связанным непосредственно с адаптивным фильтром, должна вызывать временное несовпадение между фактической огибающей модуляции сигнала TX-утечки и огибающей оценки модуляции сигнала TX-утечки. Это несовпадение может снижать эффективность адаптивного фильтра при подавлении утечки TX-сигнала. Использование несущего TX-сигнала, к примеру, в соответствии с TX LO, смягчает проблему групповой задержки.

Адаптивный фильтр, как описано в этом раскрытии сущности изобретения, позволяет исключить фильтр поверхностной акустической волны (SAW), зачастую используемый между LNA и смесителем для подавления сигнала утечки при передаче. Как результат, в некоторых реализациях, за счет исключения SAW-фильтра, интерфейс LNA-смеситель для приемного устройства RF может быть создан полностью на микросхеме, снижая требования к комплектности, размеру, затратам и числу выводов. Кроме того, адаптивный фильтр, который использует несущий TX-сигнал в качестве опорного сигнала, как описано в этом раскрытии сущности изобретения, может обеспечивать характеристику подавления сигнала TX-утечки, которая является независимой от групповой задержки дуплексора. Нет потребности связывать выход усилителя мощности (PA) TX с адаптивным фильтром в качестве опорного сигнала, исключая потребность в дополнительных выводах. Наоборот, в некоторых реализациях, несущий TX-сигнал может получаться на микросхеме как TX LO-сигнал, используемый посредством TX-модулятора. Помимо этого, без связывания вне микросхемы возникает меньшее снижение подавления утечки передаваемого сигнала вследствие связывания опорного сигнала. Если желательно, умножители в адаптивном фильтре могут быть реализованы как смесители, помогая снижать шум.

Адаптивный фильтр, как описано в этом раскрытии сущности, может быть выполнен с возможностью использования во множестве систем беспроводной полнодуплексной связи и по множеству полос частот. Примеры включают в себя полосу частот для сотовой связи 824-894 МГц, полосу частот для системы персональной связи (PCS) 1850-1990 МГц, полосу частот для цифровой системы сотовой связи (DCS) 1710-1880 МГц, полосу частот для международной системы мобильной связи-2000 (IMT-2000) 1920-2170 МГц и т.п. Устройство беспроводной связи, оснащенное для полосы частот для сотовой связи, в качестве примера, имеет полосу частот для передачи 824-849 МГц и полосу частот для приема 869-894 МГц. Устройство беспроводной связи может иметь архитектуру смесителя с низкой промежуточной частотой (LIF) или нулевой промежуточной частотой (ZIF). В общем, это раскрытие сущности изобретения рассматривает архитектуру смесителя ZIF в целях иллюстрации.

Фиг.1 является блок-схемой, иллюстрирующей примерный RF-модуль устройства 10 беспроводной связи. Как показано на фиг.1, устройство 10 включает в себя антенну 12, которая передает и принимает беспроводные RF-сигналы. Дуплексор 14 связывает входные RX-сигналы (RX SIGNAL), принимаемые посредством антенны 12, с приемным устройством 16 и связывает выходные TX-сигналы (TX SIGNAL), формируемые посредством передающего устройства 18, с антенной 12. Приемное устройство 16 включает в себя LNA 20, фильтр 22, смеситель 24 и гетеродин (LO) 26. Передающее устройство 18 включает в себя усилитель 28 мощности, который усиливает выходной сигнал, чтобы формировать TX-сигнал для передачи через дуплексор 14 и антенну 12. Передающее устройство 18 также может включать в себя модем, цифроаналоговый преобразователь, смеситель и схему фильтра (не показаны), чтобы модулировать и фильтровать выходной сигнал и преобразовывать с повышением частоты сигнал от базовой полосы к полосе частот для передачи.

В приемном устройстве 16, LNA 20 усиливает входной RX-сигнал. Фильтр 22 подавляет помехи вне полосы RX-частот, включающие в себя утечку TX-сигнала, принимаемую через дуплексор 14. Смеситель 24 умножает фильтрованный сигнал на частоту RX LO, чтобы преобразовывать с понижением частоты полезный RX-сигнал к базовой полосе, тем самым формируя RX-сигнал в базовой полосе. Приемное устройство 16 дополнительно может включать в себя фильтр базовой полосы после смесителя 24, а также аналого-цифровой преобразователь и модем (не показаны), чтобы демодулировать полезный RX-сигнал.

Антенна 12 может принимать как полезный сигнал, так и сигнал преднамеренных помех, как показано на фиг.1. Следовательно, LNA 20 может принимать RX-сигнал, включающий в себя полезный сигнал и, возможно, сигнал преднамеренных помех, а также сигнал TX-утечки из тракта передачи через дуплексор 14. LNA 20 усиливает комбинированный входной сигнал, чтобы формировать усиленный RF-сигнал, x(t). Фильтр 22 принимает и фильтрует усиленный RF-сигнал, чтобы удалять помехи вне полосы RX-частот, и формирует фильтрованный RF-сигнал, y(t). Помехи вне полосы RX-частот могут включать в себя сигнал TX-утечки. Смеситель 24 смешивает фильтрованный RF-сигнал с сигналом RX-гетеродина (LO), чтобы преобразовывать с понижением частоты фильтрованный RF-сигнал. Полезный RX-сигнал тем самым преобразуется с понижением частоты в базовую полосу RX-частот. Полезный RX-сигнал в базовой полосе, который может быть фильтрован посредством фильтра базовой полосы, формирует входной сигнал для схемы аналого-цифрового преобразования (ADC) и демодуляции.

Фиг.2A-2C являются графиками частоты в зависимости от амплитуды, иллюстрирующими искажение вследствие утечки TX-сигнала в пределах тракта приема устройства по фиг.1. Частота находится на горизонтальной оси, а амплитуда находится на вертикальной оси. Фиг.2A показывает сигнал, принимаемый посредством антенны 12. Принимаемый сигнал может включать в себя полезный сигнал 30 и сигнал 31 преднамеренных помех. Сигнал 31 преднамеренных помех является мешающим сигналом, который соответствует сигналу, формируемому из соседнего источника, такого как беспроводная базовая станция. В некоторых случаях, сигнал 31 преднамеренных помех может иметь амплитуду, которая намного выше амплитуды полезного сигнала, и может находиться близко по частоте к полезному сигналу.

Фиг.2B показывает принимаемый сигнал на входе LNA 20 через дуплексор 14. Сигнал, переданный посредством дуплексора 14, содержит полезный сигнал 30 и сигнал 31 преднамеренных помех в полосе RX-частот, а также сигнал 32 TX-утечки из тракта передачи. Сигнал 32 TX-утечки может иметь большую амплитуду относительно полезного сигнала, поскольку передаваемый сигнал, формируемый посредством усилителя 28 мощности, зачастую намного больше по амплитуде, чем полезный сигнал. Сигнал 32 TX-утечки находится вне полосы RX-частот. Тем не менее, сигнал 32 TX-утечки по-прежнему может вызывать нежелательное искажение, как пояснено ниже.

Фиг.2C показывает принимаемый сигнал на выходе LNA 20. Нелинейность в LNA 20

может приводить к переносу модуляции сигнала 32 TX-утечки на сигнал 31 узкополосных преднамеренных помех, приводя к расширенному спектру 34 вокруг сигнала преднамеренных помех. Это спектральное расширение 34 упоминается как искажение от перекрестной модуляции (XMD). Как показано на фиг.2C, часть 36 расширенного спектра 34, показанная с затенением, может находиться в пределах полосы частот полезного сигнала 30. Часть 36 выступает в качестве дополнительного шума, который ухудшает характеристики устройства беспроводной связи. Этот шум снижает чувствительность, так что наименьший полезный сигнал, который может надежно обнаруживаться посредством приемного устройства 16, должен иметь большую амплитуду. XMD также может быть сформировано в смесителе 24, если фильтр 22 является неэффективным.

Во многих приемных устройствах, чтобы понижать XMD вследствие формирователей преднамеренных помех и утечки TX-сигнала, фильтром 22 является SAW-фильтр. SAW-фильтры отличаются резкими границами переходных полос частот и большим ослаблением принимаемых компонентов вне полосы RX-частот. Поэтому SAW-фильтры зачастую используются для того, чтобы подавлять сигнал TX-утечки на входе смесителя 24, что затем уменьшает величину XMD, формируемого посредством смесителя. К сожалению, использование RF SAW-фильтра для фильтрации сигнала TX-утечки имеет несколько недостатков. Например, SAW-фильтр обычно должен быть реализован вне микросхемы, относительно LNA 20 и смесителя 24, требуя согласующих схем, дополнительных выводов корпуса и затрат. Помимо этого, SAW-фильтр и ассоциированные дискретные компоненты типично требуют дополнительной площади на плате и затрат. SAW-фильтр также может приводить к вносимым потерям, которые ухудшают усиление и коэффициент шума приемного устройства 16. Адаптивный фильтр, в соответствии с этим раскрытием сущности, может использоваться в качестве альтернативы SAW-фильтру, чтобы подавлять сигнал TX-утечки.

Фиг.3 является блок-схемой, иллюстрирующей устройство 38 беспроводной связи, включающее в себя примерное приемное устройство 16 с адаптивным фильтром 40 для подавления утечки TX-сигнала в соответствии с этим раскрытием сущности изобретения. Как показано на фиг.3, устройство 38 может во многом соответствовать устройству 10 по фиг.1. Вместо SAW-фильтра, тем не менее, приемное устройство 16 включает в себя адаптивный фильтр 40. Адаптивный фильтр 40 использует опорный сигнал для того, чтобы адаптивно подавлять утечку TX-сигнала. В примере по фиг.3, опорный сигнал - это несущий сигнал передачи, который модулируется в передающем устройстве 18, чтобы формировать TX-сигнал.

Несущий TX-сигнал, принимаемый посредством адаптивного фильтра 40 в качестве опорного сигнала, может быть аппроксимирован или сформирован непосредственно из управляемого напряжением генератора для передачи (TX VCO) 42, который может упоминаться как TX LO. TX VCO 42 формирует несущий сигнал для передающего устройства 18. Следовательно, TX VCO 42 может быть тем же VCO, что и используется для того, чтобы формировать несущую частоту для передающего устройства 18 и адаптивного фильтра 40. Другими словами, TX VCO 42 может быть генератором, который связан как с модулем оценки в адаптивном фильтре 40 для формирования оценки сигнала TX-утечки, так и с передающим устройством для преобразования с повышением частоты TX-сигнала в базовой полосе, который формирует сигнал TX-утечки. Смеситель 44 смешивает несущий TX-сигнал, формируемый посредством TX VCO 42, с TX-сигналом в базовой полосе. PA 28 усиливает результирующий TX-сигнал для передачи через дуплексор 14 и антенну 12.

Как описано далее, адаптивный фильтр 40 использует несущий TX-сигнал для того, чтобы извлекать TX-сигнал в базовой полосе из сигнала, принимаемого через дуплексор 14. Адаптивный фильтр 40 преобразует с повышением частоты извлеченный TX-сигнал в базовой полосе на несущую TX-частоту и вычитает его из RX-сигнала на входе или выходе LNA 20, чтобы, по меньшей мере, частично подавлять сигнал TX-утечки, тем самым уменьшая сигнал TX-утечки, применяемый в этих узлах. Использование извлеченного сигнала в базовой полосе вместо исходного TX-сигнала в базовой полосе позволяет снижать чувствительность производительности адаптивного фильтра к групповой задержке дуплексора 14.

Фиг.4A является схематичным представлением, иллюстрирующим примерный адаптивный фильтр 40A для подавления TX-утечки в пределах приемного устройства 16 по фиг.3. В примере по фиг.4A, адаптивный фильтр 40A включает в себя квадратурный разделитель 46, который принимает несущий TX-сигнал от TX VCO 42 в качестве опорного сигнала r(t). Разделитель 46 формирует синфазные (0 градусов) и квадратурные (-90 градусов) компоненты i(t), q(t) для применения к I-ветви и Q-ветви, соответственно, адаптивного фильтра 40A. Следовательно, сигналы i(t) и q(t), соответственно, содержат синфазную и квадратурную компоненты опорного сигнала, причем сигнал i(t) опережает сигнал q(t) на 90°. I-ветвь включает в себя умножитель 48, фильтр 50 нижних частот и умножитель 52. Q-ветвь включает в себя умножитель 54, фильтр 56 нижних частот и умножитель 58. Фильтры 50, 56 нижних частот фактически могут выступать в качестве фильтров базовой полосы. Сумматор 60 суммирует выходы z i (t), z q (t) I- и Q-ветвей, соответственно, чтобы формировать оценку сигнала TX-утечки e(t).

Как дополнительно показано на фиг.4A, сумматор 62 вычитает оценку e(t) сигнала TX-утечки из выхода LNA 20, чтобы подавлять, по меньшей мере, часть сигнала TX-утечки из сигнала x(t), формируемого посредством LNA 20. Как результат, утечка TX-сигнала, присутствующая в сигнале y(t), поступающем на смеситель 24 для преобразования с понижением частоты в базовую полосу, исключается или уменьшается. Сигналы x(t) и y(t) могут упоминаться как входные и выходные сигналы фильтра, соответственно. I- и Q-ветви также принимают сигнал обратной связи y(t) из выхода сумматора 62. Адаптивный фильтр 40A исключает или существенно уменьшает сигнал TX-утечки, доступный для того, чтобы формировать искажение второго порядка и XMD в смесителе 24, тем самым улучшая чувствительность приемного устройства.

В I-ветви умножитель 48 принимает и умножает сигнал i(t) на сигнал y(t) и предоставляет сигнал m i (t), который равен m i (t)=y(t)·i(t). Умножение сигнала y(t) на сигнал i(t) преобразует с понижением частоты сигнал TX-утечки в базовую полосу, формируя сигнал m l (t). Фильтр 50 нижних частот в I-ветви подавляет сигналы из базовой полосы TX-сигнала и формирует синфазный сигнал w i (t), который сохраняет сигнал в базовой полосе TX-утечки. Умножитель 52 в I-ветви принимает и умножает сигнал i(t) на сигнал w i (t) и предоставляет сигнал z i (t), который равен z i (t)=w i (t)·i(t). Умножение сигнала w i (t) на синфазный компонент несущего TX-сигнала r(t) преобразует с повышением частоты фильтрованный сигнал в базовой полосе TX-утечки в полосу частот несущей TX. Таким образом, I-ветвь формирует усиленную и фильтрованную синфазную оценку сигнала TX-утечки.

Аналогично, в Q-ветви, умножитель 54 принимает и умножает сигнал q(t) на сигнал y(t) и предоставляет сигнал m q (t), который равен m q (t)=y(t)·q(t). Фильтр 56 нижних частот в Q-ветви принимает сигнал m q (t) и подавляет сигналы вне базовой полосы TX-сигнала, формируя квадратурный сигнал w q (t). Умножитель 58 принимает и умножает сигнал q(t) на сигнал w q (t) и предоставляет усиленный и фильтрованный квадратурный сигнал оценки, z q (t), который равен z q (t)=w q (t)·q(t).

Сумматор 60 принимает и суммирует сигналы z i (t) и z q (t) и предоставляет сигнал модуля оценки, e(t), который содержит оценку сигнала TX-утечки. Сумматор 62 принимает сигнал e(t) модуля оценки от сумматора 60 и входной сигнал x(t) фильтра от LNA 20. Входной сигнал x(t) фильтра содержит принимаемый сигнал, а также сигнал TX-утечки. Сумматор 62 вычитает сигнал e(t) модуля оценки из входного сигнала фильтра и предоставляет выходной сигнал y(t) фильтра. Вычитание подавляет, по меньшей мере, часть сигнала TX-утечки из входного сигнала x(t) фильтра. Результирующий выходной сигнал y(t) фильтра тем самым уменьшает искажение второго порядка и XMD сигнала TX-утечки в умножителе 24.

В альтернативных реализациях, I- и Q-ветви могут иметь перекрестные обратные связи. Фиг.4B является схематичным представлением, иллюстрирующим примерный адаптивный фильтр 40B с I- и Q-ветвями с перекрестными обратными связями для подавления TX-утечки в приемном устройстве по фиг.3. Адаптивный фильтр 40B по фиг.4B в значительной степени соответствует фильтру 40A по фиг.4A, за исключением перекрестного связывания I- и Q-ветвей. Для перекрестного связывания, как показано на фиг.4B, выход фильтра 50 нижних частот может быть связан с входом фильтра 56 нижних частот в Q-ветви, а выход фильтра 56 нижних частот может быть связан с входом фильтра 50 нижних частот в I-ветви. В частности, сигнал w q (t) от фильтра 50 нижних частот может быть связан с входом фильтра 56 нижних частот наряду с выходом умножителя 54, т.е. сигналом m q (t), связанным с другим входом фильтра. Аналогично, сигнал w i (t) от фильтра 56 нижних частот может быть связан с входом фильтра 50 нижних частот наряду с выходом умножителя 48, т.е. сигналом m i (t), связанным с другим входом фильтра.

Фиг.4C является схематичным представлением, иллюстрирующим другой примерный адаптивный фильтр 40C с I- и Q-ветвями с перекрестными обратными связями для подавления TX-утечки в приемном устройстве по фиг.3. Адаптивный фильтр 40C по фиг.4C в значительной степени соответствует фильтру 40A по фиг.4A, за исключением перекрестного связывания I- и Q-ветвей. В примере по фиг.4C, выход умножителя 48 может быть связан как с входом фильтра 50 нижних частот, так и с входом фильтра 56 нижних частот. Аналогично, выход умножителя 54 может быть связан как с входом фильтра 56 нижних частот, так и с входом фильтра 50 нижних частот. Следовательно, каждый фильтр 50, 56 нижних частот может иметь первый вход, который принимает сигнал m i (t) от умножителя 48, и другой вход, чтобы принимать сигнал m q (t) от умножителя 54. В примерах по фиг.4B и 4C, перекрестное связывание между I- и Q-ветвями может предоставлять фильтрам 50, 56 нижних частот дополнительную степень гибкости, чтобы дополнительно сформировать частотную характеристику фильтра. Каждый фильтр 50, 56 может быть выполнен с возможностью, если требуется, предоставлять дополнительный сдвиг к входу с перекрестными обратными связями, чтобы более гибко задавать частотную характеристику фильтра. В общем, структура перекрестного связывания фильтров 50, 56 может варьироваться.

В примерах фиг.4A-4C, активный фильтр 40A-40C формирует систему с отрицательной обратной связью. Фактически, умножители 48, 54 формируют преобразователи с понижением частоты, которые управляются посредством сигнала TX-гетеродина (LO) от TX VCO 42. Фильтры 50, 56 нижних частот формируют фильтры базовой полосы, которые подавляют сигналы из базовой полосы TX-частот. Умножители 52, 58 формируют преобразователи с повышением частоты, управляемые посредством этого же TX LO-сигнала. Инверсные выходы преобразователей с повышением частоты 52, 58 и входы преобразователей с понижением частоты 48, 54, фактически, соединяются между собой и с цепочкой RX-сигнала. При работе, адаптивный фильтр 40A-40C преобразует с понижением частоты принимаемый сигнал, содержащий TX-утечку через умножители 48, 54, с помощью TX LO-сигнала. Преобразованный с понижением частоты сигнал затем фильтруется посредством фильтров 50, 56 базовой полосы, сохраняя компоненты базовой полосы TX для TX-утечки. Результирующий сигнал затем преобразуется с повышением частоты посредством умножителей 52, 58 с помощью TX LO и вводится обратно в цепочку RX-сигнала с фазой и амплитудой, обеспечивающими подавление или уменьшение TX-утечки. Корректная фаза и амплитуда введенного сигнала формируются автоматически вследствие характера контура отрицательной обратной связи, предоставляемого посредством адаптивного фильтра 40A-40C.

В примерах по фиг.4A-4C, адаптивный фильтр 40A подавляет утечку TX-сигнала независимо от групповой задержки в дуплексоре 14. Чтобы адаптивный фильтр 40A-40C отслеживал огибающую TX-утечки и соответствующим образом модулировал опорный сигнал, фильтры 50, 56, соединенные с преобразующими с понижением частоты умножителями 48, 54, должны иметь полосу пропускания, равную максимальной частоте огибающей. В качестве примера, полоса пропускания фильтров 50, 56 может составлять приблизительно 630 кГц для сигналов CDMA1x.

В соответствии с различными аспектами этого раскрытия сущности, адаптивные фильтры 40A-40C используют несущий TX-сигнал, формируемый посредством TX VCO 42, как упомянуто выше, а не выходной TX-сигнал, формируемый посредством передающего устройства 18, в качестве опорного сигнала. Как результат, адаптивные фильтры 40A-40C могут предоставлять подавление сигнала TX-утечки без ограничений по производительности вследствие групповой задержки дуплексора. Несущий TX-сигнал от TX VCO 42 может легко предоставляться и может присутствовать в микросхеме с приемным устройством 16.

Полоса пропускания фильтров 50, 56 нижних частот должна находиться близко к полосе пропускания TX-сигнала, чтобы отслеживать огибающую модуляции TX-данных. Эти фильтры могут быть реализованы просто как однополюсные фильтры. В некоторых реализациях, дополнительные полюсы или нули передачи могут быть добавлены к частотной характеристике фильтров 50, 56 нижних частот, чтобы предоставлять большее ослабление при сдвиге частоты между несущей TX-частотой и центральной частотой полезного RX-сигнала. Это ослабление может помогать уменьшать компоненты шума и XMD, формируемые посредством умножителей 48 и 54 при этом сдвиге частоты, и тем самым снижать шум и XMD адаптивного фильтра. Частотная характеристика фильтров 50, 56 должна соответствовать принципам стабильности систем с замкнутым контуром в том смысле, что характеристика с разомкнутым контуром адаптивного фильтра 40A-40C должна предоставлять достаточный запас по фазе относительно 180 градусов для усиления в 0 дБ.

Хотя компоненты на фиг.4A, 4B и 4C показаны как несимметричные, адаптивные фильтры 40A-40C, LNA 20 или и то, и другое может быть реализовано с дифференциальными входами и выходами. Соответственно, несимметричные компоненты могут быть показаны для простоты иллюстрации без ограничения относительно возможных дифференциальных реализаций, если требуется.

Фиг.5 является блок-схемой, иллюстрирующей устройство 64 беспроводной связи, включающее в себя другое примерное приемное устройство 66 с комбинированным адаптивным фильтром/LNA 68 для подавления TX-утечки в соответствии с этим раскрытием сущности. В примере по фиг.5, устройство 64 в значительной степени соответствует устройству 38 по фиг.3. Тем не менее, устройство 64 включает в себя альтернативное приемное устройство 66, в котором LNA и адаптивный фильтр сформированы вместе как комбинированный фильтр/LNA 68. Комбинированный фильтр/LNA 68 подавляет TX-утечку на входе LNA, а не на выходе LNA. Комбинация LNA и адаптивного фильтра позволяет ослаблять требования IIP3 (точка пересечения третьего порядка) для LNA и может уменьшать потребляемый ток в адаптивном фильтре. Помимо этого, использование LNA в качестве части контура адаптивного фильтра способствует высокому коэффициенту усиления при разомкнутом контуре и, таким образом, высокому отношению подавления при передаче (TXRR). Комбинирование LNA с адаптивным фильтром может вызывать ухудшение коэффициента шума (NF) LNA. Тем не менее, LNA может быть выполнен с возможностью уменьшения NF, чтобы противодействовать вносимым шумам адаптивного фильтра.

Фиг.6 является схематичным представлением, иллюстрирующим примерный комбинированный фильтр/LNA 68 для подавления TX-утечки в приемном устройстве 64 по фиг.5. Комбинированный фильтр/LNA 68 может включать в себя все компоненты адаптивного фильтра 40A по фиг.4A плюс LNA 20. Тем не менее, компоновка компонентов отличается, так что утечка TX-сигнала может подавляться на входе, а не на выходе LNA 20. Например, как показано на фиг.6, сумматор 62 выполнен с возможностью вычитать оценку сигнала TX-утечки e(t) из входящего RX-сигнала x(t) на входе LNA 20. Таким образом, сигнал TX-утечки подавляется или уменьшается до усиления посредством LNA 20.

Аналогично адаптивному фильтру 40A по фиг.4A, адаптивный фильтр 68 включает в себя квадратурный разделитель 46, который принимает несущий TX-сигнал от TX VCO 42 в качестве опорного сигнала r(t). Разделитель 46 формирует I- и Q-компоненты i(t), q(t) для применения к I- и Q-ветвям, соответственно. I-ветвь включает в себя умножитель 48, фильтр 50 нижних частот и умножитель 52. Q-ветвь включает в себя умножитель 54, фильтр 56 нижних частот и умножитель 58.

Сумматор 60 суммирует выходы z i (t), z q (t) I- и Q-ветвей, соответственно, чтобы формировать оценку сигнала TX-утечки e(t). Сумматор 62 вычитает оценку сигнала TX-утечки e(t) из RX-сигнала, чтобы подавлять, по меньшей мере, часть сигнала TX-утечки из входного сигнала x(t) фильтра, который получается из дуплексора 14. Сумматор 62 применяет результирующий сигнал n(t) к входу LNA 20. LNA 20 усиливает сигнал n(t) и формирует выходной сигнал y(t) фильтра. Выходной сигнал y(t) фильтра также выступает в качестве сигнала обратной связи, подаваемого к входам умножителей 48 и 54.

С комбинированным фильтром/LNA 68, утечка TX-сигнала, присутствующая в сигнале y(t), подаваемом к смесителю 24 для преобразования с