Рекомбинантный вирус болезни ньюкастла, экспрессирующий н5 гемаглютинин вируса птичьего гриппа (avian ineluenza)

Иллюстрации

Показать все

Представленное изобретение относится к области биотехнологии и касается рекомбинантного экспрессионного вектора вируса болезни Ньюкастла, способа получения такого вируса и вакцины, содержащей такой вектор. Рекомбинантный вектор вируса болезни Ньюкастла содержит дополнительную транскрипционную единицу, включающую ген, кодирующую белок НА патогенного вируса Н5 птичьего гриппа, операбельно связанный с последовательностью старта гена (GS) начальной части вируса болезни Ньюкастла и последовательностью конца гена (GE) конечной части вируса болезни Ньюкастла, характеризующуюся тем, что указанный белок содержит участок удлинения, состоящий, по крайней мере, из трех основных аминокислот, где указанный участок удлинения состоит из остатков аргинина (Arg) и/или лизина (Lys) и содержит, по крайней мере, один лизин, причем указанный ген не содержит последовательности, которая может узнаваться вирусной полимеразой вируса болезни Ньюкастла как последовательность конца гена. Представленный вектор позволяет получить высокий уровень экспрессии белка НА патогенного вируса Н5 птичьего гриппа, а также вакцина, содержащая такой вектор, обеспечивает иммунную защиту от заражения вирусом болезни Ньюкастла и вируса птичьего гриппа 3 н. и 9 з.п. ф-лы, 5 ил., 1 табл.

Реферат

Данное изобретение относится к рекомбинантному вектору вируса Mononegavirales, содержащего дополнительную транскрипционную единицу, включающую чужеродный ген, операбельно связанный с последовательностью старта гена (GS) начальной части вируса Mononegavirales в положении “апстрим” и последовательностью конца гена (GE) конечной части вируса Mononegavirales в положении “даунстрим”. Это изобретение также относится к способу получения такого рекомбинантного вектора вируса Mononegavirales, а также к вакцине, содержащей такой рекомбинантный вектор вируса Mononegavirales.

Живые вирусы, способные реплицироваться в инфицированной клетке-хозяине, индуцируют сильный и продолжительный иммунный ответ на экспрессируемые ими антигены. Они эффективно вызывают как гуморальный, так и клеточно-опосредованный иммунные ответы, а также стимулируют метаболические пути цитокинов и хемокинов. Поэтому, живые, ослабленные вирусы обладают определенными преимуществами по сравнению с композициями вакцин, основанными как на инактивированных, так и на субъединичных иммуногенах, которые, в основном, только стимулируют гуморальный компонент иммунной системы.

За последнее десятилетие технология рекомбинантных ДНК революционизировала область генетической инженерии геномов как ДНК-, так и РНК-содержащих вирусов. В частности, сейчас стало возможным внедрение чужеродных генов в геном вируса таким образом, что после репликации нового векторного вируса в животном-хозяине экспрессируется чужеродный белок, который может вызвать биологические эффекты у животного-хозяина. По существу, рекомбинантные векторные вирусы использовались не только для контроля и профилактики микробных инфекций, но и для разработки целевой терапии заболеваний немикробной этиологии, таких как злокачественные новообразования, а также в генной терапии.

Создание несегментированных, минус-нитевых РНК вирусов (вирусов порядка Mononegavirales) полностью из клонов кДНК с помощью метода, известного как «обратная генетика» (reverse genetics), впервые опубликованного в 1994 (Schnell et al., EMBO J 13, 4195-4203, 1994), сделало возможным использование в качестве векторов также вирусы порядка Mononegavirales (MV). С тех пор опубликованы исследования, посвященные использованию многих вирусов порядка MV в качестве вирусных векторов для экспрессии чужеродных антигенов, произошедших от патогена, с целью разработки вакцин против этого патогена.

Порядок Mononegavirales подразделяется на 4 основные семейства: Paramyxoviridae, Rhabdoviridae, Filoviridae и Bornaviridae. Вирусы, принадлежащие к этим семействам, имеют геномы, которые представляют собой одноцепочечную минус (-) смысловую молекулу РНК, то есть полярность РНК генома противоположна полярности информационной РНК (мРНК), которая обозначается как плюс (+) смысловая. Классификация основных вирусов человека и животных порядка MV представлена в нижестоящей таблице:

Таблица 1Классификация вирусов внутри порядка Mononegavirales
Семейство Род Вид
Rhabdoviridae Lyssavirus (вирусы группы бешенства) Вирус бешенства (RV)
Vesiculovirus (везикулярные) Вирус везикулярного стоматита (VSV)
Novirhabdovirus Вирус инфекционного некроза гемопоэтической ткани (IHNV)
Paramyxoviridae Respirovirus (респираторные) Вирус Сендай (SeV)
Вирус парагриппа человека типа 1 и типа 3 (hPIV 1/3)
Вирус бычьего парагриппа тип 3 (bPIV 3)
Morbillivirus (вирус кори) Вирус кори (MV)
Вирус чумы крупного рогатого скота
Вирус чумы собак (CDV)
Rubulavirus (рубулавирусы) Обезьяний вирус типа 5 (SV-5)
Вирус парагриппа человека типа 2 (hPIV 2)
Avulavirus(вирус птиц) Вирус болезни Ньюкастла (NDV)
Pneumovirus(пневмовирусы) Респираторный синцитиальный вирус (hRSV)
Бычий синцитиальный вирус (bRSV)
Filoviridae Эбола-подобные вирусы Вирус Эбола
Вирус Марбург

В настоящее время организация генома и особенности клеточного цикла вирусов, относящихся к порядку MV, хорошо изучены. Результаты этих исследований опубликованы в работах многих авторов (Neumann et al., J. Gen. Virology 83, 2635-2662, 2002; Whelan et al., Curr. Top. Microbiol. Immunol. 203, 63-119, 2004; Conzelmann, K., Curr. Top. Microbiol. Immunol. 203, 1-41, 2004). Несмотря на то, что у вирусов, относящихся к порядку Mononegavirales, могут быть разные клетки-хозяева и различные морфологические и биологические свойства, у них наблюдается много общих признаков, например, таких как организация генома, а также элементы, существенные для их типичного способа репликации и экспрессии генов, что указывает на общность их происхождения. Они являются вирусами в оболочке, которые реплицируются в цитоплазме клетки и продуцируют незрелые мРНК.

Вирус, относящийся к отряду Mononegavirales, состоит из двух основных единиц: рибонуклеопротеинового комплекса (RNP) и оболочки. Для представителей вирусов, относящихся ко всем родам и семействам, указанным выше, были полностью определены последовательности геномов. Размеры этих геномов составляли от 9000 нуклеотидов до 19000 нуклеотидов, и в них содержалось от 5 до 10 генов. Структура и организация геномов вирусов, относящихся к MV, очень похожи и регулируются с помощью их особого способа экспрессии генов. Все геномы вирусов MV содержат три core-гена, кодирующие: нуклеопротеин (N или NP), фосфопротеин (P) и РНК-зависимую РНК-полимеразу (L). Вирусная оболочка состоит из матриксного белка (M) и одного или более трансмембранных гликопротеинов (например, G, HN и F белков), которые играют некоторую роль в сборке/ почковании вирусов, а также в процессе прикрепления и/или в проникновения вируса в клетку. Состав белков, в зависимости от рода вируса, изменяется за счет вспомогательных белков, которые либо выполняют определенные специфические регуляторные функции в транскрипции и вирусной репликации, либо включены в реакции клетки-хозяина вируса (например, C, V и NS белки). Порядок генов вирусов MV является высоко консервативным: core-гены N и P находятся в или рядом с 3'-концевой областью, а большой (L) ген находится в 5'-концевом участке. Поверхностные гликопротеиновые гены M, так же, как и другие вспомогательные гены, локализованы между N, P и L генами.

В комплексе RNP геномная или антигеномная РНК тесно связана с белком N и ассоциирована с РНК-зависимой РНК-полимеразой, которая состоит из белков L и P. После инфицирования клетки этот комплекс RNP, а не только геном РНК, служит в качестве матрицы в двух различных процессах синтеза РНК: транскрипции субгеномных мРНК и репликации геномной РНК полной длины.

Все тандемно организованные гены разделены структурами, называемыми «генными соединениями». Генное соединение включает в себя консервативную последовательность «конца гена» (GE), нетранскрибируемый «межгенный участок» (IGR) и консервативную последовательность «генного старта» (GS). Эти последовательности являются необходимыми и достаточными для транскрипции гена. Во время транскрипции каждый ген последовательно транскрибируется в мРНК с помощью вирусной РНК-зависимой РНК-полимеразы, которая начинает процесс транскрипции в 3'конце геномной РНК у первой GS последовательности. У каждого генного соединения транкрипция прерывается как результат отсоединения РНК-полимеразы у GS последовательности. Дальнейшая инициация транскрипции происходит у последующей последовательности GS, хотя и с уменьшенной эффективностью. Результатом этого прерываемого процесса, который называют также «стоп - старт», происходит снижение интенсивности транкрипции у каждого генного соединения, в результате которого 3'-проксимальные гены в геноме вирусов MV транскрибируются более интенсивно, чем последующие гены, расположенные в конечной части. Модулированная форма транскрипции генов вирусов MV, при которой каждый ген является частью отдельного цистрона или транскрипционной единицы, делает эти вирусы особенно подходящими для встраивания или экспрессии чужеродных генов. Каждая транскрипционная единица в геноме вируса MV включает в себя следующие элементы: 3'-GS-открытая рамка считывания (ORF)-GS-5'.

В 3'- и 5'-геномных концах во всех геномах вирусов MV имеется короткий нетранскрибируемый район, называемый «лидер» (около 40-50 нт) и «трейлер» (около 20-600 нт), соответственно. Лидер- и трэйлер-последовательности являются важными последовательностями, которые контролируют репликацию геномной РНК, инкапсулирование и упаковывание вирусов.

Благодаря технологии обратной генетики и освобождению инфекционного вируса MV появилась возможность манипулировать РНК-геномом этого вируса, используя его кДНК-копии.

Комплекс RNP является минимальным комплексом инициации репликации, необходимым для синтеза вирусной РНК. Инфекционный вирус MV может быть освобожден с помощью внутриклеточной ко-экспрессии (анти)геномных РНК и соответствующих белков из плазмид, управляемых (T7)РНК-полимеразой. С момента появления первой публикации Шнелля с соавт. в 1994 г.,(Schnell et al., 1994 (см. выше)) было обнаружено много видов вирусов MV с помощью первоначальной методики (или ее небольшой модификации).

Болезнь Ньюкастла и птичий грипп являются серьезными заболеваниями птиц, которые могут вызвать значительные экономические потери в производстве домашней птицы во всем мире. Вирус болезни Ньюкастла - это несегментированный вирус, содержащий минус-нитевую РНК, относящийся к порядку MV. Геном, длина которого составляет 15 тыс. п.о., содержит шесть генов, которые кодируют нуклеопротеин (NP), фосфопротеин (PN) и V белок(P/V) матриксный (M) белок, белок слияния (F), белок гемагглютинин-нейраминидаза(HN) и РНК-зависимую РНК-полимеразу или большой (L) белок. Гены NDV организованные последовательно в следующем порядке 3'-NP-P-M-F-HN-L-5', они разделены межгенными участками разной длины. Каждому гену предшествует последовательность генного старта (GS), за которой следуют некодирующий участок, открытая рамка считывания, кодирующая белки NDV, второй некодирующий участок и последовательность конца гена. Длину NDV генома составляют шесть компонентов, и это необходимо учитывать при введении чужеродных генов.

Птичий грипп (AI) - это заболевание домашней птицы, для которого характерны как мягкие респираторные проявления, так и тяжелое протекание болезни с высоким уровнем смертности. Возбудителем заболевания является вирус птичьего гриппа А (AIV), принадлежащий к семейству Orthomyxoviridae. AIV содержит восемь сегментов геномной РНК отрицательной полярности, которые кодируют 10 белков. На основе антигенных свойств поверхностных гликопротеинов - гемагглютинина (HA) и нейраминидазы (N), вирусы AI были подразделены на подтипы. В настоящее время известно 16 подтипов гемагглютинина (H1-H16) и девять подтипов нейраминидазы (N1-N9). Антитела к H и N являются важным фактором в гуморальном ответе, они подавляют инфекцию или предотвращают заболевание.

Вирусы птичьего гриппа и болезни Ньюкастла подразделяются на два различающихся патотипа в соответствии с их вирулентностью. Симптомы, вызываемые низкопатогенными AIV (LPAIV) или лентогенными NDV, считаются менее существенными. В отличие от этого подтипа, высокопатогенный птичий грипп (HPAI) и болезнь Ньюкастла, вызываемые высоковирулентными вирусами (NDV: мезогенные и велогенные штаммы), являются заболеваниями, подлежащими регистрации.

Для защиты домашних кур от высоковирулентных NDV штаммов проводится рутинная вакцинация против NDV с использованием лентогенными NDV штаммов, но вакцинация против HPAI в большинстве стран не проводится, поскольку HPAI контролируется с помощью ирадикации. Однако вакцинация также может быть использована для минимизации потерь и уменьшения распространения заболевания. Вызываеиый вакцинами иммунитет является видоспецифическим. Это означает, что вакцина подтипа H5 может защищать от H5 AIV, но не от других H подтипов. Обычно репликация вируса гриппа локализована в дыхательном тракте, поскольку гемагглютенин вирусов LPAI может быть расщеплен только с помощью триптазы Clara, сериновой протеазы, локализованой в дыхательном тракте. До сих пор все вирусы HPAI являлись подтипами H5 и H7. Эти вирусы HPAI содержат множественные последовательности основных аминокислот в сайте расщепления H, поэтому он может расщепляться с помощью встречающегося в разных тканях фурина и субтилизиноподобных ферментов на субъединицы HA1 и HA2. Такие вирусы способны, следовательно, размножаться и в других органах.

Вакцины против вирусов подтипов H5 и H7 могут обеспечивать защиту кур и индеек от клинических проявлений и гибели после заражения HPAI. Было доказано экспериментально, что кроме обычных инактивированных масляных цельновирионных AIV, эффективными средствами иммунизации против AI являются также векторный вирус, субъединичный белок и ДНК-вакцины. Создание рекомбинантных вирусов с целью их использования в качестве вакцинных векторов является важным следствием применения методов обратной генетики к различным вирусам. Были сконструированы разные рекомбинантные минус-нитевые РНК вирусы, экспрессирующие чужеродные белки. Кроме того, гемагглютинин AIV был введен в различные векторные вирусы, такие как вирус инфекционного ларинготрахеита (ILTV) (Luschow et al., Vaccine 19, 4249-59, 2001), вирус чумы крупного рогатого скота (Rinderpest virus) (Walsh et al., J. Virol. 74, 10165-75, 2000) и вирус везикулярного стоматита (VSV) (Roberts et al., J. Virol. 247, 4704-11, 1998). NDV используется также для экспрессии гемагглютинина AIV. Ген гемагглютинина гриппа A/WSN/33 был встроен между P и M генами NDV штамма Hitchner B1. Этот рекомбинант защищал мышей от летальной инфекции, хотя у мышей наблюдалась значительная потеря веса, они полностью выздоравливали в течение 10 дней (Nakaya et al., J. Virol. 75, 11868-73, 2001). Полученные позднее рекомбинантные NDV с такими же вставками для чужеродных генов экспрессировали H7 LPAI, однако только 40% вакцинированных кур были защищены от велогенной NDV и HPAI(Swaye et al., Avan Dis. 47, 1047-50, 2003).

HA-белки гриппа синтезируются как белки-предшественники (HA0). Полипептид-предшественник HA0 пострансляционно расщепляется у консервативного остатка аргинина (Arg) на две субъединицы: Ha1 и HA2. Это расщепление способствует инфективности вируса. (По-видимому, чем эффективней HA-предшественник расщепляется, тем более вирулентен вирус). Были проанализированы участки соединения HA1-HA2 разных вирусов гриппа. Было обнаружено, что в геноме патогенных штаммов существует участок, который содержит основные аминокислоты и непосредственно прилегает к сайту расщепления (Senne et al., Avian Diseases, 40: 425-237, 1996; Steinhauser, Virology, 258, 1-20, 1999; Kawaoka and Webster, Proc.Natl.Acad.Sci.USA, 85,1988).

Высокопатогенные вирусы особенно важны с точки зрения защиты, которую должна обеспечивать вакцина гриппа.

Однако, когда эти типы белков, то есть такие белки как HA- белки патогенного гриппа H5, содержащие основную цепь аминокислот в своей последовательности, были встроены в вектор Mononegavirales, возникали определенные проблемы.

Прежде всего, последовательность генов, по-видимому, является нестабильной в определенном отношении. После нескольких пассажей культуры клеток куриных эмбрионов вектора NDV, в который был встроен ген H5 (NDVH5), происходили спонтанные мутации внутри части последовательности генов, которая кодирует основную цепь аминокислот.

Кроме того, кодирующая последовательность для цепи основных аминокислот, по-видимому, содержит последовательность, которая узнается вирусом Mononegavirales как последовательность конца гена (GE). Обзор, посвященный GE-последовательностям для вирусов Mononegavirales, представлен в работе Whelan (Curr. Top. Microbiol. Immunol., 283, 61-119, 2004). GE-последовательности для вирусов Mononegavirales характеризуются обычной консервативной последовательностью: nUUUU.

Было обнаружено, что части кодирующей последовательности для цепи основных аминокислот, таких как та, которая прилегает к участку расщепления HA-белка патогенного вируса птичьего гриппа типа H5, имеют сходство с GE-последовательностью, узнаваемой полимеразами вектора Mononegavirales как GE-последовательность. Это может привести к уменьшению уровней белковой экспрессии белка полной длины, которое может повлиять на эффективность вакцины, основанной на таком векторе.

Целью данного изобретения было создание рекомбинантного вектора вируса MV, который проявлял бы высокий уровень экспрессии белка, кодируемого чужеродным геном, встроенным в геном векторного вируса, и/или который показывал бы более высокую иммуногенность по сравнению с существующими векторными вирусами MV.

Авторы данного изобретения обнаружили, что эта цель может быть реализована с помощью рекомбинантного вируса Mononegavirales согласно изобретению.

Данное изобретение предоставляет способ получения рекомбинантного вектора вируса Mononegavirales, содержащего дополнительную транскрипционную единицу, включающую в себя чужеродный ген, операбельно связанный с последовательностью старта гена (GS) начальной части вируса Mononegavirales и последовательностью конца гена (GE) конечной части вируса Mononegavirales, характеризующуюся тем, что последовательность чужеродного гена кодирует белок. Этот белок содержит удлинение, по крайней мере, из трех основных аминокислот, состоящее из остатков аргинина (Arg) и/или лизина (Lys) и содержащее, по крайней мере, один лизин. При этом последовательность нуклеотидов чужеродного гена подобрана таким образом, что она не содержит последовательности, которая может узнаваться вирусной полимеразой вируса Mononegavirales как последовательность конца гена (GE).

Последовательность, которая может узнаваться вирусной полимеразой вируса Mononegavirales как последовательность конца гена, - это последовательность, которая содержит минимальную консервативную последовательность, имеющуюся у большинства GE-последовательностей вируса Mononegavirales, обозначаемую a/uCUUUU (для отрицательной полярности, которая является полярностью генома вирусов Mononegavirales. Для положительной полярности (уровень кДНК) этим мотивом является t/aGAAAA).

Для специфического вектора Mononegavirales использовали известную специфическую GE-последовательность (Whelan et al., (см выше)). Например, для NDV GE-последовательность, указанная в Whelan это aaucUUUUUUu (отрицательная полярность, являющаяся полярностью генома для вирусов Mononegavirales). В случае положительной полярности (уровень кДНК) в последовательности это удлинение состояло бы из остатков аденина: gAAAAAA.

В векторе, в соответствии с изобретением, такая GE-последовательность не должна находиться внутри кодирующей последовательности чужеродного белка.

Существует несколько способов достижения этой цели, открытых для квалифицированного специалиста. Чужеродная последовательность может быть отобрана так, что она по природе не содержит последовательности, которая может быть узнаваема вирусной полимеразой вируса Mononegavirales как последовательность конца гена (GE).

Например, когда последовательность чужеродного гена кодирует вирусный белок, чужеродный ген может быть получен из штамма вируса, который, по природе, несет ген, кодирующий этот белок, и кодирующая его последовательность не включает в себя потенциальную GE-последовательность (тогда как тот же ген в другом штамме этого вируса включает).

Однако, поскольку шансы получения такого варианта генной последовательности от вируса дикого типа очень малы, то более предпочтительной стратегией был бы вызов мутаций в последовательности чужеродного гена дикого типа с помощью направленного мутагенеза для изменения этой последовательности до такой степени, чтобы потенциальная GE-последовательность больше не присутствовала.

Частью данного изобретения является также создание результирующего рекомбинантного вектора вируса Mononegavirales, в котором чужеродный ген кодирует белок, содержащий удлинение, по крайней мере, из трех основных аминокислот, состоящее из остатков аргинина (Arg) и/или лизина (Lys) и содержащее, по крайней мере, один лизин; чужеродный ген которого не содержит последовательности, узнаваемой вирусной полимеразой вируса Mononegavirales как последовательность конца гена (GE).

Часть чужеродного гена, которую нужно модифицировать, особенно в том случае, если чужеродным белком является HA-белок патогенного вируса H5 птичьего гриппа, может быть частью последовательности чужеродного гена дикого типа, кодирующей цепь, по крайней мере, трех основных аминокислот.

Участок удлинения из основных аминокислот включает в себя, по крайней мере, три основные аминокислоты, отобранные из группы, состоящей из лизина (одна буква кода: K) и аргинина (одна буква кода: R), в которой, по крайней мере, одним аминокислотным остатком является лизин. Это включало бы последовательность KKK, комбинацию 2K с 1R(KKR, KRK, RKK) и комбинацию 1K и 2R (KRR, RKR и RRK), а также более длинные участки удлинения из основных аминокислот, включая специфические последовательности 3 аминокислот, упомянутые здесь. Как можно видеть из работы Steinhauser et al. (см. выше), участки удлинения из основных аминокислот, непосредственно прилегающие к сайтам расщепления в HA- белках патогенных вирусов гриппа, могут быть длиннее и могут включать такие последовательности, как RRKKR или RRRKK.

Кодоны, кодирующие лизин, это aaa и aag, тогда как кодоны, кодирующие аргинин, содержат aga и agg. Было обнаружено, что (особенно в кодирующей последовательности для HA-белка патогенного вируса H5 птичьего гриппа) кодирующая последовательность, которая кодирует основную цепь аминокислот, непосредственно прилегающей к участку расщепления белка, может содержать GE-мотив t/aGAAAA.

Для модификации GE-последовательности, находящейся внутри чужеродного гена дикого типа, должна быть внесена, по крайней мере, одна мутация, при которой внутри GE-последовательности, имеющей обычный мотив (t/aGAAAA), нуклеотид “A” участка, содержащего аденины, который изначально присутствовал в последовательности чужеродного гена дикого типа, замещают на другой нуклеотид. Фактически, если мутация внесена в “aaaa” участок, который есть часть последовательности, узнаваемой как GE-последовательность, по крайней мере, один из нуклеотидов аденина должен быть замещен на другой нуклеотид (например, гуанин(“g”)).

При изменении последовательности с помощью сайт-направленного мутагенеза, эти изменения являются преимущественно молчащими (это означает, что мутация (мутации) не приводят к мутации на уровне аминокислот). Однако также допустимы мутации на уровне нуклеотидных кислот, которые ведут к консервативным мутациям на уровне аминокислот (означающем, что одна основная аминокислота замещается на другую основную аминокислоту, например, L становится R или R становится L). Например, если в той части последовательности гена дикого типа, кодирующей основную цепь аминокислот, где, по крайней мере, один остаток лизина кодируется с помощью кодона “aaa”, то этот кодон в модифицированном чужеродном гене, встроенном в вектор данного изобретения, может быть мутирован в “aag”. Или, там, где в последовательности дикого типа особый остаток аргинина, образующий часть основной цепи аминокислот, кодируется с помощью “aga”, этот кодон в данном гене может быть мутирован в “agg”, так как, согласно изобретению, он сделан частью вектора.

По крайней мере, один кодон “aaa” (кодирующий лизин) в последовательности дикого типа может быть мутирован для создания модифицированной последовательности чужеродного гена, которая инкорпорирована в вектор данного изобретения. Такая мутация может включать замещение кодона “aaa” на кодон “aga”. Более препочтительными являются векторы, в которых, например, участок удлинения из основных аминокислот состоит, по крайней мере, из двух лизиновых аминокислот в ряд, и в которых, по крайней мере, один из этих лизинов кодируется кодоном “aag”, хотя могут быть внесены две или более мутаций. Например, в случае, если кодирующая последовательность содержит два кодона “aaa” в ряд, оба могут быть замещены на кодоны “aag”.

Для того чтобы результирующий вектор был более стабильным, желательно вносить в чужеродный ген, по крайней мере, две мутации. В тех участках, где чужеродный ген содержит два кодона “aaa” в ряд, они оба предпочтительнее подвергаются мутации, и могут быть замещены на кодоны “aag”.

Хорошие результаты были получены при работе с векторами, в которых часть чужеродного гена, кодирующая участок удлинения из основных аминокислот, содержала одну мутацию в каждом из трех или четырех последовательных кодонов, кодирующих основную аминокислоту. В случае если основная цепь включает в себя только три аминокислоты, могут быть вызваны три мутации, но, когда присутствуют четыре или более основные аминокислоты, количество вызываемых мутаций может быть больше.

Например, там, где последовательность дикого типа содержит аминокислотную последовательность RRKK, кодируемую нуклеотидной последовательностью aga aga aaa aaa (последовательность положительной полярности, в которой подчеркнут мотив потенциальной GE-последовательности), эта кодирующая последовательность может быть мутирована в agg agg aag aag, которая все еще кодирует RRKK.

Предпочтительнее, если вектором вируса Mononegavirales является вектор вируса болезни Ньюкастла (NDV) и чужеродный ген HA-белка патогенного вируса H5 птичьего гриппа.

Хорошие результаты были получены при работе с вектором NDV, в который инкорпорировали модифицированный HA-ген патогенного вируса H5 птичьего гриппа (NDVH5m).

Ген HA был инкорпорирован в межгенном участке между NDV генами слияния (F) и гемагглютинин-нейрамидазы (HN) вектора NDV. Ген HA являлся модифицированным H5-геном, в котором последовательность дикого типа “aga aga aaa aaa” была изменена на последовательность “agg agg aag aag” в соответствии со способом настоящего изобретения.

Этот вектор продуцировал значительно больше HA-транскриптов полной длины, экспрессировал значительно более высокий уровень HA и также инкорпорировал больше белков в своей оболочке.

Кроме того, NDVH5m стабильно экспрессировал модифицированный HA-ген на протяжении более 10 пассажей в культуре клеток куриных эмбрионов. Иммунизация цыплят с помощью NDVH5m индуцировала NDV- и AIVH5-специфические антитела и, после заражением летальной дозой велогенного NDV или высоко патогенного AIV, защищала кур от соответствующего клинического заболевания. Отметим, что распространения вируса гриппа не наблюдалось. Более того, иммунизация с помощью NDVH5m позволяла проводить распознавание серологическими методами вакцинированных и инфицированных полевым штаммом вируса AIV животных, основываясь на исследовании антител к нуклеопротеину (NP) AIV. Следовательно, рекомбинантный NDVH5m подходит в качестве бивалентной вакцины против NDV и AIV и может использоваться как маркерная вакцина для контроля над птичьим гриппом (AI).

Способы получения рекомбинантного вектора вируса MV, содержащего дополнительную транскрипционную единицу, включающую в себя чужеродный ген, хорошо известны в технике.

Более конкретно, в способе по изобретению, изолированная молекула нуклеиновой кислоты и геном вируса MV использовались в их кДНК форме (позитивной полярности). Это позволило легко проводить манипулирование и встраивание желаемых молекул нуклеиновых кислот в вирусный геном.

В общем, чужеродный ген мог быть встроен в разные части генома между двумя генами, например, в межгенные районы (IGR), 3'- и 5'-некодирующие участки гена, а также 3'-промотор-проксимальный (перед N/NP генами) или 5'-дистальный конец (после L-генов) генома.

Чужеродный ген мог быть успешно встроен перед геном N/NP, между NP-P, P-M, M-G/F, G/F-HN, HN-L и после L-гена.

Проще всего использовать уже существующую последовательность узнавания рестрикционных ферментов (RE) в одном из этих сайтов с помощью разрезания ферментом и встраивания подходящей кассеты транскрипции. Поскольку естественно существующие последовательности узнавания рестрикционных ферментов не всегда локализованы в желаемом участке, RE-сайты узнавания могут быть внесены в геном общепринятым способом с помощью сайт-направленного или ПЦР-мутагенеза.

Структура встраиваемой транскрипционной кассеты зависит от сайта встраивания. Например, в случае, когда транскрипционная кассета встроена в IGR, кассета может включать в себя следующие элементы: 3' RE сайт узнавания-GS-некодируюший район-ORF (чужеродного гена)-некодирующий район-GE-RE сайт узнавания 5'.

Как альтернатива, в случае, когда транскрипционная кассета встроена в 5'-некодирующий район гена природного вируса MV, кассета может состоять из: 3' RE сайт узнавания-GE-IGR-GS-некодируюший район-ORF(чужеродного гена)-некодирующий район-RE сайт узнавания 5'.

Подобным образом, в случае, когда транскрипционная кассета встроена в 3'-некодирующий район гена природного вируса MV, кассета может состоять из: 3'RE сайт узнавания-некодируюший район-ORF(чужеродного гена)-некодирующий район-GE-IGR-GS-RE сайт узнавания 5'.

Получение таких транскрипционных кассет и внесение их в геном вируса MV являются рутинными молекулярно биологическими процедурами, такими как те, что описаны в публикациях из списка литературы и в Примерах. В частности, для этой цели могут использоваться такие методы, как сайт-направленный мутагенез и ПЦР-мутагенез (Peeters et al., 1999, см. выше; Current Protocols in Molecular Biology, eds.; F.M. Ausubel et al., Wiley N.Y., 1995 edition, pages 8.5.1.-8.5.9; и Kunkel et al., Methods in Enzymology Vol. 154, 376-382, 1987).

В частности, рекомбинантный вектор вируса MV, согласно настоящему изобретению, может быть получен с помощью хорошо известного метода “обратной генетики”, который позволяет провести генетическую модификацию несегментированных, минус-нитевых РНК-вирусов порядка MV (указанных, например, в обзорах Conzelmann, K.K., Current Topics Microbiol. Immunol. 203, 1-41, 2004; и Walpita et al., FEMS Microbiol. Letters 244, 9-18, 2005).

В этом способе, соответствующую клетку котрансфицируют с помощью вектора, содержащего молекулу кДНК, включающую в себя нуклеотидную последовательность, которая кодирует геном полной длины или, что более предпочтительно, антигеном (положительной полярности) вируса MV, и одного или более векторов, содержащих молекулы кДНК, включающие в себя нуклеотидные последовательности, которые кодируют необходимые поддерживающие белки, при подходящих условиях для транскрипции и ко-экспрессии (анти)генома MV и поддерживающих белков и продуцирования рекомбинантного вектора MV. В этом методе, вышеуказанная молекула нуклеиновой кислоты, кодирующая (анти)геном вируса MV полной длины, содержит дополнительную транскрипционную единицу, как пояснялось выше.

Под вектором подразумевается репликон, такой как плазмида, фаг или космида, к которому может быть присоединен другой сегмент ДНК, так, чтобы осуществлять репликацию присоединенного сегмента ДНК и его транскрипцию и/или экспрессию в клетке, трансфицированной с помощью этого вектора.

Предпочтительнее, если вектором для транскрипции генома полной длины является плазмида, которая включает в себя последовательность кДНК, кодирующую (анти)геном вируса MV, фланкированную T7-полимеразным промотором в своем 5'-конце и рибозимной последовательностью (гепатита дельта) в своем 3'-конце, хотя могут использоваться также T3- или SP6- РНК-полимеразные промоторы.

Для внутриклеточной экспрессии соответствующих поддерживающих белков используются преимущественно плазмиды, содержащие последовательности кДНК, кодирующие эти белки, под контролем соответствующих последовательностей контроля экспрессии, например, T7-полимеразного промотора.

В особенно предпочтительном варианте способа получения рекомбинантного вектора вируса MV, согласно данному изобретению, используются экспрессионные плазмиды, которые кодируют N (или NP), P и L белки вирусов MV.

Количество или пропорции трансфектированных поддерживающих плазмид, используемых в этом методе обратной генетики, меняются в широких пределах. Пропорции для поддерживающих плазмид N:P:L могут варьировать от 20:10:1 до 1:1:2, а для каждого вируса известны эффективные методики трансфекции.

В трансфицированной клетке формируется точная копия геномной РНК с помощью комбинированного действия T7 РНК-полимеразного промотора и рибозимной последовательности, и затем эта РНК упаковывается и реплицируется с помощью вирусных структурных белков, поставляемых котрансфицируемыми экспрессионными плазмидами.

Предпочтительнее, если T7 полимераза обеспечивается рекомбинантным вирусом коровьей оспы, который инфицирует трансфицированную клетку, в частности, вирусом коровьей оспы vTF7-3, кроме того, для экспрессии T7 РНК-полимеразы могут использоваться другие рекомбинантные векторы оспы, такие как вирус оспы птиц, например, fpEFLT7pol или другие вирусные векторы.

Отделение освобожденного вируса от вируса коровьей оспы может проводиться простым физическим методом, таким как фильтрация. Освобождение вируса Сендай или NDV можно проводить с помощью инокуляции супернатана трансфицированных клеток в куриные эмбрионы.

Для трансфекции векторов транскрипции и экспрессии, которые постоянно экспрессируют (T7)РНК-полимеразу и/или один или более необходимых поддерживающих белков, даже предпочтительнее использовать клеточные линии.

Например, накопление вируса кори может быть достигнуто в клеточной линии эмбриональной почки человека, 293-3-46, которая экспрессирует как T7 РНК-полимеразу, так и поддерживающие белки вируса кори N и P (Radecke et al., EMBO J. 14, 5773-5784, 1995). Еще одной очень полезной клеточной линией, которая может выгодно использоваться в настоящем изобретении, является клеточная линия BSR, экспрессирующая T7 РНК-полимеразу, то есть клеточная линия BSR-T7/5 (Buchholz et al., J. Virol. 73, 251-259, 1999).

Кроме того, более детальная информация, касающаяся технологии обратной генетики, используемой в данном изобретении для получения вируса MV, дана в обзоре Conzelmann K.K. (см. выше) и в Примере 1.

Поскольку рекомбинантные векторы вируса MV могут стабильно экспрессировать чужеродные гены, векторы стали исследоваться с целью профилактического и терапевтического применений.

В соответствии с настоящим изобретением в рекомбинантном векторе вируса MV чужеродный ген может изменяться в зависимости от специфического вида вектора вируса MV, а также применения векторного вируса.

Чужеродный ген может кодировать антиген (другого) микробиологического патогена (например, вируса, бактерии паразита), особенно важно, что чужеродный ген кодирует антиген патогена, который способен вызывать защитный иммунный ответ.

Примерами гетерологичных генных последовательностей, которые могут быть встроены в вирусные векторы данного изобретения, являются гены гликопротеина вируса гриппа, особенно H5 и H7 гены гемагглютинина вируса птичьего гриппа, гены вируса инфекционного бурсита (IBDV), особенно VP2, гены вируса инфекционного бронхита (IBV), вируса кошачьей лейкемии, вируса собачьей чумы, вируса лошадиной инфекционной анемии, вируса бешенства, Ehrlichia, в особенности Ehrlichia canis, респираторных синцитиальных вирусов, вирусов парагриппа, метапневмовирусов человека и вируса кори.

Альтернативно, чужеродный ген может кодировать полипептидный иммуномодулятор, который способен усиливать или модулировать иммунный ответ на вирусную инфекцию, например, при помощи коэкспрессирования цитокина, такого, как интерлейкин (например, IL-2, IL-12, IFN-y, TNF-α или GM-CSF).

К порядку MV относятся вирусы, способные реплицироваться в организме человека и/или животного (в обоих организмах может реплицироваться, например, вирус бешенства или вирус болезни Ньюкастла). Следовательно, чужеродный ген может отбираться из большого числа микробиологических патогенов человека и животных.

Несмотря на то, что в данном изобретении все вирусы MV могут использоваться как векторные вирусы, в данном изобретении в качестве рекомбинантного вектора вируса MV предлагается вирус семейства Rhabdoviridae, предпочтительнее рода Lyssavirus или Novirhabdovirus, и еще предпочтительнее - вид вируса бешенства или IHNV, соотвественно.

Также, в качестве рекомбинантного вируса MV предлагается вирус семейства Paramyxoviridae, предпочтительнее родов: Respovirus, особенно видов hPIV3 или bPIV3; Morbillivirus, особенно вид CDV; Pneumovirus, особенно вид RSV; и Avulavirus, особенно вид NDV.

В наиболее предпочтительном варианте осуществления данного изобретения в качестве рекомбинантного вектора вируса MV используется вирус болезни Ньюкастла (NDV). Известно, что NDV способен реплицироваться в организмах и человека, и животных, в частности п