Стробированная амперометрия
Иллюстрации
Показать всеИзобретение относится к области электрохимических методов анализа. Предложена система датчика, устройство и способы для определения концентрации анализируемого вещества в образце. Последовательности стробированных амперометрических импульсов, включающие в себя многочисленные рабочие циклы последовательных возбуждений и релаксаций, обеспечивают более короткое время анализа и/или улучшают точность и/или воспроизводимость анализа. Раскрытые последовательности стробированных амперометрических импульсов могут снижать погрешности анализа, являющиеся результатом гематокритного эффекта, изменения объемов цокольного зазора, неустановившихся режимов, медиаторного фона, недозаполнения, изменений температуры в образце и одиночного набора калибровочных констант. 6 н. и 24 з.п. ф-лы, 3 табл., 11 ил.
Реферат
По заявке испрашивается приоритет согласно предварительной заявке № 60/700787 на выдачу патента США, поданной 20 июля 2005 года, и предварительной заявке № 60/746771 на выдачу патента США, поданной 8 мая 2006 года.
Предшествующий уровень техники
Количественное определение анализируемых веществ в биологических жидкостях полезно при диагностике и лечении физиологических патологий. Например, определение уровня глюкозы в биологических жидкостях, таких как кровь, важно для людей, страдающих диабетом, которые должны часто проверять уровень глюкозы в крови, чтобы регулировать режимы своего питания и/или медикаментозного лечения.
Для этого типа анализа использовались электрохимические системы. Во время анализа анализируемое вещество подвергается окислительно-восстановительной реакции с ферментами или подобными препаратами для генерирования электрического тока, который может измеряться и соотноситься с концентрацией анализируемого вещества. Существенное преимущество может быть предоставлено пользователю при сокращении времени, требуемого для анализа, наряду с обеспечением требуемой точности и воспроизводимости.
Один из примеров системы электрохимического датчика для анализа анализируемых веществ в биологических жидкостях включает в себя измерительное устройство и пластинку датчика. Пластинка датчика содержит реактивы для реакции и переноса электронов из анализируемого вещества во время анализа и электроды для пропускания электронов через проводники, которые соединяют пластинку с устройством. Измерительное устройство включает в себя контакты для приема электронов из пластинки и приложения разности потенциалов между контактами. Устройство может регистрировать ток, проходящий через датчик, и преобразовывать значения тока в измерение содержания анализируемого вещества в образце. Эти системы датчиков могут анализировать одну каплю цельной крови (WB), например, от 1 до 15 микролитров (мкл) по объему.
Примеры настольных измерительных устройств включают в себя BAS 100B Analyzer, поставляемый фирмой BAS Instruments в Уэст-Лафейетте, штат Техас; CH Instrument Analyzer, поставляемый фирмой CH Instruments в Остине, штат Техас; Cypress Electrochemical Workstation, поставляемый фирмой Cypress Systems в Лоренсе, штат Канзас; и EG&G Electrochemical Instrument, поставляемый фирмой Princeton Research Instruments в Принстоне, штат Нью-Джерси. Примеры портативных измерительных устройств включают в себя измерители Ascensia Breeze® и Elite® от корпорации Bayer.
Пластинка датчика может включать в себя рабочий электрод, где анализируемое вещество подвергается электрохимической реакции, и противоэлектрод, где происходит противоположная электрохимическая реакция, обеспечивая протекание тока между электродами. Таким образом, если на рабочем электроде происходит окисление, на противоэлектроде происходит восстановление. Смотрите, например, Fundamentals of Analytical Chemistry (Основы аналитической химии), 4th Edition, D.A. Skoog and D.M. West; Philadelphia: Saunders College Publishing (1982), стр.304-341.
Пластинка датчика может включать в себя электрод точного сравнения для выдачи точного опорного потенциала в измерительное устройство. Несмотря на то, что известны многочисленные материалы электродов сравнения, композиция серебра (Ag) и хлорида серебра (AgCl) является типичной вследствие нерастворимости композиции в водной среде раствора для анализа. Электрод сравнения также может использоваться в качестве противоэлектрода. Пластинка датчика, использующая такую комбинацию противоэлектрода сравнения, описана в патенте США № 5820551.
Пластинка датчика может быть сформирована печатью электродов на изолирующей подложке с использованием многочисленных технологий, раскрытых в патентах США № 6531040, 5798031 и 5120420. Один или более слоев реактива могут формироваться покрытием одного или более из электродов, таких как рабочий и/или противоэлектроды. В одном из аспектов более чем один из электродов может покрываться одинаковыми слоями реактива, как в случае, когда рабочие и противоэлектроды покрываются одинаковым составом. В еще одном аспекте слои реактивов, имеющих разные составы, могут отпечатываться или наноситься микропокрытием на рабочие и противоэлектроды с использованием способа, описанного в предварительной заявке № 60/513817 на выдачу патента США от 24 октября 2003 года. Таким образом, слой реактива на рабочем электроде может содержать фермент, медиатор и связующее вещество, при этом слой реактива на противоэлектроде содержит растворимые окислительно-восстановительные препараты, которые могли бы быть такими же, как медиатор, или другими, и связующее вещество.
Слой реактива может включать в себя ионизирующий агент для ускорения окисления или восстановления анализируемого вещества, а также любые медиаторы или другие вещества, которые способствуют переносу электронов между анализируемым веществом и проводником. Ионизирующий агент может быть специфичным ферментом для анализируемого вещества, таким как глюкозооксидаза или глюкозодегидрогеназа, чтобы ускорить окисление глюкозы в образце цельной крови (WB). Слой реактива также может включать в себя связующее вещество, которое удерживает фермент и медиатор вместе. В Таблице I, приведенной ниже, приведены традиционные комбинации ферментов и медиаторов для использования с определенными анализируемыми веществами.
Таблица I | ||
Анализируемое вещество | Фермент | Медиатор |
Глюкоза | Глюкозооксидаза | Феррицианид |
Глюкоза | Глюкозодегидрогеназа | Феррицианид |
Холестерин | Холестеролоксидаза | Феррицианид |
Лактат | Лактатоксидаза | Феррицианид |
Мочевая кислота | Уриказа | Феррицианид |
Алкоголь | Алкогольоксидаза | Фенилендиамин |
Связующее вещество может включать в себя различные типы и молекулярные массы полимеров, таких как CMC (карбоксиметилцеллюлоза) и/или PEO (оксид полиэтилена). В дополнение к связыванию реактивов вместе связующее вещество может содействовать в фильтрации красных кровяных телец, предохраняя их от покрытия поверхности электрода.
Примеры традиционных систем электрохимических датчиков для анализа анализируемых веществ в биологических жидкостях включают в себя биодатчики Precision®, поставляемые Abbott в Аббот-Парк, штат Иллинойс; биодатчики Accucheck®, поставляемые Roche в Индианаполисе, штат Индиана; и биодатчики OneTouch Ultra®, поставляемые Lifescan в Милпитасе, штат Калифорния.
Одним из электрохимических способов, которые использовались для определения количества анализируемых веществ в биологических жидкостях, является кулонометрия. Например, Хеллер и другие описывали кулонометрический способ для измерений глюкозы цельной крови (патент US 6120676). В кулонометрии концентрация анализируемого вещества количественно определяется посредством полного окисления анализируемого вещества внутри небольшого объема и интегрирования тока по времени окисления, чтобы воспроизвести электрический заряд, отображающий концентрацию анализируемого вещества. Другими словами, кулонометрия фиксирует суммарное количество глюкозы в пределах пластинки датчика.
Важный аспект кулонометрии состоит в том, что по направлению к концу кривой интегрирования заряда в зависимости от времени скорость изменения тока со временем становится, по существу, постоянной, что приводит к установившемуся режиму. Установившаяся часть кулонометрической кривой образует относительно плоский участок плато, обеспечивая определение соответствующего тока. Однако кулонометрический способ требует полного преобразования всего объема анализируемого вещества для достижения установившегося режима. Как результат - этот способ является времязатратным и не дает быстрых результатов, которых требуют пользователи электрохимических устройств, таких как изделия контроля глюкозы. Еще одна проблема с кулонометрией состоит в том, что небольшой объем элемента датчика должен выдерживаться для того, чтобы обеспечивать точные результаты, что может быть затруднительным при массовом выпуске устройств.
Еще одним электрохимическим способом, который использовался для определения количества анализируемых веществ в биологических жидкостях, является амперометрия. При амперометрии ток измеряется во время импульса считывания, в то время как постоянный потенциал (напряжение) приложен между концами рабочих и противоэлектродов пластинки датчика. Измеренный ток используется для определения количества анализируемого вещества в образце. Амперометрия измеряет скорость, с которой электрохимически активный препарат и соответственно анализируемое вещество окисляется или восстанавливается вблизи рабочего электрода. Многочисленные варианты амперометрического способа для биодатчиков, раскрыты в патентах US 5620579, 5653863, 6153069 и 6413411.
Недостаток известных амперометрических способов заключается в неустановившейся природе тока после приложения потенциала. Скорость изменения тока по времени сначала очень значительна и становится медленнее по мере того, как происходит анализ вследствие природы изменения лежащего в основе диффузионного процесса. Пока скорость потребления восстановленного медиатора на поверхности электрода не равна скорости диффузии, установившийся ток не может быть получен. Таким образом, для амперометрических способов измерение тока в течение длительности переходного процесса до тех пор, пока достигнут установившийся режим, может быть связано с большей неточностью, чем измерение в течение установившегося промежутка времени.
«Гематокритный эффект» обусловливает препятствие точному анализу концентрации глюкозы в образцах WB. Образцы WB содержат красные кровяные (RB) тельца и плазму. Плазма, большей частью, является водой, но содержит некоторое количество протеинов и глюкозу. Гематокрит является объемом составляющей RB-телец относительно суммарного объема образца WB и часто выражается в виде процентного содержания. Образцы цельной крови обычно имеют гематокритные процентные содержания, находящиеся в диапазоне от 20 до 60%, где ~40% является средним значением.
В известных пластинках датчика для определения концентраций глюкозы глюкоза может окисляться ферментом, который, в таком случае, передает электрон медиатору. Этот восстановленный медиатор затем движется к рабочему электроду, где он окисляется электрохимическим образом. Количество окисляемого медиатора может сопоставляться току, протекающему между рабочими и противоэлектродами пластинки датчика. Количественно ток, измеренный на рабочем электроде, прямо пропорционален коэффициенту диффузии медиатора. Гематокритный эффект мешает этому процессу, так как RB-тельца блокируют диффузию медиатора на рабочий электрод. По существу, гематокритный эффект оказывает влияние на величину тока, измеренного на рабочем электроде, без какой-либо привязки к количеству глюкозы в образце.
Образцы WB, имеющие изменяющиеся концентрации RB-телец, могут служить причиной погрешностей в измерении, так как датчик не может проводить различие между более низкой концентрацией медиатора и более высокой концентрацией медиатора в тех случаях, когда RB-тельца блокируют диффузию на рабочий электрод. Например, когда анализируются образцы WB, содержащие идентичные уровни глюкозы, но имеющие гематокриты в 20, 40 и 60%, известные системы датчика будут давать три разных показания глюкозы на основании одного набора калибровочных констант (например, крутизны и перехвата). Даже если концентрации глюкозы одинаковы, система будет сообщать, что образец с гематокритом в 20% содержит глюкозы больше, чем образец с гематокритом в 60%, вследствие RB-телец, мешающих диффузии медиатора на рабочий электрод.
Нормальный диапазон гематокрита (концентрация RBC) для людей составляет от 20 до 60% и центрирован вокруг 40%. Гематокритная систематическая погрешность указывает ссылкой на разницу между эталонной концентрацией глюкозы, полученной эталонным прибором, таким как YSI 2300 STAT PLUS™, поставляемым корпорацией YSI, Елоу-Спринкс, штат Огайо, и экспериментальным показанием глюкозы, полученным из портативной системы датчика для образцов, содержащих отличающиеся уровни гематокрита. Разница между эталонными и экспериментальными показаниями является следствием изменения уровней гематокрита между отдельными образцами цельной крови.
В дополнение к гематокритному эффекту погрешности измерения могут также возникать, когда концентрация измеряемого препарата не коррелирует с концентрацией анализируемого вещества. Например, когда система датчика определяет концентрацию восстановленного медиатора, сформированную в ответ на окисление анализируемого вещества, любой восстановленный медиатор, не сформированный окислением анализируемого вещества, будет приводить к системе датчика, указывающей, что в образце присутствует больше анализируемого вещества, чем на самом деле, вследствие медиаторного фона.
В дополнение к гематокритному и медиаторному фоновому эффектам другие факторы также могут приводить к погрешностям при измерении традиционной системой электрохимического датчика при определении концентрации анализируемого вещества в образце. В одном из аспектов эти погрешности могут привноситься, так как участок пластинки датчика, который удерживает образец, может изменяться по объему от пластинки к пластинке. Погрешности также могут привноситься, когда не предоставлено достаточное количество образца, чтобы полностью заполнить объем цокольного зазора - состояние, указываемое как недозаполнение. В других аспектах, погрешности могут привноситься в измерение случайным «шумом» и когда система датчика испытывает недостаток в способности точно определять изменения температуры в образце.
В попытке преодолеть один или более из этих недостатков традиционные системы датчиков ограничились попыткой многочисленных технологий не только в отношении механической конструкции пластинки датчика и выбора реактива, но также в отношении, каким образом измерительное устройство прикладывает электрический потенциал к пластинке. Например, традиционные способы снижения гематокритного эффекта для амперометричеких датчиков включают в себя использование фильтров, как раскрыто в патентах US 5708247 и 5951836; обращение полярности прикладываемого тока, как раскрыто в WO 01/57510; и посредством способов, которые максимизируют внутреннюю устойчивость образца, как раскрыто в патенте US 5628890.
Многочисленные способы прикладывания электрического потенциала к пластинке, как правило, указываемые как импульсные способы, последовательности или циклы, были использованы для принятия мер для устранения погрешностей при определении концентрации анализируемого вещества. Например, в патенте US 4897162 импульсный способ включает в себя непрерывное прикладывание потенциалов нарастающего и спадающего напряжения, которые соединены, чтобы давать колебание треугольной формы. Более того, в публикации WO 2004/053476, а также в заявках US 2003/0178322 и 2003/0113933 описываются импульсные способы, которые включают в себя непрерывное прикладывание потенциалов нарастающего и спадающего напряжения, которые, кроме того, изменяют полярность.
Другие известные способы комбинируют специальную конфигурацию электродов с последовательностью импульсов, прикладываемой к такой конфигурации. Например, в патенте US 5942102 комбинируют специальную конфигурацию электродов, предусмотренную тонкослойным элементом с непрерывным импульсом, так что продукты реакции с противоэлектрода приходят к рабочему электроду. Эта комбинация используется для проведения реакции до тех пор, пока изменение тока в зависимости от времени не становится постоянным, таким образом, достигая надлежащего установившегося режима для медиатора, движущегося между рабочим и противоэлектродами в течение потенциальной ступени. Несмотря на то, что каждый из этих способов имеет различные преимущества и недостатки, ни один не является безупречным.
Сущность изобретения
Таким образом, имеется насущная потребность в улучшенных системах электрохимических датчиков, особенно таких, которые могут обеспечивать более точное определение концентрации анализируемого вещества за меньшее время. Системы, устройства и способы настоящего изобретения преодолевают, по меньшей мере, один из недостатков, присущих традиционным системам.
Предложен способ определения концентрации анализируемого вещества в образце, который заключается в прикладывании последовательности импульсов к образцу; последовательность импульсов включает в себя, по меньшей мере, 3 рабочих цикла в пределах 180 секунд. Каждый из рабочих циклов может включать в себя возбуждение при постоянном потенциале, в течение которого может записываться ток, и релаксацию. Последовательность импульсов может включать в себя завершающий импульс считывания и может прикладываться к пластинке датчика, включающей в себя слой диффузионного барьера (DBL) на рабочем электроде. Определяемая концентрация анализируемого вещества может иметь меньшую систематическую погрешность, обусловленную медиаторным фоном, чем такой же или другой способ, испытывающий недостаток в последовательности импульсов, включающей в себя, по меньшей мере, 3 рабочих цикла в пределах 180 секунд. Благодаря использованию данных тока при переходном процессе концентрация анализируемого вещества может определяться, когда установившийся режим не достигается в течение участков возбуждения рабочих циклов последовательности импульсов. Обработка данных может применяться к измеренным токам, чтобы определять концентрацию анализируемого вещества в образце.
Предложено ручное измерительное устройство для определения концентрации анализируемого вещества в образце. Устройство содержит стробируемое амперометрическое измерительное устройство, предназначенное для приема пластинки датчика. Стробируемое амперометрическое измерительное устройство содержит, по меньшей мере, два контакта устройства, электрически связанных с устройством отображения через электрическую схему. Пластинка с датчиком имеет, по меньшей мере, первый и второй контакты пластинки датчика. Первый контакт пластинки датчика электрически связан с рабочим электродом, а второй контакт пластинки датчика электрически связан с противоэлектродом через проводники. Первый слой реактива находится на, по меньшей мере, одном из электродов и включает в себя оксидоредуктазу и, по меньшей мере, один препарат из окислительно-восстановительной пары.
Предложено ручное измерительное устройство для приема пластинки датчика для определения концентрации анализируемого вещества в образце. Устройство содержит контакты, по меньшей мере, одно устройство отображения и электронную схему, устанавливающую электрическую связь между контактами и устройством отображения. Схема содержит электрическое зарядное устройство и процессор, причем процессор электрически связан с машиночитаемым запоминающим носителем. Носитель содержит машиночитаемую машинную программу, которая, когда выполняется процессором, побуждает зарядное устройство реализовывать последовательность импульсов, содержащую, по меньшей мере, 3 рабочих цикла в пределах 180 секунд, между контактами.
Предложен способ снижения систематической погрешности, обусловленной медиаторным фоном, при определении концентрации анализируемого вещества в образце, который заключается в прикладывании последовательности импульсов, включающей в себя, по меньшей мере, 3 рабочих цикла в пределах 180 секунд, к образцу.
Предложен способ определения длительности последовательности импульсов, включающей в себя, по меньшей мере, 3 рабочих цикла в пределах 180 секунд, для определения концентрации анализируемого вещества в образце; способ заключается в определении множества наборов калибровочных констант, определенных по токам, записанным в течение, по меньшей мере, 3 рабочих циклов, и определении длительности последовательности импульсов в ответ на определенную концентрацию анализируемого вещества в образце.
Предложен способ подачи сигнала пользователю для добавления дополнительного образца на пластинку датчика, который заключается в определении, является ли пластинка датчика недозаполненной, посредством определения постоянной затухания по токам, записанным в течение последовательности стробированных амперометрических импульсов, и сигнализации пользователю, что следует добавить дополнительный образец на пластинку датчика, если пластинка недозаполнена.
Предложен способ определения температуры образца, удерживаемого пластинкой датчика, который заключается в определении постоянной затухания по токам, записанным в течение последовательности стробированных амперометрических импульсов, и соотнесение постоянной затухания со значением температуры.
Предложен способ определения длительности последовательности импульсов для определения концентрации анализируемого вещества в образце, который заключается в определении температуры образца, удерживаемого пластинкой датчика, по постоянным затухания, определенной по токам, записанным в течение последовательности стробированных амперометрических импульсов.
Следующие определения приводятся ниже для обеспечения четкого и непротиворечивого понимания описания изобретения и формулы изобретения.
Термин «анализируемое вещество» определен в виде одного или более веществ, присутствующих в образце. Анализ определяет наличие и/или концентрацию анализируемого вещества, присутствующего в образце.
Термин «образец» определен для состава, который может содержать неизвестное количество анализируемого вещества. Типично - образец для электрохимического анализа находится в жидком виде и предпочтительно образец является водной смесью. Образец может быть биологическим образцом, таким как кровь, моча или слюна. Образец также может быть производной биологического образца, такой как вытяжка, разбавленный раствор, фильтрат или воссозданный осадок.
Термин «измеряемый препарат» определен для любого электрохимически активного препарата, который может окисляться или восстанавливаться при надлежащем потенциале на рабочем электроде пластинки электрохимического датчика. Примеры измеряемых препаратов включают в себя анализируемые вещества, оксидоредуктазы и медиаторы.
Термин «амперометрия» определен для способа анализа, где концентрация анализируемого вещества в образце определяется электрохимическим измерением скорости окисления или восстановления анализируемого вещества под потенциалом.
Термин «система» или «система датчика» определен для пластинки датчика, электрически связанной посредством проводников с измерительным устройством, которое предусматривает определение количества анализируемого вещества в образце.
Термин «пластинка датчика» определен для устройства, которое удерживает образец во время анализа и предусматривает электрическую связь между образцом и измерительным устройством. Участок пластинки датчика, который удерживает образец, часто указывается ссылкой как «цокольный зазор».
Термин «проводник» определен для электропроводного вещества, которое постоянно остается в течение электрохимического анализа.
Термин «измерительное устройство» определен для одного или более электронных устройств, которые могут прикладывать электрический потенциал к проводникам пластинки датчика и измерять результирующий ток. Измерительное устройство также может включать в себя возможности обработки для определения наличия и/или концентрации одного или более анализируемых веществ в ответ на записанные значения тока.
Термин «точность» определяет, насколько близко количество анализируемого вещества, измеренное пластинкой датчика, соответствует истинному количеству анализируемого вещества в образце. В одном из аспектов точность может выражаться в показателях систематической погрешности.
Термин «воспроизводимость» определяет, насколько близко находятся многочисленные измерения анализируемого вещества для одного и того же образца. В одном из аспектов воспроизводимость может выражаться в показателях распределения или дисперсии среди многочисленных измерений.
Термин «окислительно-восстановительная реакция» определен для химической реакции между двумя препаратами, определяющий перенос, по меньшей мере, одного электрона с первого препарата на второй препарат. Таким образом, окислительно-восстановительная реакция включает в себя окисление и восстановление. Полуэлемент окисления реакции приводит к потере, по меньшей мере, одного электрона первым препаратом наряду с тем, что полуэлемент восстановления приводит к добавлению, по меньшей мере, одного электрона ко второму препарату. Ионный заряд препарата, который окисляется, делается более положительным на величину, равную количеству удаленных электронов. Ионный заряд препарата, который восстанавливается, делается более отрицательным на величину, равную количеству приобретенных электронов.
Термин «медиатор» используется для вещества, которое может окисляться или восстанавливаться, и которое может переносить один или более электронов. Медиатор является реактивом при электрохимическом анализе и не является интересующим анализируемым веществом, но предусматривает косвенное измерение анализируемого вещества. В упрощенной системе медиатор подвергается окислительно-восстановительной реакции в ответ на окисление или восстановление анализируемого вещества. Окисленный или восстановленный медиатор затем подвергается противоположной реакции на рабочем электроде пластинки датчика и регенерируется в свою исходную степень окисления.
Термин «связующее вещество» определяет материал, который обеспечивает физическую поддержку и удержание реактивов наряду с обладанием химической совместимости с реактивами.
Термин «медиаторный фон» определяет систематическую погрешность, привнесенную в измеряемую концентрацию анализируемого вещества, относящуюся к измеряемым препаратам, не чувствительным к лежащей в основе концентрации анализируемого вещества.
Термин «недозаполнение» определяет, когда недостаточное количество образца было помещено на пластинку датчика для получения точного анализа.
Термин «окислительно-восстановительная пара» определяет два связанных препарата химического вещества, имеющих разные степени окисления. Восстановление препарата, имеющего более высокую степень окисления, дает препарат, имеющий более низкую степень окисления. В качестве альтернативы - окисление препарата, имеющего более низкую степень окисления, дает препарат, имеющий более высокую степень окисления.
Термин «степень окисления» определяет формальный ионный заряд химического препарата, такого как мельчайшая частица. Более высокая степень окисления, такая как (III), является более положительной, а более низкая степень окисления, такая как (II), является менее положительной.
Термин «растворимый окислительно-восстановительный препарат» определяет вещество, которое способно подвергаться окислению или восстановлению, и которое растворимо в воде (pH 7, 25°C) при уровне, по меньшей мере, в 1,0 грамм на литр. Растворимый окислительно-восстановительный препарат включает в себя электрически активные органические молекулы, органотранзитные металлические комплексы и переходные металлические координационные комплексы. Термин «растворимый окислительно-восстановительный препарат» исключает элементарные металлы и отдельные ионы металлов, особенно те, которые нерастворимы или трудно растворимы в воде.
Термин «оксидоредуктаза» определяет любой фермент, который способствует окислению или восстановлению анализируемого вещества. Оксидоредуктаза является реактивом. Термин оксидоредуктаза включает в себя «оксидазы», которые способствуют реакциям окисления, где молекулярный кислород является акцептором электронов; «редуктазы», которые способствуют реакциям восстановления, где анализируемое вещество восстанавливается, и молекулярный кислород не является анализируемым веществом; и «дегидрогеназы», которые способствуют реакциям окисления, где молекулярный кислород не является акцептором электронов. Например, Oxford Dictionary of Biochemistry and Molecular Biology, Revised Edition, A.D. Smith, Ed., New York: Oxford University Press (1997), pp.161, 476, 477, and 560 (Оксфордский словарь по биохимии и молекулярной биологии, переработанное издание под редакцией А.Д. Смит, Нью-Йорк: Издательство оксфордского университета (1997), стр.161, 476, 477 и 560).
Термин «электрически активная органическая молекула» определяет органическую молекулу, не имеющую металла, которая способна подвергаться реакции окисления или восстановления. Электрически активные органические молекулы могут служить в качестве медиаторов.
Термин «органотранзитный металлический комплекс», также указываемый ссылкой как «комплекс OTM», определен в качестве комплекса, где переходный металл привязан к, по меньшей мере, одному атому углерода благодаря сигма-связи (формальный заряд -1 на атоме углерода привязан сигма-связью к переходному металлу) или пи-связи (формальный заряд 0 на атомах углерода привязан пи-связью к переходному металлу). Например, ферроцен является комплексом OTM с двумя циклопентадиениловыми (Cp) кольцами, каждое привязано через свои пять атомов углерода к центру железа двумя пи-связями и одной сигма-связью. Другим примером комплекса OTM является феррицианид (III) и его восстановленный аналог ферроцианида (II), где шесть цианолигант (формальный заряд -1 на каждом из 6 лиганд) привязаны сигма-связью к центру железа через атомы углерода.
Термин «координационный комплекс» определяет комплекс, имеющий вполне определенную координационную геометрию, такую как восьмигранная или квадратная плоская. В отличие от комплексов OTM, которые определены своими связями, координационные комплексы определены своей геометрией. Таким образом, координационные комплексы могут быть комплексами OTM (такими как упомянутый ранее феррицианид), или комплексами, где атомы неметаллов, иные чем углерод, такие как гетероатомы, в том числе азот, сера, кислород и фосфор, дативно привязаны к центру переходного металла. Например, гексаамин рутения является координационным комплексом, имеющим вполне определенную восьмигранную геометрию, где шесть лиганд NH3 (формальный заряд 0 на каждой из 6 лиганд) дативно привязаны к центру рутения. Более полное обсуждение органотранзитных металлических комплексов, координационных комплексов и связей переходных металлов приводится в Collman et al., Principles and Applications of Organotransition Metal Chemistry (1987) (Коллман и другие; Принципы и применения химии органотранзитных металлов (1987 год)) и Miessler & Tarr, Inorganic Chemistry (1991) (Мисслер и Тарр; Неорганическая химия (1991 год)).
Термин «установившийся» определяет, когда изменение электрохимического сигнала (тока) по отношению к его независимой входной переменной (напряжению или времени) является, по существу, постоянным, например, в пределах ±10 или ±5%.
Термин «невозвратная точка» определяет значение тока, полученного в качестве функции времени, когда возрастающая скорость диффузии измеряемого препарата к поверхности проводника переходит к относительно постоянной скорости диффузии. До невозвратной точки ток является быстроизменяющимся в зависимости от времени. Подобным образом после невозвратной точки скорость затухания тока становится относительно постоянной, таким образом, отражая относительно постоянную скорость диффузии измеряемого препарата на поверхность проводника.
Термин «относительно постоянный» определяет, когда изменение значения тока или скорость диффузии находится в пределах ±20, ±10 или ±5%.
Термин «средняя начальная толщина» указывает на среднюю высоту слоя до введения жидкого образца. Термин «средний» используется, так как верхняя поверхность слоя является неровной, имеющей пики и впадины.
Термин «интенсивность окисления-восстановления» (RI) определен в качестве суммарного времени возбуждения, деленного на сумму суммарного времени возбуждения и суммарных временных задержек релаксации для последовательности импульсов.
Термин «ручное устройство» определен для устройства, которое может удерживаться в руке человека и является портативным. Примером ручного устройства является измерительное устройство, следующее вместе с элитной системой контроля глюкозы крови Ascensia®, доступной для приобретения у ООО Bayer HealthCare, Тэрритаун, штат Нью-Йорк.
Термин «на» определен как «над» и имеет значение относительно описываемой ориентации. Например, если первый компонент нанесен поверх, по меньшей мере, части второго компонента, первый компонент упоминается «нанесенным на» второй. В другом примере, если первый компонент присутствует выше, по меньшей мере, части второго компонента, первый компонент упоминается находящимся «на» втором. Использование термина «на» не исключает наличия вещества между верхним и нижним компонентами. Например, первый компонент может иметь покрытие поверх его верхней поверхности, тем не менее, второй компонент поверх, по меньшей мере, части первого компонента может быть описан как «на» первом компоненте. Таким образом, использование термина «на» может означать или может не означать, что два компонента, являющиеся связанными, находятся в физическом соприкосновении.
Краткое описание чертежей
Изобретение может быть лучше понято из приведенного со ссылками на чертежи ниже описания, на которых:
Фиг.1A изображает общий вид собранной пластинки датчика, согласно изобретению;
фиг.1B - вид сверху пластинки датчика со снятой крышкой, согласно изобретению;
фиг.2 - схему вида сбоку пластинки датчика по фиг.1B, согласно изобретению;
фиг.3 - блок-схему последовательности операций электрохимического аналитического способа определения наличия и концентрации анализируемого вещества в образце, согласно изобретению;
фиг.4A и 4B - рабочий электрод, имеющий поверхностный проводник и DBL во время прикладывания длинного и короткого импульсов считывания, согласно изобретению;
фиг.5A-5E - пять примеров последовательностей импульсов, где многочисленные рабочие циклы применялись к пластинке датчика после введения образца, согласно изобретению;
фиг.6A - выходные токи при переходном процессе последовательности импульсов, изображенной на фиг.5B, для образцов WB с гематокритом 40%, содержащих 50, 100, 200, 400 и 600 мг/дл глюкозы, согласно изобретению;
фиг.6B - контурный профиль тока, подготовленный вычерчиванием и соединением конечных значений тока по каждому из профилей тока при переходном процессе, показанных на фиг.6A, согласно изобретению;
фиг.6C - контурные профили тока, подготовленные из профилей тока при переходном процессе, сформированных последовательностью импульсов, изображенной на фиг.5E, согласно изобретению;
фиг.6D - диаграммы выходных сигналов относительно входных сигналов для электрохимической системы, использующей последовательности стробированных амперометрических импульсов, согласно изобретению;
фиг.7A и 7B - диаграммы, показывающие улучшение в точности измерения, когда DBL комбинируется с коротким импульсом считывания, согласно изобретению;
фиг.7C и 7D - диаграммы, иллюстрирующие уменьшение в гематокритной систематической погрешности, которое может быть получено, когда последовательность стробированных амперометрических импульсов комбинируется с DBL, согласно изобретению;
фиг.8 - диаграммы токов конечных точек, записанных в многочисленных рабочих циклах, когда последовательность импульсов по фиг.5B прикладывалась к образцам WB, содержащим различные концентрации глюкозы, согласно изобретению;
фиг.9A - профили тока при переходных процессах, полученные из последовательности импульсов, изображенной на фиг.5B, когда образец в 2,0 мкл помещался на 10 разных пластинок датчиков, согласно изобретению;
фиг.9B - профили скорости затухания каждой последовательности импульсов, преобразованной из фиг.9A в качестве функции времени, согласно изобретению;
фиг.10 - диаграммы К констант, определенных из последовательности им