B-нуклеированная полипропиленовая композиция

Изобретение относится к полипропиленовой композиции, ее изготовлению и ее применению. Композиция содержит изотактический пропиленовый гомополимер и статистический пропилен-бутеновый сополимер, содержащий 1-бутен, вплоть до 8 мас.%, или статистический пропилен-этиленовый сополимер (В'), содержащий этилен не более 3,0 мас.%. (мас.). При этом композиция является, по меньшей мере, на 50%, закристаллизованной в β-модификации. Полипропиленовая композиция демонстрирует превосходные эксплуатационные характеристики в испытании на действие давления при сохранении жесткости, а также ударопрочности на высоких уровнях. Кроме того, настоящее изобретение относится к трубам и кабелям, обладающим вышеупомянутыми свойствами. 6 н. и 12 з.п. ф-лы, 6 табл.

Реферат

Настоящее изобретение относится к новой полипропиленовой композиции, ее изготовлению и ее применению, а также к трубам и кабелям, содержащим указанную новую полипропиленовую композицию.

Полимеры на полипропиленовой основе демонстрируют множество характеристик, которые делают их подходящими для использования во множестве областей применения, подобных кабелям, трубам, фитингам, формованным изделиям, пеноматериалам и тому подобному. Полипропилен в качестве материала трубы в основном используют в безнапорных областях применения, подобных защите кабелей, а также для кульвертов (например, для автомобильных и железнодорожных дорог), фитингов и профилей. Полипропилен также используют и для напорных труб, в основном для горячей воды, и технологических труб, то есть для транспортирования жидкости, например воды, во время которого текучая среда может находиться под давлением. Кроме того, транспортируемая текучая среда может иметь различные температуры, обычно в пределах температурного диапазона от приблизительно 0 до приблизительно 70°С. Хорошие свойства при высокой температуре у полипропилена по сравнению с другими полиолефинами зачастую используют для областей применения труб, но также и для областей применения кабелей. Используют все три основных типа пропиленовых полимеров, то есть, гомополимеры, статистические сополимеры и блок-сополимеры (то есть гетерофазные сополимеры).

В общем случае материалы на полипропиленовой основе, выбираемые для областей применения труб и кабелей, в результате должны приводить к получению продуктов, демонстрирующих превосходные эксплуатационные характеристики в испытании на действие давления, а также высокую ударную вязкость при одновременном все еще сохранении хорошей жесткости. Однако данные свойства взаимосвязаны друг с другом и очень часто ведут себя конфликтующим образом, то есть улучшение конкретного свойства может быть осуществлено только за счет ухудшения другого свойства.

Жесткость может быть улучшена в результате увеличения в композиции количества гомополимера. Как следствие материал становится более хрупким, тем самым, в результате приводя к получению неудовлетворительных ударных свойств. Кроме того, высокая хрупкость обычно сопровождается пониженным сопротивлением медленному росту трещины, тем самым, оказывая негативное влияние на долговечность.

Таким образом, предпринималось множество усилий, направленных на получение труб и кабелей, которые демонстрируют хорошие эксплуатационные характеристики в испытании на действие давления, то есть улучшенное сопротивление растрескиванию при напряжении, и, таким образом, сопротивление хрупкому разрушению. Однако, до сих пор было невозможно улучшить эксплуатационные характеристики в испытании на действие давления без ухудшения других важных свойств трубы или кабеля, подобных жесткости или ударопрочности трубы или кабеля.

Например, документ WO 2003/037981 A1 относится к системам труб, содержащим полимерную композицию, образованную из пропиленового сополимера, содержащего в качестве сомономера С4-С10 α-олефин, и этилен-пропиленового каучука. Такие композиции характеризуются очень низкой жесткостью (см. примеры 2 и 3 международной заявки), а также неудовлетворительными являются и эксплуатационные характеристики в испытании на действие давления (см. таблицу 5 настоящего изобретения).

В документе ЕР 1344793 А1 и статье авторов Qiang Zheng et al. (Polymer 46 (22005) 3163-3174) описывается β-нуклеированный гетерофазный пропиленовый сополимер, однако они не относятся к β-нуклеированной композиции, образованной из пропиленового гомополимера и статистического пропиленового сополимера.

Автор A. Menyhárd (European Polymer Journal 41 (2005) 669-677) обсуждает β-нуклеированные пропиленовые сополимеры, характеризующиеся высоким уровнем содержания этилена. Однако автор Menyhárd не обращается к улучшению свойств труб при использовании β-нуклеированных пропиленовых сополимеров, характеризующихся низким уровнем содержания этилена.

В документе US 2006/0177632 A1 описываются β-нуклеированные полимерные смеси на основе полиэтиленов, но он не относится конкретно к полипропиленовым смесям.

Авторы Qiang Zheng et al. (Polymer 46 (2005) 3163-3174) описывают β-нуклеированные гетерофазные пропиленовые сополимеры, включающие пропиленовую гомополимерную матрицу и этилен-пропиленовый каучук. Однако авторы Zheng et al. не обращаются к улучшению свойств трубы при использовании β-нуклеированных пропиленовых сополимеров, характеризующихся низким уровнем содержания этилена.

В документе ЕР 1006149 описываются специфические пропиленовые гомополимеры и статистические сополимеры, но не их комбинация.

Документ ЕР 1448631 В1 также относится к пропиленовому сополимеру, но не к смеси пропиленового гомополимера и пропиленового сополимера.

В документе ЕР 1724303 А1 описывается гетерофазный пропиленовый сополимер, который, однако, не является β-нуклеированным.

Таким образом, цель настоящего изобретения заключается в предложении полимерной композиции, которая делает возможным изготовление труб, демонстрирующих превосходные эксплуатационные характеристики в испытании на действие давления при сохранении жесткости, а также ударопрочности на высоких уровнях. Кроме того, настоящее изобретение относится к трубам и кабелям, обладающим вышеупомянутыми свойствами.

Открытие настоящего изобретения заключается в предложении β-нуклеированной полипропиленовой композиции, образованной из гомополимерного компонента и сополимерного компонента. где предпочтительно β-нуклеирование преимущественно проходит в гомополимерной части.

Таким образом, настоящее изобретение относится к пропиленовой композиции, содержащей

(а) пропиленовый гомополимер (А) и

(b) пропилен-бутеновый сополимер (В) или пропилен-этиленовый сополимер (В'), предпочтительно статистический пропилен-бутеновый сополимер (В) или статистический пропилен-этиленовый сополимер (В'), характеризующийся уровнем содержания этилена, не превышающим 3,0% (мас.), где полипропиленовая композиция является β-нуклеированной.

В альтернативном варианте изобретение может быть определено пропиленовой композицией, содержащей

(а) пропиленовый гомополимер (А) и

(b) пропилен-бутеновый сополимер (В) или пропилен-этиленовый сополимер (В'), предпочтительно статистический пропилен-бутеновый сополимер (В) или статистический пропилен-этиленовый сополимер (В'), характеризующийся уровнем содержания этилена, не превышающим 3,0% (мас.), где полипропиленовая композиция является, по меньшей мере частично, предпочтительно, по меньшей мере, на 50% закристаллизованной в β-модификации.

Как это ни удивительно, но, как было установлено, из упомянутых полимерных композиций могут быть получены трубы, демонстрирующие превосходные эксплуатационные характеристики в испытании на действие давления в сопоставлении с трубами, соответствующими современному уровню техники. Кроме того, выдающимися являются не только эксплуатационные характеристики в испытании на действие давления для труб на основе полимерной композиции изобретения, но, кроме того, превосходными являются также и жесткость, и ударная вязкость трубы и полипропиленовой композиции. В частности, превышающими средний уровень являются ударопрочность в испытании для образца с надрезом при низких температурах и модуль упругости при изгибе (таблица 6).

В настоящем изобретении к пропиленовой композиции (пропиленовый гомополимер (А); сополимер (В) или (В'), β-модификация) предъявляются три требования, которые в последующем изложении описываются более подробно.

Во-первых, полипропиленовая композиция должна содержать пропиленовый гомополимер (А). Выражение «гомополимер», использующееся в настоящем изобретении, относится к полипропилену, который состоит по существу, то есть, по меньшей мере, на 97% (мас.), предпочтительно, по меньшей мере, на 98% (мас.), более предпочтительно, по меньшей мере, на 99%, еще более предпочтительно, по меньшей мере, на 99,8% (мас.) из пропиленовых звеньев. В одном предпочтительном варианте реализации в пропиленовом гомополимере могут быть обнаружены только пропиленовые звенья. Уровень содержания сомономера может быть определен по методу инфракрасной спектроскопии с Фурье-преобразованием, как это описывается далее в примерах.

Еще более предпочтительно пропиленовым гомополимером является изотактический пропиленовый гомополимер. Таким образом, предпочитается, чтобы пропиленовый гомополимер характеризовался бы довольно высокой концентрацией пентал, то есть большей, чем 90%, более предпочтительно большей, чем 92%, еще более предпочтительно большей, чем 93%, а даже более предпочтительно большей, чем 95%.

Кроме того, пропиленовый гомополимер (А) может быть унимодальным или мультимодальным, подобным бимодальному. Однако предпочитается, чтобы пропиленовый гомополимер (А) был бы унимодальным.

Выражения «мультимодальный» или «бимодальный», использующиеся в настоящем документе, относятся к модальности полимера, то есть форме кривой его молекулярно-массового распределения, которая представляет собой график зависимости фракции молекулярной массы от его молекулярной массы. Как будет разъяснено далее, полимерные компоненты настоящего изобретения могут быть получены по ступенчатому постадийному способу при использовании реакторов в последовательной конфигурации и ведения операции при различных условиях проведения реакций. Как следствие каждая фракция, полученная в конкретном реакторе, будет характеризоваться своим собственным молекулярно-массовым распределением. При наложении кривых молекулярно-массовых распределений от данных фракций друг на друга для получения кривой молекулярно-массового распределения конечного полимера данная кривая может обнаруживать наличие двух и более максимумов или быть, по меньшей мере, отчетливо уширенной в сопоставлении с кривыми для индивидуальных фракций. Такой полимер, полученный на двух и более последовательных стадиях, называют бимодальным или мультимодальным в зависимости от количества стадий.

Кроме того, предпочитается, чтобы пропиленовый гомополимер (А) характеризовался бы довольно низкой скоростью течения расплава. Скорость течения расплава в основном зависит от средней молекулярной массы. Это обуславливается тем, что в сопоставлении с короткими молекулами длинные молекулы придают материалу меньшую тенденцию к текучести. Увеличение молекулярной массы обозначает уменьшение значения MFR. Скорость течения расплава (MFR) измеряют в г/10 мин для полимера, выпускаемого через определенный мундштук в указанных условиях по температуре и давлению, и она представляет собой меру вязкости полимера, на которую, в свою очередь, для каждого типа полимера в основном влияют его молекулярная масса, но также и его степень разветвления. Скорость течения расплава, измеренную под нагрузкой 2,16 кг при 230°С (ISO 1133), обозначают как MFR2 (230°C).

Как будет разъяснено более подробно далее, пропиленовый гомополимер (А) может быть получен на первой стадии, то есть до получения сополимера (В) и сополимера (В') соответственно, или на более поздней стадии. В случае получения на более поздней стадии пропиленовый гомополимер (А) может быть перемешан в реакторе с компонентом, то есть сополимером (В) или сополимером (В'), уже полученными ранее, тем самым, приводя в результате к получению полимерной смеси, для которой может быть определена только совокупная скорость течения расплава, а не скорость течения расплава каждого компонента в смеси. Однако даже в случае получения в виде смеси в реакторе значение MFR2 (230°С) пропиленового гомополимера (А) будет относиться к фракции чистого гомополимера. Другими словами, именно значение скорости течения расплава для пропиленового гомополимера (А) было бы получено в случае проведения полимеризации в отсутствие дополнительных компонентов. То же самое относится и к пропиленовому сополимеру (В) или (В'), дополнительно определенному далее по значению MFR2 (230°C), то есть значение скорости течения расплава для пропиленового сополимера (В) или (В'), приведенное в настоящем изобретении, понимается как значение MFR пропиленового сополимера (В) или (В'), заполимеризованного в отсутствие дополнительных компонентов.

В соответствии с этим является предпочтительным, чтобы пропиленовый гомополимер (А) характеризовался скоростью течения расплава MFR2 (230°C), не большей, чем 5 г/10 мин, предпочтительно меньшей чем 5 г/10 мин, более предпочтительно меньшей чем 2 г/10 мин, подобной менее чем 0,8 г/10 мин.

Второй обязательный компонент полипропиленовой композиции представляет собой пропиленовый сополимер, который является либо пропилен-бутеновым сополимером (В), либо пропилен-этиленовым сополимером (B').

Пропилен-бутеновый сополимер (В) может содержать дополнительный α-олефин (α-олефины), подобный С2 или С5-С10 α-олефину (α-олефинам). В таком случае в особенности предпочтительным является этилен. Таким образом, в одном предпочтительном варианте реализации пропилен-бутеновый сополимер (В) представляет собой терполимер, содержащий пропилен, 1-бутен и этилен. Однако более предпочтительно, чтобы пропилен-бутеновый сополимер (В) не содержал бы дополнительного сомономера (сомономеров), то есть 1-бутен представлял бы собой единственный сомономер пропилен-бутенового сополимера (В) (бинарный пропилен-бутеновый сополимер (В)).

Пропилен-этиленовый сополимер (В') может содержать дополнительный α-олефин (α-олефины), подобный С4-С10 α-олефину (α-олефинам). В таком случае в особенности предпочтительным является 1-бутен. Таким образом, в одном предпочтительном варианте реализации пропилен-этиленовый сополимер (В') представляет собой терполимер, содержащий пропилен, этилен и 1-бутен. Однако более предпочтительно, чтобы пропилен-этиленовый сополимер (В') не содержал бы дополнительного сомономера (сомономеров), то есть этилен представлял бы собой единственный сомономер пропилен-этиленового сополимера (В') (бинарный пропилен-этиленовый сополимер (В')).

Таким образом, предпочтительными являются бинарный пропилен-бутеновый сополимер (В) и бинарный пропилен-этиленовый сополимер (B'), где в особенности предпочтительным является бинарный пропилен-бутеновый сополимер (В).

Более предпочтительно определенные ранее сополимеры (В) и (B') представляют собой статистические сополимеры. Таким образом, статистический пропилен-бутеновый сополимер (В), соответствующий настоящему изобретению, представляет собой статистический пропилен-бутеновый сополимер, полученный в результате статистического вставления звеньев 1-бутена (в случае присутствия совместно со звеньями этилена или С5-С10 α-олефина, предпочтительно этилена, с образованием терполимеров). С другой стороны, статистический пропилен-этиленовый сополимер (В'), соответствующий настоящему изобретению, представляет собой статистический пропилен-этиленовый сополимер, полученный в результате статистического включения звеньев этилена (в случае присутствия совместно со звеньями С4-С10 α-олефина, предпочтительно 1-бутена, с образованием терполимеров).

Тип сомономера оказывает значительное влияние на несколько свойств, подобных поведению при кристаллизации, жесткости, температуре плавления или текучести полимерного расплава. Для достижения целей настоящего изобретения, в частности, для получения улучшенного баланса между жесткостью, стойкостью к ударной нагрузке и эксплуатационными характеристиками в испытании на действие давления необходимо, чтобы сополимер (В) или сополимер (B') в качестве сомономера содержали 1-бутен (для (В)) и этилен (для (B')) соответственно, по меньшей мере, детектируемым образом.

С другой стороны, сополимер (В) или (B') предпочтительно не должен представлять собой эластомер, как, например, это будет определено далее.

Таким образом, для получения в особенности хороших результатов, пропилен-бутеновый сополимер (В) предпочтительно содержит не более чем вплоть до 8,0% (мас.) сомономера, в частности бутена, при расчете на массу пропилен-бутенового сополимера (В). Как указывалось ранее, сомономер 1-бутен является обязательным, в то время как другие α-олефины могут присутствовать дополнительно. Однако количество дополнительных α-олефинов предпочтительно не должно превышать количество 1-бутена в пропилен-бутеновом сополимере (В). Более предпочтительно количество сомономера, в частности 1-бутена, в пропилен-бутеновом сополимере (В) не превышает 7,0% (мас.), еще более предпочтительно не превышает 6,0% (мас.), а даже более предпочтительно не превышает 5,0% (мас.). В соответствии с этим количество сомономера, в частности 1-бутена, в пропилен-бутеновом сополимере (В) находится в диапазоне от 0,2 до 7,0% (мас.), более предпочтительно от 0,5 до 6,0% (мас.), еще более предпочтительно от 0,5 до 5,0% (мас.).

В случае сополимера в виде пропилен-этиленового сополимера (B') предпочитается, чтобы он содержал бы не более, чем вплоть до 5,0% (мас.) сомономера, в частности этилена, при расчете на массу пропилен-этиленового сополимера (В'). Как указывалось ранее, сомономер этилен является обязательным, в то время как другие α-олефины могут присутствовать дополнительно. Однако количество дополнительных α-олефинов предпочтительно не должно превышать количество этилена в пропилен-этиленовом сополимере (В'). Более предпочтительно количество сомономера, в частности этилена, в пропилен-этиленовом сополимере (В') не превышает 4,0% (мас.), еще более предпочтительно не превышает 3,5% (мас.), а даже более предпочтительно не превышает 3,0% (мас.). В соответствии с этим количество сомономера, в частности этилена, в пропилен-этиленовом сополимере (В') находится в диапазоне от 0,2 до 5,0% (мас.), более предпочтительно от 0,5 до 3,5% (мас.), еще более предпочтительно от 0,5 до 2,5% (мас.).

Предпочтительно сополимер (В) или сополимер (В') имеют среднемассовую молекулярную массу, которая является равной или большей среднемассовой молекулярной массы пропиленового гомополимера (А). Вследствие нахождения молекулярной массы и скорости течения расплава в обратной зависимости друг к другу предпочитается также, чтобы сополимер (В) или сополимер (В') характеризовались бы значением MFR2 (230°C), которое является меньшим или равным значению MFR2 (230°C) пропиленового гомополимера (А). В любом случае предпочитается, чтобы пропилен-бутеновый сополимер (В) или пропилен-этиленовый сополимер (B') характеризовались бы значением MFR2 (230°C), не большим чем 5,0 г/10 мин, более предпочтительно меньшим чем 1,5 г/10 мин, еще более предпочтительно меньшим чем 0,5 г/10 мин, согласно измерению в соответствии с документом ISO 1133.

В одном предпочтительном варианте реализации пропиленовый гомополимер (А) и сополимер (В) или (B') получают в двух и более реакторах, соединенных друг с другом в последовательной конфигурации, как будет более подробно разъяснено далее. Как следствие оба компонента перемешивают в реакторе во время полимеризации и в результате приводят к получению предпочтительно мультимодальной, более предпочтительно бимодальной, полипропиленовой композиции. Предпочтительно гомополимер (А) имеет меньшую молекулярную массу, чем сополимер (В) или (B').

Кроме того, свой вклад в настоящее изобретение вносят массовое соотношение между пропиленовым гомополимером (А) и сополимером (В) или массовое соотношение между пропиленовым гомополимера (А) и сополимером (B') пропиленовой композиции. Таким образом, предпочитается, чтобы полипропиленовая композиция содержала бы

(а)

(i) от 30 до 70% (мас.), более предпочтительно от 35 до 65% (мас.), еще более предпочтительно от 40 до 60% (мас.), даже более предпочтительно от 45 до 55% (мас.), пропиленового гомополимера (А) при расчете на гомополимер (А) и сополимер (В) (гомополимер (А)/(гомополимер (А) + сополимер (В)),

(ii) от 30 до 70% (мас.), более предпочтительно от 35 до 65% (мас.), еще более предпочтительно от 40 до 60% (мас.), даже более предпочтительно от 45 до 55% (мас.), сополимера (В) при расчете на гомополимер (А) и сополимер (В) (гомополимер (А)/(гомополимер (А) + сополимер (В))

или

(b)

(i) от 30 до 70% (мас.), более предпочтительно от 35 до 65% (мас.), еще более предпочтительно от 40 до 60% (мас.), даже более предпочтительно от 45 до 55% (мас.) пропиленового гомополимера (А) при расчете на гомополимер (А) и сополимер (В') (гомополимер (А)/(гомополимер (А) + сополимер (В')),

(ii) от 30 до 70% (мас.), более предпочтительно от 35 до 65% (мас.), еще более предпочтительно от 40 до 60% (мас.), даже более предпочтительно от 45 до 55% (мас.) сополимера (В') при расчете на гомополимер (А) и сополимер (В') (гомополимер (А)/(гомополимер (А) + сополимер (В')).

Предпочитается, чтобы оба полимерных компонента полипропиленовой композиции являлись бы основными компонентами, то есть превышали бы более чем 70% (мас.), предпочтительно более чем 80% (мас.), более предпочтительно более чем 90% (мас.), еще более предпочтительно более чем 95% (мас.).

В соответствии с этим в одном предпочтительном варианте реализации полипропиленовая композиция не содержит эластомерного компонента, подобного эластомерному сополимеру пропилена, и, по меньшей мере, одного олефинового сомономера, то есть этилен-пропиленового каучука (ЭПК), описанного, например, в работе Encyclopedia of Polymer Science and Engineering, second edition, vol.6, p.545-558. Эластомерный компонент, соответствующий пониманию настоящего изобретения, в частности, представляет собой пропиленовый сополимер, содержащий один или несколько сополимеризуемых С2 или С4-С10 α-олефинов (α-олефин), в частности этилен, в количестве, равном, по меньшей мере, 25% (мас.) в эластомерном компоненте, а более предпочтительно доходящем вплоть до 50% (мас.) в эластомерном компоненте.

В еще одном предпочтительном варианте реализации полипропиленовая композиция содержит эластомерный компонент, определенный в предшествующем абзаце.

Более предпочтительно полипропиленовая композиция настоящего изобретения содержит пропиленовый гомополимер (А) и сополимер (В) или (B') в качестве единственных полимерных компонентов упомянутой композиции, то есть композиция может содержать дополнительные добавки и, в частности, β-нуклеирующие добавки, но не дополнительный другой полимер. Таким образом, оба полимерных компонента, то есть пропиленовый гомополимер (А) и сополимер (В) или (В'), совместно составляют количество, предпочтительно большее чем 80% (мас.), более предпочтительно большее чем 90% (мас.), еще более предпочтительно большее чем 95% (мас.), даже более предпочтительно большее чем 97% (мас.), подобное равному или большему 98% (мас.) полипропиленовой композиции, в то время как оставшуюся часть, то есть количество, предпочтительно не большее чем 20% (мас.), более предпочтительно не большее чем 10% (мас.), еще более предпочтительно не большее чем 5% (мас.), даже более предпочтительно не большее чем 3% (мас.), подобное равному или меньшему 3% (мас.) полипропиленовой композиции, составляют неполимерные компоненты, подобные β-нуклеирующим добавкам и необязательно дополнительным добавкам, подобным наполнителям, не взаимодействующим с бета-нуклеирующими добавками, например, слюда и/или мел.

В рамках одного дополнительного требования полипропиленовая композиция должна быть β-нуклеированной, то есть полипропиленовая композиция должна быть частично закристаллизована в β-модификации. Таким образом, предпочитается, чтобы степень β-модификации полипропиленовой композиции составляла бы величину, равную, по меньшей мере, 50%, более предпочтительно, по меньшей мере, 60%, еще более предпочтительно, по меньшей мере, 65% (мас.), подобную, по меньшей мере, 70% (согласно определению по методу ДСК при использовании второго нагревания, как это подробно описывается в разделе с примерами).

Как было признано, β-нуклеирование, в частности, проходит в высокомолекулярном пропиленовом гомополимере (А). Таким образом, в рамках одного дополнительного предпочтительного требования пропиленовый гомополимер (А) является более β-закристаллизованным в сопоставлении с сополимером (В) или (В').

Само собой разумеется то, что полипропиленовая композиция предпочтительно содержит также и β-нуклеирующие добавки. Предпочтительные β-нуклеирующие добавки более подробно определяют далее там, где описывается способ получения полипропиленовой композиции изобретения. Количество β-нуклеирующих добавок находится в диапазоне от 0,0001 до 2,0% (мас.), более предпочтительно в диапазоне от 0,005 до 0,5% (мас.), при расчете на сумму полимеров, в частности, на сумму пропиленового гомополимера (А) и сополимера (В) или (В').

В дополнение к этому, предпочитается, чтобы сама полипропиленовая композиция характеризовалась бы довольно низкой скоростью течения расплава (MFR). Таким образом, необходимо понимать то, что полипропиленовая композиция характеризуется значением MFR2 (230°C), не большим чем 0,8 г/10 мин, более предпочтительно не большим чем 0,3 г/10 мин. Предпочтительные диапазоны заключены в пределах от 0,2 до 0,8 г/10 мин, подобных пределам от 0,2 до 0,3 г/10 мин.

Как указывалось ранее, необходимо понимать то, что полипропиленовая композиция характеризуется мультимодальной, предпочтительно бимодальной, кривой молекулярно-массового распределения. Таким образом, предпочитается, чтобы полипропиленовая композиция характеризовалась бы молекулярно-массовым распределением (ММР) в диапазоне от 3 до 8, более предпочтительно в диапазоне от 4 до 6.

Среднечисленную молекулярную массу (Mn) и среднемассовую молекулярную массу (Mw), а также молекулярно-массовое распределение (ММР) в настоящем изобретении определяют по методу эксклюзионной хроматографии размеров (ЭХР) при использовании прибора Waters Alliance GPCV 2000, снабженного работающим в интерактивном режиме вискозиметром. Температура печи составляет 140°С. В качестве растворителя используют трихлорбензол (ISO 16014). Точный способ измерения определен в разделе с примерами.

Молекулярно-массовое распределение также может быть выражено через разжижение при сдвиге и полидисперсность, измеренные при помощи динамического пластометра, как это определено в разделе с примерами. Таким образом, индекс разжижения при сдвиге (ИРП (0/50)) полипропиленовой композиции предпочтительно является большим чем 9, и/или индекс полидисперсности (PI) является большим чем 3,5. Кроме того, необходимо понимать то, что уровень содержания сомономера в совокупной полипропиленовой композиции является не слишком высоким.

Таким образом, предпочитается, чтобы количество сомономеров, в частности 1-бутена, присутствующих в полипропиленовой композиции, которые составляют пропилен-бутеновый сополимер (В), было бы не большим, чем доходящее вплоть до 6,0% (мас.), более предпочтительно было бы не большим, чем доходящее вплоть до 5,0% (мас.), еще более предпочтительно было бы не большим, чем доходящее вплоть до 4,0% (мас.), при расчете на совокупную массу полипропиленовой композиции. В соответствии с этим количество сомономера, в частности, 1-бутена, в совокупной полипропиленовой композиции находится в диапазоне от 0,1 до 6,0% (мас.), более предпочтительно от 0,2 до 5,0% (мас.), еще более предпочтительно от 0,5 до 5,0% (мас.).

Как указывалось ранее, сомономер 1-бутен в полипропиленовой композиции является обязательным, в то время как другие α-олефины могут присутствовать дополнительно. Однако количество дополнительных α-олефинов предпочтительно не должно превышать количество 1-бутена в полипропиленовой композиции. Более предпочтительно количество сомономеров, приведенное в предшествующем абзаце, относится только к 1-бутену, тогда как другие сомономеры в полипропиленовой композиции изобретения не присутствуют.

С другой стороны, необходимо понимать то, что в случае содержания в полипропиленовой композиции пропилен-этиленового сополимера (В') уровень содержания сомономера в совокупной полипропиленовой композиции, то есть количество этилена и необязательно другого α-олефина, то есть С4-С10 α-олефина, будет являться не большим, чем доходящее вплоть до 5,0% (мас.), более предпочтительно будет являться не большим, чем доходящее вплоть до 3,0% (мас.), еще более предпочтительно будет являться не большим, чем доходящее вплоть до 2,5% (мас.), при расчете на совокупную массу полипропиленовой композиции. В соответствии с этим, количество сомономера, в частности этилена, в совокупной полипропиленовой композиции находится в диапазоне от 0,1 до 5.0% (мас.), более предпочтительно от 0,2 до 4,0% (мас.), еще более предпочтительно от 0,5 до 2,0% (мас.).

Как указывалось ранее, сомономер этилен в полипропиленовой композиции является обязательным, в то время как другие α-олефины могут присутствовать дополнительно. Однако количество дополнительных α-олефинов предпочтительно не должно превышать количество этилена в полипропиленовой композиции. Более предпочтительно количество сомономеров, приведенное в предшествующем абзаце, относится только к этилену, тогда как другие сомономеры в полипропиленовой композиции изобретения не присутствуют.

Кроме того, предпочитается, чтобы количество растворимой в ксилоле фракции полипропиленовой композиции было бы не слишком высоким. Растворимая в ксилоле фракция представляет собой часть полимера, растворимого в холодном ксилоле, согласно определению в результате растворения в кипящем ксилоле и обеспечения кристаллизации нерастворимой части из охлаждающегося раствора (по поводу метода обратитесь далее к экспериментальной части). Растворимая в ксилоле фракция содержит полимерные цепи, характеризующиеся низкой стереорегулярностью, и представляет собой показатель величины некристаллических областей. В соответствии с этим предпочитается, чтобы растворимая в ксилоле фракция полипропиленовой композиции изобретения составляла бы менее чем 5,0% (мас.), более предпочтительно менее чем 4% (мас.). В предпочтительных вариантах реализации количество растворимой в ксилоле фракции находится в диапазоне от 0,6 до 5,0% (мас.), а более предпочтительно в диапазоне от 1,0 до 4,0% (мас.).

В дополнение к этому, необходимо понимать то, что полипропиленовая композиция делает возможным изготовление труб, характеризующихся довольно высокой стойкостью к деформированию, то есть характеризующихся высокой жесткостью. В соответствии с этим предпочитается, чтобы полипропиленовая композиция в состоянии, полученном при прямом прессовании, и/или трубы на основе упомянутой полипропиленовой композиции характеризовалась/характеризовались бы модулем упругости при изгибе согласно измерению в соответствии с документом ISO 178, равным, по меньшей мере, 1300 МПа, более предпочтительно, по меньшей мере, 1500 МПа, еще более предпочтительно, по меньшей мере, 1600 МПа. В случае проведения измерения для полипропиленовой композиции в состоянии, полученном при литьевом формовании, и/или труб на основе упомянутой полипропиленовой композиции установлено то, что она/они характеризуется/характеризуются модулем упругости при изгибе согласно измерению в соответствии с документом ISO 178, равным, по меньшей мере, 1100 МПа, более предпочтительно, по меньшей мере, 1300 МПа.

Кроме того, необходимо понимать то, что полипропиленовая композиция делает возможным изготовление труб, характеризующихся довольно высокой ударопрочностью. В соответствии с этим предпочитается, чтобы полипропиленовая композиция в состоянии, полученном при прямом прессовании, и/или трубы на основе упомянутой полипропиленовой композиции характеризовалась/характеризовались бы ударопрочностью согласно измерению в соответствии с испытанием на удар по Шарпи (ISO 179 (1eA)) при 23°С, равной, по меньшей мере, 9,0 кДж/м2, более предпочтительно, по меньшей мере, 9,5 кДж/м2, еще более предпочтительно, по меньшей мере, 10,0 кДж/м2, и/или высокоударопрочностью согласно измерению в соответствии с испытанием на удар по Шарпи (ISO 179 (1eA)) при -20°С, равной, по меньшей мере, 2,5 кДж/м2, более предпочтительно, по меньшей мере, 3,0 кДж/м2, еще более предпочтительно, по меньшей мере, 3,5 кДж/м2. В случае проведения измерения для полипропиленовой композиции в состоянии, полученном при литьевом формовании, установлено то, что ударопрочность согласно измерению в соответствии с испытанием на удар по Шарпи (ISO 179 (1eA)) при 23°С равна, по меньшей мере, 30,0 кДж/м2, более предпочтительно, по меньшей мере, 35,0 кДж/м2, еще более предпочтительно, по меньшей мере, 40,0 кДж/м2, и/или высокоударопрочность согласно измерению в соответствии с испытанием на удар по Шарпи (ISO 179 (1eA)) при -20°С равна, по меньшей мере, 2,5 кДж/м2, более предпочтительно, по меньшей мере, 3,0 кДж/м2, еще более предпочтительно, по меньшей мере, 3,5 кДж/м2.

Настоящая полипропиленовая композиция, в частности, была разработана для улучшения свойств труб и кабелей, в частности, выражаемого в очень хороших характеристиках ползучести при сохранении других свойств, подобных стойкости к деформированию и ударопрочности, на высоком уровне. Таким образом, настоящее изобретение также относится к использованию настоящей полипропиленовой композиции в качестве части трубы, подобной напорной трубе, и при изготовлении труб. Кроме того, настоящее изобретение относится к использованию настоящей полипропиленовой композиции в качестве части кабеля, подобного многожильному кабелю, и при изготовлении кабелей.

В дополнение к этому, необходимо понимать то, что полипропиленовая композиция делает возможным изготовление труб и кабелей, демонстрирующих очень хорошие характеристики ползучести. Таким образом, предпочитается, чтобы полипропиленовая композиция и/или трубы и кабели, соответственно, на основе полипропиленовой композиции демонстрировала/демонстрировали бы эксплуатационные характеристики в испытании на действие давления согласно измерению в соответствии с документом ISO 1167 (16 МПа и 20°С, диаметр трубы 32 мм; толщина стенки 3 мм), равные, по меньшей мере, 600 часам, более предпочтительно, по меньшей мере, 1400 часам.

Кроме того, настоящее изобретение также относится к кабелям, подобным многожильным кабелям, трубам и/или трубным фитингам, в частности напорным трубам, на основе полипропиленовой композиции, определенной в настоящем изобретении. Данные кабели, трубы, в частности напорные трубы, в частности, демонстрируют модуль упругости при изгибе, ударопрочность и характеристики ползучести, определенные в трех предшествующих абзацах.

Термин «труба», использующийся в настоящем документе, подразумевает включение пустотелых изделий, имеющих длину, большую, чем диаметр. Кроме того, термин «труба» также должен включать дополнительные детали, подобные фитингам, клапанам и всем деталям, которые обычно необходимы, например, для систем трубопроводов горячей воды.

Трубы, соответствующие изобретению, также включают одно- и многослойные трубы, где, например, одним или несколькими слоями являются металлический слой и которые могут включать слой клея.

Полипропиленовые композиции, использующиеся для труб и кабелей, соответствующих изобретению, могут содержать обычные вспомогательные материалы, например, вплоть до 10% (мас.) наполнителей и/или от 0,01 до 2,5% (мас.) стабилизаторов, и/или от 0,01 до 1% (мас.) технологических добавок, и/или от 0,1 до 1% (мас.) антистатиков и/или от 0,2 до 3% (мас.) пигментов, и/или армирующих добавок, например, стекловолокна, в каждом случае на основе использующейся пропиленовой композиции. Однако в данном отношении необходимо отметить то, что любые из таких вспомогательных материалов, которые используются в качестве высокоактивных α-нуклеирующих добавок, такие как определенные пигменты, в соответствии с настоящим изобретением не используются.

В соответствии с настоящим изобретением также предлагается и способ получения полипропиленовой композиции, обсуждавшейся ранее. В соответствии с этим полипропиленовую композицию получают по многостадийному способу, а после этого β-нуклеируют. В одном конкретном предпочтительном варианте реализации в петлевом реакторе получают пропиленовый гомополимер (А), а после этого в газо-фазном реакторе получают (В) или (B'). В последующем изложении один предпочтительный способ описывается более подробно: такой способ получения настоящего изобретения включает следующие стадии:

(i) получение пропиленового гомополимера (А),

(ii) сополимеризация

пропилена с бутеном и необязательно с этиленом или С5-С10 α-олефином до получения в результате (статистического) пропил