Опреснительная установка и устройство для выработки электроэнергии (варианты)

Иллюстрации

Показать все

Изобретение относится к области судостроения. Опреснительная установка, установленная на судне, выполнена в трех вариантах: первый вариант - установка с двухступенчатым исполнением испарителей, второй - с двухступенчатым исполнением испарителей и с конденсатором, третий - с одноступенчатым исполнением испарителя (парогенерирующего устройства). Каждая из опреснительных установок содержит устройство для выработки электроэнергии, которое подключается к опреснительной установке в каждом конкретном случае индивидуально при помощи трубопроводов патрубков входа и выхода, разобщительных клапанов и т.д. Опреснительная установка, например, по первому варианту включает две ступени испарения, каждая из которых содержит сепаратор и испаритель, конденсатор, насосы, трубопроводы, клапана. Морскую воду насосом (9) подают на испарение в корпус испарителя (4) второй ступени (2). Пар, охлаждаемый забортной водой, поступает в конденсатор (5), затем конденсат наполняет гравитационную цистерну опресненной воды (21), проходит в пакет (18), в котором по каналам пресной воды направляется в первую ступень испарения. В ней происходит вторичное испарение конденсата. Пар отдает тепло забортной воде в испарителе (4) второй ступени (2), конденсируется, образуя дистиллят, направляемый в сборный танк. Рассол, образуемый от испарения воды в ступенях, поступает в гравитационную цистерну соленой воды (22) от насосов (8), далее в пакет мембран (18), проходит по каналам соленой воды, чередуемым с каналами пресной воды, затем сбрасывается за борт. Преобразование энергии градиентов солености происходит при течении растворов в каналах пакета (18), ограниченных с одной стороны анионитовой (20), а с другой - катионитовой мембранами (19). Получаемая электроэнергия, снимается с крайних электродов 34, обеспечивая работу вспомогательных механизмов опреснительной установки. Уменьшается расход топлива на судовой электростанции, улучшается экология. 6 н.п. ф-лы, 5 ил.

Реферат

Изобретение относится к области энергетики и судостроения, предназначено для энергосберегающих опреснительных установок и может быть использовано в опреснительных установках стационарного типа.

В настоящее время назрела насущная актуальная общественная потребность в создании энергосберегающих технологий. Ряд известных энергетических производств, в том числе производство дистиллята и других продуктов опреснения из морской воды в промышленности и на морском транспорте, не отвечают в достаточной степени данному требованию.

В нарастающем темпе развития традиционной энергетики все больше проявляются связанные с ней негативные эффекты: тепловое, химическое, радиоактивное загрязнение окружающей среды в сочетании с быстрым уменьшением легкодоступных запасов топлива, особенно нефти, газа, высококачественного угля. Поэтому совершенствование, в частности, судовых энергетических установок должно включать решение комплекса задач, отвечающих требованиям высокой экономичности, экологической чистоты и комфортности для экипажа и пассажиров судна.

К таким задачам относится снижение эксплуатационной мощности и улучшение экологичности судовой электростанции, работающей на органическом топливе, за счет использования альтернативных источников энергии для привода различного рода вспомогательных механизмов. В результате у таких электростанций могут быть снижены расход топлива и выбросы токсичных газов.

Особенно актуально подобное решение в системах глубокой утилизации теплоты двигателей внутреннего сгорания теплоходов и тепловых схемах судовых паротурбинных агрегатов, в которых применяются опреснительные установки (ОУ) с испарителями поверхностного типа с целью получения питьевой, мытьевой или питательной (для котельных агрегатов или систем охлаждения дизельных двигателей) воды.

Известна судовая опреснительная установка типа ИКВ - 39/6М, принятая за прототип [Слесаренко В.Н., Слесаренко В.В. Судовые опреснительные установки. - Владивосток: МГУ, 2001. - 448 с., рис.2.10, рис.2.11, с.34-36], включающая ступени испарения (параогенераторы), каждая из которых выполнена в виде корпуса с сепаратором и испарителем поверхностного типа (со змеевиковой поверхностью нагрева), погруженным в объем морской воды данного корпуса, конденсатор, насосы (рассольный, эжекторный и др.) и соединительные трубопроводы с разобщительной арматурой, при этом испаритель второй ступени испарения сообщен на входе посредством трубопровода с полостью верхней части корпуса первой ступени, а вход испарителя первой ступени испарения сообщен посредством трубопровода с источником греющей среды, конденсатор на входе сообщен посредством трубопровода с полостью верхней части корпуса второй ступени испарения, а отводящий трубопровод конденсатора имеет сообщение со сборником дистиллята, и на его протяжении установлены разобщительные клапаны, в днище корпуса каждой ступени испарения вмонтирован отводящий рассол трубопровод, на отводящем рассол трубопроводе корпуса второй ступени испарения установлен рассольный насос, а сам данный корпус имеет сообщение с источником морской воды, причем отводящий трубопровод испарителя второй ступени испарения имеет сообщение со сборником дистиллята.

Недостатками известного технического решения являются:

в число обслуживающих опреснитель насосов входят циркуляционный, рассольный, дистиллятный, насос охлаждающей воды конденсатора и эжекторный с достаточно высокими энергозатратами. Удельный расход электроэнергии на вспомогательные механизмы по некоторым данным достаточно высок и равен 1,4…24 кВт·час на тонну полученного дистиллята, в зависимости от тепловой схемы испарительной установки.

Технической задачей, на которую направлено заявляемое техническое решение, является устранение данных недостатков, а именно: экономия потребляемой опреснительной установкой от судовой электростанции электроэнергии, вплоть до полной компенсации энергозатрат на собственные нужды опреснительной установки, сопровождающаяся снижением количества выбросов токсичных и парниковых газов судовой энергетической установки.

Поставленная задача одним из вариантов достигается тем, что в известную испарительную установку, включающую ступени испарения, каждая из которых выполнена в виде корпуса с сепаратором и испарителем поверхностного типа, погруженным в объем морской воды данного корпуса, конденсатор, насосы и соединительные трубопроводы с разобщительной арматурой, при этом испаритель второй ступени испарения сообщен на входе посредством трубопровода с полостью верхней части корпуса первой ступени, а вход испарителя первой ступени испарения сообщен посредством трубопровода с источником греющей среды, конденсатор на входе сообщен посредством трубопровода с полостью верхней части корпуса второй ступени испарения, а отводящий трубопровод конденсатора имеет сообщение со сборником дистиллята, и на его протяжении установлены разобщительные клапаны, в днище корпуса каждой ступени испарения вмонтирован отводящий рассол трубопровод, на отводящем рассол трубопроводе корпуса второй ступени испарения установлен рассольный насос, а сам данный корпус имеет сообщение с источником морской воды, причем отводящий трубопровод испарителя второй ступени испарения имеет сообщение со сборником дистиллята, в отличие от нее, в заявляемую по данному варианту дополнительно введено устройство для выработки электроэнергии на вспомогательные механизмы, обеспечивающие работу опреснительной установки, с патрубками входа и выхода и дополнительный рассольный насос, который установлен на отводящем рассол трубопроводе корпуса первой ступени испарения. При этом напорный трубопровод рассольного насоса корпуса второй ступени испарения на его протяжении снабжен разобщительными клапанами. Отводящий трубопровод конденсатора до своего первого разобщительного клапана имеет солемер с датчиком, электромагнитный клапан и ответвление на устройство для выработки электроэнергии, сообщенное с патрубком его первого входа, причем от электромагнитного клапана отведен перепускной трубопровод, сообщенный с корпусом первой ступени испарения. Подающий морскую воду во вторую ступень испарения трубопровод имеет ответвление с разобщительным клапаном на устройство для выработки электроэнергии, сообщенное после данного клапана с патрубком его второго входа и имеющее соединительную перемычку с разобщительным клапаном на напорный трубопровод рассольного насоса на участке между его разобщительными клапанами. Напорный трубопровод дополнительного рассольного насоса имеет разобщительный клапан и за ним сообщен с данной перемычкой за ее разобщительным клапаном и с патрубком третьего входа устройства для выработки электроэнергии. Патрубок первого выхода устройства для выработки электроэнергии соединен с отводящим трубопроводом конденсатора на участке между его разобщительными клапанами, а патрубок второго выхода устройства для выработки электроэнергии соединен с напорным трубопроводом рассольного насоса за его разобщительными клапанами. Причем полость корпуса первой ступени испарения посредством соответствующего трубопровода с разобщительным клапаном сообщена с судовой или береговой системой пресной воды и с отводящим трубопроводом конденсатора на участке до его второго разобщительного клапана, а патрубок третьего выхода устройства для выработки электроэнергии сообщен с нижней полостью корпуса второй ступени испарения.

Для сокращения энергозатрат опреснительной установки в нее по данному варианту, как упомянуто, составной частью включено устройство для выработки электроэнергии (его первый вариант).

Известно устройство для выработки электроэнергии с патрубками входа и выхода, принятое за прототип к данному заявляемому, реализованное в способе выработки мощности (патент США №4171409), включающее контрольно-измерительные приборы, соединительные трубопроводы с арматурой, пакет из тонколистных прямоугольных мембран, содержащий чередующиеся между собой альтернативные катионо и анионо-обменные мембраны, проставочные элементы между данными мембранами из диэлектрического полимерного материала, выполненные в виде прямоугольной рамки, прилегающие с противоположных сторон с герметичным сопряжением к краям тонколистных прямоугольных мембран и образующие с данными мембранами чередующиеся между собой каналы движения потоков соленой и опресненной воды, пластинчатые прямоугольные электроды из коррозионно-стойкого материала, расположенные с противоположных торцов пакета мембран и включенные в электрическую цепь с электрической нагрузкой и электроизмерительными приборами, прижимные плиты, ограничивающие пластинчатые прямоугольные электроды, диэлектрически установленные и имеющие совместно с ними соосные сквозные отверстия под установленные на прижимных плитах подводящие и отводящие патрубки; при этом тонколистные прямоугольные мембраны с проставочными элементами, пластинчатыми прямоугольными электродами и прижимными плитами скреплены посредством крепежных элементов, установленных в сквозные отверстия, расположенные в них; два крайние патрубка обеих прижимных плит расположены вблизи их краев и имеют присоединенные к ним трубопроводы подвода и отвода соответственно опресненной и соленой воды, а в проставочных элементах и тонколистных прямоугольных мембранах соответственно выполнены вертикальные сквозные отверстия, соосные крайним сквозным отверстиям пластинчатых прямоугольных электродов и прижимных плит, которые сообщены соответственно горизонтальными противолежащими пазами входа и выхода соответственно опресненной и соленой воды с соответствующими чередующимися каналами ее движения между тонколистными прямоугольными мембранами, а также и между крайними прижимными плитами и противолежащими им мембранами.

Однако известное техническое решение имеет недостатки, а именно: для прокачки каждого из растворов через межмембранные каналы по замкнутому контуру применяются специальные циркуляционные насосы, а регенерация исходных соленостей происходит в общем термическом сепараторе обоих замкнутых контуров. Обеспечение работы этих, достаточно энергозатратных, вспомогательных механизмов требует дополнительной энергии, которая снижает эффективность известного устройства, а в определенных случаях превышает выработку электричества.

Для устранения указанных недостатков известного устройства для выработки электроэнергии с патрубками входа и выхода, как части опреснительной установки в данном варианте опреснительной установки, как единого целого, в него (в устройство для выработки электроэнергии), включающего контрольно-измерительные приборы, соединительные трубопроводы с арматурой, пакет из тонколистных прямоугольных мембран, содержащий чередующиеся между собой альтернативные катионо и анионо-обменные мембраны, проставочные элементы между данными мембранами из диэлектрического полимерного материала, выполненные в виде прямоугольной рамки, прилегающие с противоположных сторон с герметичным сопряжением к краям тонколистных прямоугольных мембран и образующие с данными мембранами чередующиеся между собой каналы движения потоков соленой и опресненной воды, пластинчатые прямоугольные электроды из коррозионно-стойкого материала, расположенные с противоположных торцов пакета мембран и включенные в электрическую цепь с электрической нагрузкой и электроизмерительными приборами, прижимные плиты, ограничивающие пластинчатые прямоугольные электроды, диэлектрически установленные и имеющие совместно с ними соосные сквозные отверстия под установленные на прижимных плитах подводящие и отводящие патрубки; при этом тонколистные прямоугольные мембраны с проставочными элементами, пластинчатыми прямоугольными электродами и прижимными плитами скреплены посредством крепежных элементов, установленных в сквозные отверстия, расположенные в них; два крайние патрубка обеих прижимных плит расположены вблизи их краев и имеют присоединенные к ним трубопроводы подвода и отвода соответственно опресненной и соленой воды, а в проставочных элементах и тонколистных прямоугольных мембранах соответственно выполнены вертикальные сквозные отверстия, соосные крайним сквозным отверстиям пластинчатых прямоугольных электродов и прижимных плит, которые сообщены соответственно горизонтальными противолежащими пазами входа и выхода соответственно опресненной и соленой воды с соответствующими чередующимися каналами ее движения между тонколистными прямоугольными мембранами, в отличие от известного, по данному варианту в качестве электрической нагрузки введены вспомогательные механизмы опреснительной установки, обеспечивающие ее работу, а само устройство для выработки электроэнергии дополнительно содержит гравитационную емкость опресненной и гравитационную емкость соленой воды, днища которых расположены на уровне, отстоящем не менее чем на 1,12 метров выше поверхности пакета тонколистных прямоугольных мембран, и каждая из которых сообщена своей нижней частью посредством соответствующего трубопровода подвода опресненной и соленой воды с пакетом тонколистных прямоугольных мембран. При этом на патрубках входов устройства для выработки электроэнергии установлен разобщительный клапан. Первый и второй входы самого устройства сообщены с гравитационной емкостью опресненной воды устройства. Третий вход сообщен с его гравитационной емкостью соленой воды, а трубопроводы отвода опресненной и соленой воды пакета тонколистных прямоугольных мембран соединены соответственно с первым и вторым выходами устройства для выработки электроэнергии. К патрубкам, расположенным вблизи центральной части обеих прижимных плит, присоединены трубопроводы соответственно подвода и отвода промывочной воды, причем трубопровод подвода промывочной воды, установленный на верхней нажимной плите пакета мембран, имеет сообщение через разобщительный клапан с трубопроводом подвода к нему соленой воды, трубопровод отвода промывочной воды от этой верхней прижимной плиты сообщен с патрубком ее подвода к нижней прижимной плите, а трубопровод ее отвода от нижней прижимной плиты пакета мембран имеет сообщение с патрубком третьего выхода устройства для выработки электроэнергии, на котором установлен разобщительный клапан.

Поставленная техническая задача в равной степени достигается также и другим вариантом опреснительной установки, по которому в известную опреснительную установку, включающую ступени испарения, каждая из которых выполнена в виде корпуса с сепаратором и испарителем поверхностного типа, погруженным в объем морской воды данного корпуса, насосы и соединительные трубопроводы с разобщительной арматурой, при этом испаритель второй ступени испарения сообщен на входе посредством трубопровода с полостью верхней части корпуса первой ступени испарения, а вход испарителя первой ступени испарения сообщен посредством трубопровода с источником греющей среды, отводящий вторичный пар трубопровод полости верхней части корпуса второй ступени испарения имеет сообщение со сборником дистиллята; в днище корпуса каждой ступени испарения вмонтирован отводящий рассол трубопровод, на отводящем рассол трубопроводе корпуса второй ступени испарения установлен рассольный насос, сам данный корпус имеет сообщение с источником морской воды, а отводящий трубопровод испарителя второй ступени испарения имеет сообщение со сборником дистиллята, в отличие от нее в заявляемую по данному (второму) варианту дополнительно введен соответствующий (второй) вариант устройства для выработки электроэнергии на вспомогательные механизмы, обеспечивающие работу опреснительной установки, с патрубками входа и выхода, и дополнительный рассольный насос, который установлен на отводящем рассол трубопроводе корпуса первой ступени испарения. При этом напорный трубопровод рассольного насоса корпуса второй ступени испарения на его протяжении снабжен разобщительными клапанами. Отводящий вторичный пар трубопровод полости верхней части корпуса второй ступени испарения сообщен с патрубком первого входа устройства для выработки электроэнергии. Подающий морскую воду во вторую ступень испарения трубопровод имеет ответвление с разобщительным клапаном на устройство для выработки электроэнергии, сообщенное после данного клапана с патрубком его второго входа и имеющее соединительную перемычку с разобщительным клапаном на напорный трубопровод рассольного насоса на участке между его разобщительными клапанами. Напорный трубопровод дополнительного рассольного насоса имеет разобщительный клапан и за ним сообщен с данной перемычкой за ее разобщительным клапаном и с патрубком третьего входа устройства для выработки электроэнергии. Патрубок первого выхода устройства для выработки электроэнергии соединен с приемным трубопроводом дистиллята, на котором установлен солемер с датчиком, электромагнитный клапан, а за ним - разобщительный клапан. Причем от электромагнитного клапана отведен перепускной трубопровод, сообщенный с корпусом первой ступени испарения, который имеет сообщение посредством трубопровода с разобщительным клапаном соответственно с судовой или береговой системой пресной воды; патрубок второго выхода устройства для выработки электроэнергии соединен с напорным трубопроводом рассольного насоса за его разобщительными клапанами, а патрубок третьего выхода устройства для выработки электроэнергии сообщен с нижней полостью корпуса второй ступени испарения.

Для сокращения энергозатрат опреснительной установки в нее по данному (второму) ее варианту составной частью, как упомянуто, встроен соответствующий (второй) вариант устройства для выработки электроэнергии, заключающийся в том, что в известное устройство для выработки электроэнергии с патрубками входа и выхода, включающее контрольно-измерительные приборы, соединительные трубопроводы с арматурой, пакет из тонколистных прямоугольных мембран, содержащий чередующиеся между собой альтернативные катионо и анионо-обменные мембраны, проставочные элементы между данными мембранами из диэлектрического полимерного материала, выполненные в виде прямоугольной рамки, прилегающие с противоположных сторон с герметичным сопряжением к краям тонколистных прямоугольных мембран и образующие с данными мембранами чередующиеся между собой каналы движения потоков соленой воды и опресненной среды, пластинчатые прямоугольные электроды из коррозионно-стойкого материала, расположенные с противоположных торцов пакета мембран и включенные в электрическую цепь с электрической нагрузкой и электроизмерительными приборами, прижимные плиты, ограничивающие пластинчатые прямоугольные электроды, диэлектрически установленные и имеющие совместно с ними соосные сквозные отверстия под установленные на прижимных плитах подводящие и отводящие патрубки; при этом тонколистные прямоугольные мембраны с проставочными элементами, пластинчатыми прямоугольными электродами и прижимными плитами скреплены посредством крепежных элементов, установленных в сквозные отверстия, расположенные в них; два крайние патрубка обеих прижимных плит расположены вблизи их краев и имеют присоединенные к ним трубопроводы подвода и отвода соответственно опресненной среды и соленой воды, а в проставочных элементах и тонколистных прямоугольных мембранах соответственно выполнены вертикальные сквозные отверстия, соосные крайним сквозным отверстиям пластинчатых прямоугольных электродов и прижимных плит, которые сообщены соответственно горизонтальными противолежащими пазами входа и выхода соответственно опресненной среды и соленой воды с соответствующими чередующимися каналами ее движения между тонколистными прямоугольными мембранами, в отличие от него, в заявляемое по данному (второму) варианту электрической нагрузкой устройства для выработки электроэнергии введены вспомогательные механизмы опреснительной установки, а само устройство дополнительно содержит гравитационную емкость соленой воды, днище которой расположено на уровне, отстоящем не менее чем на 1,12 метров водяного столба выше поверхности пакета тонколистных прямоугольных мембран, и которая сообщена своей нижней частью посредством трубопровода подвода соленой воды с пакетом тонколистных прямоугольных мембран. При этом на патрубках входов устройства для выработки электроэнергии установлен разобщительный клапан. Первый вход самого устройства сообщен с трубопроводом подвода вторичного пара от полости верхней части корпуса второй ступени испарения к пакету тонколистных прямоугольных мембран, а второй и третий его входы сообщены с гравитационной емкостью соленой воды устройства. Противоположные стороны тонколистных прямоугольных мембран, являющиеся теплообменными поверхностями, образуют каналы движения потоков взаимно теплообменивающихся сред в виде конденсирующегося вторичного пара, как опресняемой среды, и холодной соленой воды, протекающих между мембранами. Трубопроводы отвода опресненной и соленой воды пакета тонколистных прямоугольных мембран соединены соответственно с первым и вторым выходами устройства для выработки электроэнергии. К патрубкам, расположенным вблизи центральной части обеих прижимных плит, присоединены трубопроводы соответственно подвода и отвода промывочной воды, причем трубопровод подвода промывочной воды, установленный на верхней прижимной плите пакета мембран, имеет сообщение через разобщительный клапан с трубопроводом подвода к нему соленой воды, трубопровод отвода промывочной воды от этой верхней прижимной плиты сообщен с патрубком ее подвода к нижней прижимной плите, а трубопровод ее отвода от нижней прижимной плиты пакета мембран имеет сообщение с патрубком третьего выхода устройства для выработки электроэнергии, на котором установлен разобщительный клапан.

Поставленная техническая задача в равной степени достигается также и третьим вариантом опреснительной установки, по которому в известную опреснительную установку, включающую парогенерирующее устройство с размещенными в его замкнутом корпусе сепаратором и испарителем поверхностного типа, погруженным в объем морской воды и сообщенным с источником греющей среды, а также включающую конденсатор, соединительные трубопроводы с разобщительной арматурой, рассольный насос, установленный на отводящем рассол трубопроводе корпуса парогенерирующего устройства, при этом конденсатор на входе сообщен посредством трубопровода с полостью верхней части корпуса парогенерирующего устройства, отводящий трубопровод конденсатора имеет сообщение со сборником дистиллята, и на нем установлен разобщительный клапан, а корпус парогенерирующего устройства имеет сообщение с источником морской воды, в отличие от нее, в заявляемую по данному (третьему) варианту дополнительно введен соответствующий (третий) вариант устройства для выработки электроэнергии на вспомогательные механизмы, обеспечивающие работу опреснительной установки, с патрубками входа и выхода, и циркуляционный насос. При этом напорный трубопровод рассольного насоса на его протяжении снабжен разобщительными клапанами. Отводящий трубопровод конденсатора до своего разобщительного клапана имеет солемер с датчиком, электромагнитный клапан и ответвление на устройство для выработки электроэнергии, сообщенное через второй электромагнитный клапан с патрубком его первого входа, причем от первого электромагнитного клапана отведен перепускной трубопровод, сообщенный с корпусом парогенерирующего устройства. Подающий морскую воду в парогенерирующее устройство трубопровод имеет ответвление с разобщительными клапанами на своем протяжении на устройство для выработки электроэнергии, сообщенное с патрубком его второго входа, и имеет между данными разобщительными клапанами соединительную перемычку с разобщительным клапаном на напорный трубопровод рассольного насоса на участке между его разобщительными клапанами, а сам этот участок имеет ответвление на устройство для выработки электроэнергии, сообщенное с патрубком его третьего входа. Патрубок первого выхода устройства для выработки электроэнергии имеет ответвление с третьим электромагнитным клапаном и последующим разобщительным клапаном на напорный трубопровод рассольного насоса за его разобщительными клапанами и соединен также до данного третьего электромагнитного клапана с приемным трубопроводом циркуляционного насоса, на котором установлен солемер с датчиком, соединенным электрически со вторым и третьим электромагнитным клапаном. Причем напорный трубопровод циркуляционного насоса через разобщительный клапан сообщен со вторым входом устройства для выработки электроэнергии. Патрубок второго выхода устройства для выработки электроэнергии соединен с напорным трубопроводом рассольного насоса на участке за его разобщительными клапанами, а патрубок третьего выхода устройства для выработки электроэнергии сообщен посредством трубопровода с нижней полостью корпуса парогенерирующего устройства, а также и через перемычку от него с ее разобщительным клапаном сообщен с ответвлением патрубка первого выхода за его третьим электромагнитным клапаном.

Для сокращения энергозатрат опреснительной установки в нее по данному (третьему) ее варианту составной частью встроен соответствующий (третий) вариант устройства для выработки электроэнергии, заключающийся в том, что в известное устройство для выработки электроэнергии с патрубками входа и выхода, включающее контрольно-измерительные приборы, соединительные трубопроводы с арматурой, пакет из тонколистных прямоугольных мембран, содержащий чередующиеся между собой альтернативные катионо и анионо-обменные мембраны, проставочные элементы между данными мембранами из диэлектрического полимерного материала, выполненные в виде прямоугольной рамки, прилегающие с противоположных сторон с герметичным сопряжением к краям тонколистных прямоугольных мембран и образующие с данными мембранами чередующиеся между собой каналы движения потоков соленой и опресненной воды, пластинчатые прямоугольные электроды из коррозионно-стойкого материала, расположенные с противоположных торцов пакета мембран и включенные в электрическую цепь с электрической нагрузкой и электроизмерительными приборами, прижимные плиты, ограничивающие пластинчатые прямоугольные электроды, диэлектрически установленные и имеющие совместно с ними соосные сквозные отверстия под установленные на прижимных плитах подводящие и отводящие патрубки; при этом тонколистные прямоугольные мембраны с проставочными элементами, пластинчатыми прямоугольными электродами и прижимными плитами скреплены посредством крепежных элементов, установленных в сквозные отверстия, расположенные в них; два крайние патрубка обеих прижимных плит расположены вблизи их краев и имеют присоединенные к ним трубопроводы подвода и отвода соответственно опресненной и соленой воды, а в проставочных элементах и тонколистных прямоугольных мембранах соответственно выполнены вертикальные сквозные отверстия, соосные крайним сквозным отверстиям пластинчатых прямоугольных электродов и прижимных плит, которые сообщены соответственно горизонтальными противолежащими пазами входа и выхода соответственно опресненной и соленой воды с соответствующими чередующимися каналами ее движения между тонколистными прямоугольными мембранами, в отличие от него, в заявляемое по данному (третьему) варианту электрической нагрузкой устройства для выработки электроэнергии введены вспомогательные механизмы опреснительной установки. Само устройство дополнительно содержит гравитационную емкость опресненной воды и гравитационную емкость соленой воды, днища которых расположены на уровне, отстоящем не менее чем на 1,12 метров выше поверхности пакета тонколистных прямоугольных мембран, и каждая из которых сообщена своей нижней частью посредством соответствующего трубопровода подвода опресненной и соленой воды с пакетом тонколистных прямоугольных мембран. При этом на патрубке третьего входа и на патрубках второго и третьего выходов устройства для выработки электроэнергии установлен разобщительный клапан. Первый и второй входы самого устройства сообщены с гравитационной емкостью опресненной воды устройства, а третий его вход сообщен с гравитационной емкостью соленой воды устройства. Трубопроводы отвода опресненной и соленой воды пакета тонколистных прямоугольных мембран соединены соответственно с патрубками первого и второго выходов устройства для выработки электроэнергии. К патрубкам, расположенным вблизи центральной части обеих прижимных плит, присоединены трубопроводы соответственно подвода и отвода промывочной воды, причем трубопровод подвода промывочной воды, установленный на верхней прижимной плите пакета мембран, имеет сообщение через разобщительный клапан с трубопроводом подвода к нему соленой воды, трубопровод отвода промывочной воды от этой верхней прижимной плиты сообщен с патрубком ее подвода к нижней прижимной плите, а трубопровод ее отвода от нижней прижимной плиты пакета мембран имеет сообщение с патрубком третьего выхода устройства для выработки электроэнергии, на котором установлен разобщительный клапан.

Ограничительные и отличительные признаки заявляемой группы изобретений обеспечивают достижение поставленной технической задачи.

Как известно, производительность любой эксплуатируемой судовой опреснительной установки обычно в 1,5…2,0 раза превышает суточный расход пресной воды на судне, который устанавливается по нормам потребления для: бытовых нужд, восполнения потерь от утечек в технических системах, обеспечения технологических процессов, в том числе и рыбопромысловых и рыбообрабатывающих судов. Суточный расход воды в зависимости от типа судна может составлять от 0,5 т (на небольших теплоходах) до 200…250 т, а в часы пиковых нагрузок - 800…1000 т (на промысловых базах).

Получение пресной воды на судах производят с помощью опреснительных установок, в том числе термического типа, в которых испарение морской воды осуществляют за счет утилизации теплоты выхлопных газов или охлаждающей тепловой двигатель воды.

Таким образом, если удельный расход электроэнергии на вспомогательные механизмы по некоторым данным равен 1,4…24 кВт·час на тонну полученного дистиллята в зависимости от тепловой схемы испарительной установки, то для опреснителя производительностью 10 т/час на собственные нужды затрачивается достаточно много: от 14 до 240 кВт·часов. Судовая электростанция покрывает эти расходы за счет сжигания органического топлива, загрязняя атмосферу.

Технической задачей, которую решает заявляемое изобретение, и является повышение эффективности использования вторичных энергоресурсов и снижение выбросов токсичных и парниковых газов тепловых двигателей.

Указанная техническая задача достигается тем, что если в известном решении - прототипе утилизации теплоты охлаждающей воды и выхлопных газов получают из морской воды пресную воду, а остаточный продукт в виде концентрированного рассола, а также охлаждающую забортную воду сбрасывают в море, то в заявляемом после использования в теплообменных аппаратах забортная вода или рассол, обладающие значительным электрохимическим потенциалом относительно опресненной воды, выделяют дополнительную энергию. Утилизацию этой энергии, называемой, как известно, энергией градиентов солености (ЭГС), производят с помощью пакета тонколистных ионоселективных мембран в процессе обратного электродиализа, которыми и предлагается оснастить заявляемую опреснительную установку. В результате утилизации ЭГС в заявляемом устройстве для выработки электроэнергии, как части заявляемой опреснительной установки, получаем электрический ток, мощность которого достаточна для работы вспомогательных механизмов, обслуживающих опреснитель, а при соответствующем увеличении площади мембран и для другого вспомогательного оборудования конкретной судовой энергетической установки.

Указанный эффект реализации энергии ЭГС может быть использован для обеспечения более гибкой утилизации теплоты судовой энергетической установки (СЭУ) при работе на переменных режимах. Например, при отсутствии достаточного потребления тепловой нагрузки на судне излишнее тепло может направляться в опреснительную установку. Дополнительно полученная пресная вода позволит увеличить гидродинамическую нагрузку на устройство для выработки электроэнергии, мощность которого увеличится.

В заявляемом изобретении эффект достигается тем, что получаемый на выходе из термического опреснителя дистиллят полностью или частично (в зависимости от варианта заявляемого изобретения) направляется в пакет тонколистных мембран и движется в нем по каналам, которые они образуют между собой в пакете. Причем каналы опресняемой среды (второй вариант) или опресненной воды чередуются с каналами, по которым движется соленая вода, поступающая по ответвлению от трубопровода подачи морской воды или подаваемая рассольным насосом испарителей.

Преобразование энергии градиентов солености происходит при течении растворов в каналах, ограниченных с одной стороны анионитовой, а с другой - катионитовой мембранами.

Морская вода, в которой растворено значительное количество разнообразных солей, представляет собой сильный электролит. Как известно, сильные электролиты, как в разбавленных растворах, так и в растворах высокой концентрации содержатся только в виде ионов. Ионы солей стремятся пройти в раствор более низкой концентрации, который движется с противоположной стороны мембраны. Однако селективность мембран позволяет проходить через катионовые мембраны только отрицательным (например, Cl-), а через анионовые - положительным ионам (Na+). Направленное движение ионов вызывает появление электрических зарядов на мембранах: отрицательного на катионовых и положительного на анионовых. Чем больше таких каналов в батарее, тем более высокое напряжение и мощность можно получить в цепи электрической нагрузки, которой являются вспомогательные механизмы заявляемой опреснительной установки, замыкающейся на крайние пластинчатые электроды.

В известном устройстве-прототипе для выработки электроэнергии в качестве рабочих жидкостей используются специальные растворы солей. Кроме того, необходимая скорость движения растворов через каналы устройства достигается посредством насосов, потребляющих дополнительную энергию, причем с увеличением скорости эта потребляемая энергия закономерно увеличивается [Turek M., Bandura В. Renewable energy by reverse elektrodialysis // Desalination 205 (2007). P.67-74], и общая эффективность устройства снижается. Наличие в заявляемом изобретении, как части целого, в качестве рабочих жидкостей естественных продуктов энергетического цикла опреснительной установки (опресняемая среда, опресненная вода и соленая вода), которые не требуют специальной подготовки и дополнительных затрат на осуществление рециркуляции в элементах устройства, в совокупности с гравитационными емкостями, обеспечивающими снижение гидравлических потерь энергии, способствуют в итоге снижению энергозатрат. Предусматриваются гравитационные емкости опресненной и соленой воды, которые, благодаря превышению уровня их днища над пакетом тонколистных мембран не менее чем на 1,12 м, обеспечивают заданную скорость течения в нем жидкостей за счет гравитационного напора, причем для наполнения емкостей затрачивается значительно меньше энергии, чем требуется при непосредственном соединении насоса, трубопровода и пакета тонколистных прямоугольных мембран, что сопряжено, как известно, с гидравлическими потерями.

Таким путем заявляемое наличие в опреснительной установке устройства для выработки электроэнергии с его пакетом прямоугольных тонколистных мембран, гравитационными емкос