Способ получения обессоленной воды и воды высокой чистоты для ядерных энергетических установок научных центров

Изобретение относится к области получения воды высокой чистоты для теплоносителей ядерных энергетических установок мембранно-сорбционными методами. При получении обессоленной воды и воды высокой чистоты осуществляют подачу воды из емкости исходных вод на удаление из воды органических веществ и активного хлора на насыпном угольном фильтре и взвесей на микрофильтре. Дальнейшее обессоливание вод на двух последовательных обратноосмотических фильтрах путем направления фильтрата первого через промежуточную емкость на вход второго, а фильтрата второго - на доочистку на ионообменный фильтр, накопление очищенной воды в емкости очищенной воды, возврат концентрата второго обратноосмотического фильтра и части объема концентрата первого обратноосмотического фильтра, достаточной для связывания свободной двуокиси углерода, в емкость исходных вод и направление остальной части концентрата первого обратноосмотического фильтра на сброс при отсутствии в нем радиоактивных или химически токсичных загрязнений, а при их наличии - на обезвреживание. Изобретение позволяет значительно увеличить срок работы ионообменных фильтров и сократить расход исходных вод на получение воды высокой чистоты. 1 ил.

Реферат

Изобретение относится к области получения воды высокой чистоты (ВВЧ) для теплоносителей ядерных энергетических установок (ЯЭУ) мембранно-сорбционными методами и может быть также использовано для получения обессоленной воды для ЯЭУ при очистке маломинерализованных низкоактивных жидких радиоактивных отходов (ЖРО).

При эксплуатации ЯЭУ научных центров ВВЧ (с солесодержанием менее 1 мг/л) используется для приготовления теплоносителя, а обессоленная (с солесодержанием до 10 мг/л) вода - для приготовления регенерационных и дезактивационных растворов, обмыва оборудования, промывки фильтров и т.д. При этом обессоленную воду получают из пресных природных вод или маломинерализованных низкоактивных ЖРО путем дистилляции, электродиализа, обратного осмоса и др., а ВВЧ - путем ионообменной очистки обессоленной воды на ионообменных смолах (ИОС), сульфоуглях, цеолитах и др. [Кульский Л.А., Страхов Э.Б., Волошина A.M. Технология водоочистки на атомных энергетических установках, - Киев: Наук. Думка, 1986. С.132-139].

Научные центры с ЯЭУ в отличие от атомных электростанций не располагают избытком тепловой или электрической энергии и поэтому для обессоливания на них предпочтительнее использование обратного осмоса - менее энергоемкого, чем электродиализ, а тем более дистилляция [Milligan T.J.Treatment of industrial wastewaters. - Chem. Engng., 1976, v.83, №22 (Deskbook Issue), p.49-66]. Наиболее эффективными сорбентами являются ионообменные смолы, обеспечивающие практически полное удаление всех солей, но их применение экономически оправдано только при очистке растворов с солесодержанием не более 1 г/л. Даже при очистке маломинерализованных вод требуется периодическая регенерация, приводящая к образованию дополнительных солевых концентратов (химически токсичных регенератов), требующих обезвреживания [Хоникевич А.А. Очистка радиоактивно-загрязненных вод лабораторий и исследовательских ядерных реакторов. - М.: Атомиздат, 1974, с.85-90].

Известен способ обращения с теплоносителями и техническими растворами ядерных энергетических установок научных центров, включающий при их приготовлении удаление макрокомпонентов - солей щелочных и щелочноземельных металлов и микрокомпонентов - радионуклидов (обессоливание), например, на обратноосмотическом аппарате (фильтре) и доочистку раствора (фильтрата) на ионообменных сорбентах (ионообменном фильтре). Образующиеся при этом солевые концентраты при наличии в них радиоактивных или химических загрязнений направляют на обезвреживание [Патент РФ №2168221, бюл. №15, 2001].

Недостатком этого способа является то, что обратноосмотическая очистка не обеспечивает эффективного обессоливания (очистка от одновалентных ионов в 2-5 раз ниже, чем от двухвалентных) и в результате происходит быстрое насыщение ионообменных фильтров, загруженных катионообменными и анионообменными смолами, что вызывает необходимость регенерации фильтров. Соответственно за счет образования отработанных регенерационных растворов сброс концентратов в окружающую среду невозможен даже при отсутствии в исходных водах радиоактивных или химически токсичных загрязнений. Кроме того, по данной технологической схеме получают, в основном, обессоленную воду, тогда как для ВВЧ ограничивается не только общее солесодержание (электропроводность не более 0,1 мкСм/см), но и содержание хлорид-иона (не более 0,004 мг/л), окислов железа (не более 0,01 мг/л) и окислов меди (не более 0,002 мг/л) [Ганчев Б.Г., Калишевский Л.Л., Демишев Р.С. и др. Ядерные энергетические установки. - М.: Энергоатомиздат, 1983, с.425], которые, также как и органические загрязнения, мешают и обратноосмотической очистке.

Известен способ получения обессоленной воды и воды высокой чистоты для ядерных энергетических установок научных центров, включающий забор из емкости исходных вод маломинерализованных (до 1 г/л) вод или низкоактивных ЖРО, предочистку вод на насыпном угольном фильтре, очистку на механическом фильтре, обессоливание предварительно очищенных вод на двух последовательных обратноосмотических фильтрах, доочистку фильтрата на ионообменном фильтре и накопление очищенной воды в конечной емкости. Причем фильтрат первого обратноосмотического фильтра направляют через промежуточную емкость на вход второго обратноосмотического фильтра, фильтрат второго направляют на доочистку на ионообменный фильтр, концентрат второго возвращают в емкость исходных вод, а концентрат первого направляют на сброс при отсутствии в нем радиоактивных или химически токсичных загрязнений, а при их наличии направляют на обезвреживание [Патент РФ №2276110, бюл. №13, 2006]. По своей технологической сущности и достигаемому результату этот способ наиболее близок к заявляемому и выбран в качестве прототипа.

Недостатком данного способа является то, что в обессоливаемой воде при обратном осмосе удаляются только бикарбонат-ионы, составляющие в качестве солей щелочноземельных металлов основу солесодержания большинства рек России [Кульский Л.А., Страхов Э.Б., Волошина A.M. Технология водоочистки на атомных энергетических установках. - Киев: Наук. Думка, 1986. С.132-139], тогда как растворенная в воде двуокись углерода (CO2) практически не задерживается мембранами, проходя беспрепятственно в фильтрат, и взаимодействуя с молекулами воды, вновь образует в нем бикарбонат-ионы. Таким образом, возрастает нагрузка на анионообменные смолы по сравнению с катионообменными. Кроме того, большая часть исходной воды (весь концентрат первого обратноосмотического фильтра) идет на сброс. В случае же присутствия в исходных водах радиоактивных или химически токсичных загрязнений на обезвреживание отправляют слишком большой объем малосолевого концентрата.

Задачей изобретения является создание способа получения обессоленной воды и ВВЧ из маломинерализованных (до 1 г/л) вод или низкоактивных ЖРО, позволяющего повысить степень обессоливания воды, увеличить ресурс работы ионообменного фильтра и снизить расход исходных вод на получение ВВЧ.

Сущность изобретения заключается в том, что в способе, включающем подачу очищаемых вод из емкости исходных вод на предочистку вод на насыпном угольном фильтре и на микрофильтре, дальнейшее обессоливание вод на двух последовательных обратноосмотических фильтрах путем направления фильтрата первого через промежуточную емкость на вход второго, а фильтрата второго - на доочистку на ионообменный фильтр, накопление очищенной воды в емкости очищенной воды, возврат концентрата второго обратноосмотического фильтра в емкость исходных вод и направление концентрата первого обратноосмотического фильтра на сброс при отсутствии в нем радиоактивных или химически токсичных загрязнений, а при их наличии - на обезвреживание, согласно изобретению на сброс или обезвреживание направляется часть объема концентрата первого обратноосмотического фильтра, достаточная для связывания свободной СО2, а остальной объем концентрата первого обратноосмотического фильтра возвращается в емкость исходных вод.

Способ осуществляется следующим образом.

Маломинерализованные (до 1 г/л) воды или низкоактивные ЖРО из емкости исходных вод направляют на предочистку на насыпной угольный фильтр (заполненный активированным углем) для удаления железа, меди, органических растворителей, мешающих эффективной работе обратноосмотических мембран. Фильтрат угольного фильтра направляют на механическую очистку на механический фильтр для удаления взвесей. Фильтрат механического фильтра направляют на обессоливание в первый обратноосмотический фильтр для удаления солей жесткости. Умягченный фильтрат первого обратноосмотического фильтра направляют через промежуточную емкость на дальнейшее обессоливание во второй обратноосмотический фильтр для удаления остатков солей жесткости и солей щелочных металлов. Часть объема концентрата солей жесткости из первого обратноосмотического фильтра, достаточную для связывания свободной CO2, направляют на сброс при отсутствии в нем радиоактивных или химически токсичных загрязнений, а при их наличии направляют на обезвреживание - концентрирование и цементирование (вне данной технологической схемы). Остальной объем концентрата первого обратноосмотического фильтра возвращается в емкость исходных вод, в которой соли, пришедшие с концентратом жесткости, связывают свободную углекислоту в исходной воде. Обессоленный фильтрат второго обратноосмотического фильтра направляют на доочистку на ионообменный фильтр (заполненный катионо- и анионообменной смолой) для получения ВВЧ, а концентрат солей второго обратноосмотического фильтра также возвращают в емкость исходных вод. Поскольку за счет возврата части концентрата первого обратноосмотического фильтра в исходную воду количество катионов и анионов близко к стехиометрическому, то при двухступенчатой обратноосмотической обработке достигается степень очистки от солей не менее 99%. В результате солевая нагрузка на ионитовый фильтр в целом снижается почти на порядок.

По сравнению с известными мембранно-сорбционными способами очистки вод в предлагаемом способе за счет возврата части концентрата первого обратноосмотического фильтра в исходную воду обеспечивается получение ВВЧ без применения регенерации ионообменных фильтров, что не следует явным образом из уровня техники, так как солевая нагрузка на обратноосмотические фильтры при этом повышается и, следовательно, заявляемый способ соответствует критерию изобретательского уровня.

Предлагаемый способ поясняется чертежом, на котором изображена схема получения обессоленной воды и воды высокой чистоты для ЯЭУ научных центров.

Технологическая схема, представленная на фиг., включает: емкость 1 с исходными водами, насосы 2, 5 и 8, угольный фильтр 3, механический фильтр 4, первый 6 и второй 9 обратноосмотические фильтры, промежуточную емкость 7, ионообменный фильтр 10 и емкость для накопления очищенной воды 11.

Получение ВВЧ осуществляли следующим образом. Исходные воды из емкости 1 насосом 2 направляли на предварительную очистку на угольный фильтр 3 и механический 4. Предварительно очищенную воду с помощью насоса 5 подавали на вход первого обратноосмотического фильтра 6. Часть объема концентрата с фильтра 6, достаточную для связывания свободной СО2, направляли на сброс в канализацию, а остальную часть концентрата возвращали в емкость 1 исходных вод. Фильтрат с выхода фильтра 6 направляли через промежуточную емкость 7 насосом 8 на вход второго обратноосмотического фильтра 9. Концентрат с фильтра 9 возвращали в емкость 1 исходных вод. Фильтрат с выхода фильтра 9 направляли на ионообменный фильтр 10. Очищенную воду с выхода ионообменного фильтра 10 направляли в емкость 11.

Примеры конкретного исполнения

Пример 1 (прототип). Исходная маломинерализованная вода имела солесодержание 300 мг/л, жесткость 4,5 мг-экв/л и щелочность (гидрокарбонатная жесткость) 3,5 мг-экв/л (рН 7,0). Получение ВВЧ осуществляли по описанной выше схеме без возврата части концентрата первого обратноосмотического фильтра в емкость исходных вод. Солесодержание воды после обратноосмотических фильтров составляло 15 мг/л, жесткость не более 0,5 мг-экв/л, щелочность не более 0,25 мг-экв/л. Солесодержание воды после ионообменного фильтра составляло не более 0,1 мг/л, что позволяет использовать ее в качестве ВВЧ для приготовления теплоносителя ЯЭУ.

Пример 2 (заявляемый способ). Отличается от примера 1 тем, что получение ВВЧ осуществляли по описанной выше схеме с возвратом части объема концентрата первого обратноосмотического фильтра в емкость исходных вод и сливом части объема концентрата, равной объему фильтрата этого фильтра, в канализацию. Солесодержание воды после обратноосмотических фильтров составляло 2,0 мг/л, жесткость не более 0,1 мг-экв/л, щелочность не более 0,005 мг-экв/л. Солесодержание воды после ионообменного фильтра составляло не более 0,1 мг/л, что позволяет использовать ее в качестве ВВЧ для приготовления теплоносителя ЯЭУ. При этом расход анионообменных смол сокращается в 7,5 раз и, соответственно, возрастает ресурс работы ионообменного фильтра.

Таким образом, предлагаемый способ позволяет при получении ВВЧ из маломинерализованных (до 1 г/л) растворов повысить ресурс ионообменного фильтра и исключить необходимость его регенерации. Кроме того, этот способ по сравнению с прототипом приводит к уменьшению расхода исходной воды на получение ВВЧ и объема сбрасываемого концентрата.

Предлагаемый способ может осуществляться на том же отечественном оборудовании, что и прототип, т.е. промышленно применим. Способ не требует регенерации ионообменных смол, т.е. его использование не приводит к химическому загрязнению (сбрасываемые растворы обогащаются только карбонатами натрия, являющимися распространенными природными солями), что является важным экологическим аспектом. При этом способ пригоден для получения обессоленных вод и ВВЧ не только из маломинерализованных хозяйственно-питьевых вод, но и из низкоактивных маломинерализованных ЖРО, что позволяет возвращать их для вторичного использования для нужд ЯЭУ научных центров.

Способ получения обессоленной воды и воды высокой чистоты для ядерных энергетических установок научных центров, включающий подачу очищаемых вод из емкости исходных вод на предочистку на насыпном угольном фильтре и на микрофильтре, дальнейшее обессоливание вод на двух последовательных обратноосмотическом фильтрах путем направления фильтрата первого через промежуточную емкость на вход второго, а фильтрата второго - на доочистку на ионообменный фильтр, накопление очищенной воды в емкости очищенной воды, возврат концентрата второго обратноосмотического фильтра в емкость исходных вод и направление концентрата первого обратноосмотического фильтра на сброс при отсутствии в нем радиоактивных или химически токсичных загрязнений, а при их наличии - на обезвреживание, отличающийся тем, что на сброс или обезвреживание направляют часть объема концентрата первого обратноосмотического фильтра, достаточную для связывания свободной двуокиси углерода, а остальной объем концентрата первого обратноосмотического фильтра возвращают в емкость исходных вод.