Вулканизуемая смесь, содержащая частично гидрированные винилареновые сопряженные диеновые разветвленные полимеры

Иллюстрации

Показать все

Изобретение относится к химии полимеров, в частности к сырой эластомерной композиции для изготовления протекторов шин. Композиция содержит: (а1) от 30 до 90% по массе частично гидрированного виниларенового сопряженного диенового статистического эластомерного сополимера; (а2) от 10 до 70% по массе одного или нескольких диеновых каучуков. На общее количество частей каучуков (а1)+(а2), равное 100, вводят компоненты (b) от 10 до 150 м.ч. (phr) диоксида кремния; (с) от 0,1 до 20 м.ч. агента сочетания на основе силана и (d) от 0,1 до 10 м.ч. вулканизующего агента. Компонент (а1) композиции характеризуется тем, что частично гидрированный винилареновый сопряженный диеновый статистический сополимер имеет структуру с узлами, статистически распределенными в макромолекуле, из которых разветвляются полимерные цепи. При этом связь между названными узлами и названными разветвлениями является связью углерод-углерод. Технический результат - увеличение вязкости по Муни у частично гидрированных винилареновых сопряженных диеновых сополимеров, имеющих структуру с узлами, статистически распределенными в молекуле, из которых разветвляются полимерные цепи. Такая макроструктура каучука приводит к общему улучшению механических свойств полимерной матрицы и улучшению свойств смесей на основе таких каучуков. 2 н. и 8 з.п. ф-лы, 4 табл.

Реферат

Настоящее изобретение относится к смеси, вулканизуемой серой, используемой в основном для протекторов шин. В частности, настоящее изобретение относится к вулканизуемой композиции, содержащей частично гидрированные винилареновые сопряженные диеновые статистические сополимеры, имеющие структуру, которая имеет узлы, статистически распределенные в макромолекуле, от которых отходят полимерные цепочечные разветвления; связь между названным узлами и названными разветвлениями является связью углерод-углерод.

Настоящее изобретение также относится к протекторам шин, которые могут быть получены вулканизацией вышеупомянутой композиции, причем названные протекторы шин обладают улучшенными динамическими механическими свойствами, в частности низким сопротивлением качению и достаточным сцеплением с влажной поверхностью дороги. Известно, что поведение шин на дороге, особенно автомобильных шин, зависит главным образом от рецептуры протекторной смеси. Проводятся многочисленные исследования, направленные на изменение составов эластомерного полимера, наполнителей и других добавок, содержащихся в протекторной смеси, чтобы разработать улучшенные рецептуры.

Следует также принять во внимание тот факт, что улучшение одного свойства шины может привести к ухудшению других свойств. Хорошо известно, например, что улучшение эксплуатационных свойств на влажной поверхности обычно связано с ухудшением сопротивления качению.

Обычные смеси, включающие технический углерод в качестве усиливающего наполнителя, оказались непригодными для достижения баланса между показателями сопротивления качению и сцепления с влажной поверхностью дороги.

Лучшие результаты получены при использовании диоксида кремния в качестве основного усиливающего материала.

Однако, в отличие от технического углерода, недостаток диоксида кремния заключается в слабом сродстве с каучуковым материалом и вытекающими из этого проблемами перерабатываемости смеси вследствие низкой диспергируемости диоксида кремния в каучуковом материале. Первой проблемой, требующей решения при использовании диоксида кремния, является, поэтому, достижение хорошего распределения диоксида кремния в каучуке. Эта проблема может быть решена при использовании агента сочетания на основе силана, модифицирующего каучук и повышающего сродство диоксида кремния к каучуку.

EP-A-775725 раскрывает невулканизованную эластомерную композицию, включающую (i) по меньшей мере, 30 мас.ч. (частей по массе на 100 частей всего каучука) сополимера стирол/частично гидрированный бутадиен; (ii) диоксид кремния; (iii) органосилан в качестве агента сочетания. После вулканизации данная смесь образует протекторы шин с хорошими эксплуатационными свойствами. В вышеуказанном документе, однако, связи между макромолекулами не являются связями С-С, а являются связями С-гетероатом (Si, O, Sn). В условиях гидрогенизации, использованной для этих целей, происходит частичная деструкция макромолекул с последующим снижением вязкости по Муни. Вероятно, это обусловлено взаимодействием связей С-гетероатом с алкилирующими агентами (например, Al-алкилами, Mg-алкилами и Li-алкилами), которые используются для активирования металла переходной группы, обычно применяемого в качестве катализатора гидрогенизации. Кроме того, использование агентов сочетания, способных взаимодействовать с активными концевыми группами полимерных цепей (состоящих из диенилов лития или стирилов лития), вызывает образование радиальных структур звездчатого типа, в которых длина разветвлений одинаковая, если исходный полимер синтезирован в реакторе периодического действия или ином, когда исходный полимер синтезирован в реакторе непрерывного действия; в данном втором случае предпочтительно соединяются молекулы с низкой молекулярной массой, так как относительные молярные концентрации являются более высокими. Результатом этого является незначительное разветвление с реологической точки зрения, особенно с точки зрения достижения важных результатов по эффективности распределения наполнителей в ходе стадии изготовления смеси.

Установлено, что при использовании частично гидрированного виниларенового сопряженного диенового сополимера, имеющего разветвленную структуру, в которой молекулы соединены посредством связей С-С и где разветвления ориентированы главным образом по высоте или имеют очень высокомолекулярные цепи, могут быть получены протекторы шин с улучшенными эксплуатационными свойствами, по сравнению с протекторами шин, полученными с использованием линейных сополимеров, описанных в Европейском патенте 775725.

В соответствии с вышеизложенным, настоящее изобретение относится к сырой эластомерной композиции, содержащей общее количество эластомеров (a1)+(a2) в названной композиции, равное 100;

- (а1) от 30 до 90% по массе частично гидрированного виниларенового сопряженного диенового статистического эластомерного сополимера;

- (а2) от 10 до 70% по массе, предпочтительно от 20 до 60% по массе одного или нескольких диеновых каучуков;

- (b) от 10 до 150 м.ч. на 100 м. частей каучука (phr), предпочтительно от 15 до 120 м.ч. на 100 м. частей каучука диоксида кремния;

- (с) от 0,1 до 20 м.ч. на 100 м.ч. каучука (phr) агента сочетания на основе силана;

- (d) от 0,1 до 10 м.ч. на 100 м.ч. каучука (phr) вулканизующего агента.

Вышеприведенная рецептура характеризуется тем, что частично гидрированный статистический винилареновый сопряженный диеновый сополимер имеет структуру с узлами, статистически распределенными в молекуле, из которых разветвляются полимерные цепи; связь между названными узлами и названными разветвлениями является связью углерод-углерод. Концентрация названных углерод-углеродных связей лежит в интервале значений от 0,7×10-7 до 3×10-7 моль/кг полимера.

Эластомерная композиция настоящего изобретения необязательно может содержать технический углерод (е) в количестве от 10 до 150 м.ч. (phr).

Использование м.ч. (phr) (частей на 100 частей по массе каучука) соответствует нормальному пути выражения рецептуры в резиновой промышленности.

Типичными примерами виниларенов являются 2-винилнафтен, 1-винилнафтен, стирол и родственные алкилированные соединения. В предпочтительном варианте осуществления изобретения винилареном является стирол.

Сопряженными диенами являются 1,3-диены, содержащие от 4 до 12 атомов углерода, предпочтительно от 4 до 8 атомов углерода. Примерами данных диенов являются 1,3-бутадиен, изопрен, 2,3-диметил-1,3-бутадиен, 1,3-пентадиен (пиперилен), 2-метил-3-этил-1,3-бутадиен, 1,3-октадиен. В предпочтительном варианте осуществления изобретения сопряженные диеновые мономеры выбраны из 1,3-бутадиена и изопрена, предпочтительно 1,3-бутадиена.

В следующем описании будут даны ссылки на стирол, как типичный виниларен, и на бутадиен, как типичный сопряженный диен, но без ограничения ими соединений данных классов.

Термин «бутадиен-стирольный статистический сополимер» означает бутадиен-стирольные сополимеры, в которых содержание стирола в форме блоков, относительно связанного стирола, составляет 10% или меньше, измеренное методом окислительного разложения, описанным I.M. Kolthoff et al., J. Polymer Science, Vol.1, page 429 (1946), или позднее Viola et al. (Определение распределения последовательностей блоков в бутадиен-стирольных сополимерах методами озонолиза, высокоэффективной жидкостной хроматографии и газовой хроматографии-масс-спектрометрии, J. Chromatography A, 117 (1994)).

Вышеназванные бутадиен-стирольные статистические сополимеры (а1) имеют содержание стирола от 15 до 50% по массе, предпочтительно от 20 до 45% по массе.

Как известно, бутадиен может соединяться в полимерные цепи по цис-1,4-связи (цис-связи), транс-1,4-связи (транс-связи), 1,2-связи (виниловое звено). Содержание виниловых звеньев определяется как отношение между количеством виниловых звеньев и суммой цис-, транс- и виниловых связей. Содержание виниловых звеньев в диеновой части бутадиен-стирольного статистического сополимера перед частичной гидрогенизацией составляет предпочтительно от 10 до 80%, даже более предпочтительно от 20 до 70%. Вышеуказанное содержание виниловых звеньев может быть равномерно распределено вдоль полимерной цепи, или оно может быть разделено или уменьшаться вдоль самой цепи.

Термин «частично гидрированные» означает, что степень гидрирования диеновой части бутадиен-стирольного сополимера составляет ниже 100%. Предпочтительно от 20 до 89% двойных связей диеновой части, даже более предпочтительно от 30 до 80%, должно быть гидрировано.

Бутадиен-стирольный статистический сополимер (а1) настоящего изобретения имеет среднемассовую молекулярную массу (Mw) от 50000 до 1000000 и молекулярно-массовое распределение (Mw/Mn) от 1 до 10, предпочтительно Mw составляет от 100000 до 800000 и Mw/Mn составляет от 1 до 5, более предпочтительно от 1 до 3. Вязкость по Муни немаслонаполненного полимера ML1+4 (100°С) составляет от 30 до 200, предпочтительно от 50 до 150, тогда как соответствующий полимер, наполненный маслом, предпочтительно неароматическим, имеет вязкость по Муни при 100°С в интервале 30-120.

Что касается (а1), G. Viola (Journal of Polymer Science: Part A.: Polymer Chemistry, Vol. 35<17-25 (1997)) показывает возможный механизм образования вышеупомянутых разветвленных эластомеров. Основной механизм образования разветвленной структуры является радикальным и определяет образование макрорадикалов с последующим отщеплением аллильной части, расположенной в полибутадиеновом сегменте макромолекулы, а затем взаимодействие между алкильным радикалом, который образуется в результате взаимодействия между алкилгалогенидом (обычно октилбромидом) и бутиллитием. Статистическое отщепление аллильной части от макромолекулы сопровождается образованием макрорадикалов, отличающихся тем, что они имеют молекулярную массу выше, чем Mn; последующее соединение названных макрорадикалов приводит к образованию разветвленных структур, характеризующихся тем, что они имеют длинноцепочечные разветвления.

Степень разветвленности сополимера (а1) представлена параметром альфа (α), который составляет меньше 0,58, названная величина соответствует линейному (со)полимеру. Следует помнить, что линейные (со)полимеры имеют величину альфа 0,56, тогда как высокоразветвленные (со)полимеры, соответствующие настоящему изобретению, имеют величину альфа в интервале от 0,35 до 0,40. Определение альфа (α) дано в экспериментальной части.

Компонент (а2) композиции настоящего изобретения, т.е. диеновый каучук, представляет собой каучук, выбранный из группы, включающей натуральный каучук, полибутадиен, полиизопрен, бутадиен-стирольный сополимер, изопрен-стирольный сополимер, сополимер изопрен-бутадиен. Если в качестве компонента (а2) использован полибутадиен, то предпочтительно он выбран из полибутадиена цис-1,4, полибутадиена с высоким содержанием винила (содержание винила от 40 до 90%) и родственных смесей. Когда компонентом (а2) является полиизопрен, то предпочтительно это - полиизопрен цис-1,4 с процентным содержанием цис-1,4 звеньев выше 90%.

Содержание компонента (а2) находится в интервале от 10 до 70% по массе, предпочтительно от 20 до 60% по массе, в расчете на сумму (а1)+(а2).

Что касается компонента (b) настоящего изобретения, т.е. диоксида кремния, то может быть использован любой тип диоксида кремния, например безводный диоксид кремния, полученный осаждением из силиката натрия, с размером в интервале от 20 до 30 нм, удельной поверхностью 35-150 м2/г. Количество диоксида кремния лежит в интервале от 10 до 150 м.ч., предпочтительно от 15 до 120 м.ч.

Что касается компонента (с) настоящего изобретения, он состоит из органосилана, который может взаимодействовать и с диоксидом кремния, и с частично гидрированным винилареновым сопряженным диеновым статистическим сополимером, т.е. компонентом (а1) композиции настоящего изобретения. Обычно это - функционализированный триалкоксисилан или диалкоксисилан. В предпочтительном варианте осуществления изобретения компонент (с) имеет одну из трех общих формул (E, F, G), показанных ниже:

(RO)3SiCnH2nSmCnH2nSi(OR)3 (E)
(RO)3SiCnH2nX (F)
(RO)3SiCnH2nSmY (G)

где R представляет алкильную группу, содержащую от 1 до 4 атомов углерода, три группы Rs являются одинаковыми или различными;

«n» представляет целое число от 1 до 6,

«m» представляет целое число от 1 до 6;

Х представляет меркаптогруппу, аминогруппу, винильную группу, нитрогруппу, имидогруппу, атом хлора или эпоксигруппу;

Y представляет цианогруппу, N,N-диметилтиокарбамоильную группу, меркаптобензотриазольную группу или метакрилатную группу.

Предпочтительными являются органосиланы, содержащие, по меньшей мере, один атом серы, особенно из-за их реакционной способности по отношению к частично гидрированному каучуку на стадии вулканизации. В частности, органосиланы, выбранные из числа таких соединений, как бис(3-триэтоксисилилпропил) тетрасульфид, γ-меркаптопропилметоксисилан; 3-тиоцианатпропилтриэтоксисилан; тетрасульфид триметоксисилил-пропилмеркаптобензотриазола, являются предпочтительными. Количество агента сочетания (с) лежит в интервале от 0,1 до 20 м.ч.

Что касается вулканизующего агента (d), им является сера или соединение, содержащее серу. Типичными соединениями, содержащими серу, являются монохлорид серы, дихлорид серы, дисульфид, полисульфид. Предпочтительным вулканизующим соединением является сера. Количество вулканизующего агента лежит в пределах от 0,1 до 10 м.ч. (phr). Ускоритель вулканизации, активатор и сшивающий агент также могут быть использованы вместе с вулканизующим агентом. Ускорители вулканизации включают производные гуанидина, аминоальдегиды, аммониевые соединения альдегидов, производные тиазола, амидосульфеновые соединения, тиомочевины, тиурам, дитиокарбаматы, ксантаты.

Типичными активаторами являются оксид цинка и стеариновая кислота.

Типичные примеры агентов поперечного сшивания включают производные оксима, нитропроизводные, полиамины, помимо радикальных инициаторов, таких как органические пероксиды и азопроизводные.

Следует отметить, что компоненты (b) и (c), т.е. диоксид кремния и агент сочетания, могут быть заменены соединением (b+c), образованным по реакции силана с диоксидом кремния. Другими словами, смесь согласно настоящему изобретению может содержать в виде частичной или полной замены диоксида кремния и силана продукт взаимодействия между силаном и диоксидом кремния.

Что касается необязательного технического углерода, то им может быть обычный технический углерод, используемый для усиления резин. Количество технического углерода лежит в интервале величин от 10 до 150 м.ч. (phr), предпочтительно от 10 до 100 м.ч. (phr), даже более предпочтительно от 15 до 80 м.ч. (phr). В предпочтительном варианте осуществления изобретения технический углерод имеет конкретную удельную поверхность, определенную по абсорбции азота, в интервале от 40 до 150 м2/г, и число поглощения ДБФ (дибутилфталата), определенное согласно стандарту ASTM-D-2414, в интервале значений от 70 до 180 мл/100 г. Технический углерод находится предпочтительно в форме небольших частиц, имеющих хорошую способность к поглощению масла. Даже более предпочтительно, это - технический углерод, на поверхность которого введены -ОН группы, так как данные группы являются реакционными относительно органосиланового модификатора.

Кроме того, сырая эластомерная композиция настоящего изобретения может содержать, при необходимости, агенты расширения, усиливающие агенты, наполнители, антиоксиданты, противостарители, поглотители УФ-излучения, мягчители, вспенивающие агенты, антипирены, антистатики, красители, пластификаторы, технологические добавки, замедлители подвулканизации и другие ингредиенты.

В качестве масляного наполнителя обычно может быть использовано технологическое масло. Масляный наполнитель может быть парафинового, нафтенового или ароматического типа и представлять соответствующие смеси, предпочтительно неароматического типа. Типичными примерами масел с низким содержанием ароматических соединений являются масла на основе MES (мягкий экстракционный сольват) или масла на основе TDAE (обработанный ароматический экстракт дистиллята), в которых количество ароматических соединений ниже чем 20%.

Масляные наполнители обычно добавляют в количестве от 10 до 50 частей масла на 100 частей каучука, предпочтительно от 20 до 40 частей масла на 100 частей каучука.

Усиливающие материалы включают неорганические соединения, такие как активированный карбонат кальция, или органические соединения, такие как смолы с высоким содержанием стирола и фенолформальдегидные смолы. Вышеназванные усиливающие материалы должны содержаться в количествах ниже чем 80 частей по массе на 100 частей каучукового материала.

Типичными примерами наполнителей являются карбонат кальция, каолин, тальк, гидроксид алюминия, диатомная земля, сульфат алюминия, сульфат бария.

Антиоксиданты или противостарители включают производные аминов, такие как дифениламин и п-фенилендиамин, производные хинолина и гидрохинолина, монофенолы, дифенолы, тиобисфенолы, затрудненные фенолы, сложные эфиры фосфорной кислоты. Данные соединения и смеси родственных соединений могут быть использованы в количестве, лежащем в интервале величин от 0,001 до 10 частей по массе на 100 частей каучукового материала.

Что касается других материалов, то они хорошо известны в данной области и могут быть использованы в соответствии с требованиями.

Сырая эластомерная смесь настоящего изобретения может быть получена смешением компонентов (а)-(d), возможно технического углерода, и агентов рецептуры с использованием традиционного оборудования, принятого для осуществления смешения эластомерных соединений, например вальцов, закрытых резиносмесителей Бенбери, шприцмашин. Затем смеси формуют и вулканизуют. Смешение ингредиентов может быть осуществлено в одну стадию или в разные заходы. В последнем случае первый способ состоит сначала в смешении эластомерных компонентов (а1) и (а2), диоксида кремния (b) и агента сочетания (с) и возможно технического углерода (е) и других добавок в закрытом резиносмесителе типа резиносмесителя Бенбери и последующего введения на вальцы вулканизующего агента (d) и ускорителей. В другом способе вновь с различными стадиями диоксид кремния и агент сочетания сначала смешивают и осуществляют их взаимодействие и продукт данного взаимодействия затем смешивают с эластомерами (а1) и (а2) и возможно техническим углеродом, и окончательно - с вулканизующим агентом.

Следует помнить, что большая или меньшая переработка эластомерных материалов, т.е. скорость и эффективность, с какой усиливающие наполнители (в частности, диоксид кремния и технический углерод), а также вулканизующие агенты, ускорители и другие добавки захватываются и затем распределяются внутри эластомерной матрицы, зависит от вязкоупругих свойств материала. Этот аспект изучен Tokita N. and Pliskin I. (1973, Rubber Chemistry and Technology: Vol. 46, page 1173), которые идентифицировали различные структурные типы макромолекул, которые по-разному ведут себя в процессе изготовления резиновых смесей. На основе данных исследований можно подразделить свойства, известные в перерабатывающей промышленности, когда полимеры с молекулярно-массовым распределением и индексом распределения Mw/Mn<1,3 (и поэтому типичные для периодической полимеризации) отличаются значительной затрудненностью к введению наполнителей, тогда как полимеры, имеющие молекулярно-массовое распределение и индекс распределения Mw/Mn от 1,8 до 2,5, обладают хорошими технологическими свойствами. Данная характеристика может быть дополнительно улучшена введением длинноцепочечных разветвлений, обычно присутствующих в бутадиен-стирольных сополимерах, полученных в эмульсии, или образованных, в случае статистических бутадиен-стирольных сополимеров, полученных растворным методом анионной полимеризации, в результате взаимодействия между активными концами цепей и алкилбромидами (см. патент США 6858683).

Улучшение технологических свойств, определяющих оптимальное поведение каучука на стадии смешения с различными наполнителями и их последующее распределение, требует поэтому полимера, полученного непрерывным способом (чтобы обеспечить правильный баланс между упругими и пластическими свойствами, показанный отношением Mw/Mn с величиной 2), в котором активные концы цепей должны быть по возможности многочисленными, чтобы обеспечить максимальную эффективность возможных реакций после модификации, с помощью которых можно ввести разветвления.

Что касается получения (а1), он может быть получен непрерывным способом, включающим три различные стадии, т.е.:

(А) получение линейного виниларенового сопряженного диенового статистического сополимера;

(В) разветвление линейного статистического сополимера, полученного на стадии (А), обработкой алкилгалогенидами, предпочтительно алкилбромидами;

(С) частичная гидрогенизация разветвленного статистического сополимера, полученного на стадии (В).

Стадия (А) рассмотрена в находящейся в процессе одновременного рассмотрения патентной заявке на имя того же заявителя MI 06 A 00385 (Европейская патентная заявка 07003216.4). Это - процесс сополимеризации, осуществляемый в изотермических условиях в среде углеводородного растворителя при температуре, лежащей в интервале от 30 до 120°С, предпочтительно от 50 до 110°С, даже более предпочтительно от 80 до 110°С, в присутствии, по меньшей мере, одного инициатора, выбранного из литийорганических производных, R(Li)x, где R представляет гидрокарбильную группу, содержащую от 1 до 20 атомов углерода, предпочтительно от 2 до 8, и х обозначает целое число от 1 до 4, и конкретного модификатора, состоящего из хелатообразующего простого эфира, обычно 2-метоксиэтилтетрагидрофурана (THPA-метил). Применение вышеуказанного модификатора является абсолютно необходимым во избежание протекания реакций обрыва полимерных цепей. Дополнительные детали вышеуказанного процесса и полученных таким образом продуктов представлены в вышецитированной находящейся в процессе одновременного рассмотрения патентной заявке на имя того же заявителя MI 06 A 00385. Конкретными примерами литийорганических производных являются н-бутиллитий, н-пропиллитий, изобутиллитий, т-бутиллитий, амиллитий.

Что касается стадии (В), то ее осуществляют в соответствии с тем, что предложено в патенте США 6858683. Стадия (В) может быть проведена, начиная с сополимера, полученного на стадии (А), в котором закрыты все активные центры. Стадию (В), однако, предпочтительно проводят, начиная прямо с раствора живущего полимера, полученного в конце стадии (А). Согласно данному последнему методу в конце сополимеризации виниларенового сопряженного диена в полимерный раствор добавляют количество алкиллития вышеприведенной формулы R(Li)x, от 1 до 4 раз превышающего по молям количество алкиллития, использованное на стадии (А), а затем количество R1-Br (R1 является монофункциональным С130, предпочтительно С310 гидрокарбильным радикалом) в определенных отношениях относительно общего количества использованного алкиллития. Примерами соединений формулы R1-Br являются монобромметан, монобромэтан, монобромгексан, монобромоктан, монобромциклогексан, монобромбензол. Отношение R1-Br относительно всего количества использованного литийорганического соединения в полимерном растворе лежит в интервале от 0,6/1 до 1/1.

Стадии (А) и (В) могут быть осуществлены при температурах в интервале от 40 до 140°С, предпочтительно от 60 до 120°С.

Что касается стадии (С), т.е. стадии частичной гидрогенизации разветвленного и статистического сополимера, полученного в конце стадии (В), ее осуществляют следующим образом. Процессы частичной гидрогенизации обычно проводят в мягких условиях при давлении приблизительно 5-30 кг/см2 или ниже и температурах приблизительно 60-120°С или ниже, предпочтительно в присутствии органопроизводных одного титана или объединенных с металлоорганическими соединениями лития, магния или алюминия (см., например, патент США 4501857; патент США 4673714; патент США 5948869).

Настоящее изобретение также относится, в общем, к вулканизованным продуктам, полученным, начиная с композиции настоящего изобретения. Вышеупомянутые вулканизованные продукты, особенно в соответствии с (а2), выбраны из полидиенов с высоким содержанием цис-звеньев, они особенно подходят для конструкций протекторов шин, особенно автомобильных транспортных средств, так как они имеют отличное сцепление с дорогой на влажных поверхностях или на льду, даже если они имеют низкое сопротивление качению.

В общем, важные результаты, полученные в определении микроструктурных и композиционных характеристик для идентификации оптимальных динамических свойств протектора в конкретных условиях использования, создали своего рода технический тупик, так как показатели сцепления с влажной поверхностью дороги или, в любом случае, в условиях низкого сцепления, могут быть получены изменением структурных переменных, которые обуславливают увеличение сопротивления качению. Известно, что (при одной и той же Tg) увеличение доли стирола (и, как следствие этого, снижение содержания винила) в сополимере БСК вызывает рост гистерезисных потерь в резине с сопутствующим увеличением сцепления, но при ухудшении сопротивления качению (см., например, величины tan δ, измеренного при 60°С и частоте 1 Гц при 5% деформации, представленные в предпоследнем столбце таблицы 4). Частичная гидрогенизация эластомерного материала, с другой стороны, подтверждающая модификацию взаимодействий между макромолекулами, вызывает увеличение вязкости по Муни, свидетельствуя об активном протекании процессов деструкции полимерных цепей вследствие, как уже упомянуто выше, взаимодействия алкилирующих агентов, входящих в состав катализатора гидрогенизации, со связями углерод-гетероатом (Si, O, Sn). Также известно, что присутствие части разветвленных молекул, даже лучше, если разветвленность имеет тип длинноцепочечных разветвлений, способствует распределению наполнителя и впоследствии вызывает улучшение эластических свойств материала.

Следует также принять во внимание, что требуемая динамическая характеристика основывается на взаимодействии между бутадиен-стирольным сополимером (а1) и полидиеном (а2) с высоким содержанием цис-звеньев (полибутадиена и/или полиизопрена), обычно применяемым в конструкции протектора шин. Совместимость данных материалов снижается с увеличением содержания стирола в бутадиен-стирольном сополимере.

Неожиданно авторами изобретения установлено, что статистические бутадиен-стирольные разветвленные сополимеры (а1), в частности, имеющие высокое содержание стирола, обладают повышенной совместимостью с полидиеновыми полимерами (а2), делая возможным получать эластомерные смеси, которые, наряду с увеличением параметров сцепления, обладают значительно лучшими величинами сопротивления качению по сравнению с аналогичными свойствами, измеренными на линейных сополимерах. Более того, присутствие длинноцепочечных разветвлений вызывает дополнительное улучшение динамических свойств благодаря оптимальному распределению наполнителей на стадии приготовления смесей.

Следующие примеры даны для лучшего понимания существа настоящего изобретения.

ПРИМЕРЫ

ХАРАКТЕРИСТИКА СИНТЕЗИРОВАННЫХ СОПОЛИМЕРОВ

1. Определение связанного стирола и микроструктуры полибутадиена

Метод основан на расчете отношений между интенсивностью полос поглощения, характерных для стирола и трех изомеров бутадиена (транс, винил и цис); спектральные области, использованные для аналитического определения цис, транс и 1,2-изомера бутадиена и стирола, соответствуют 1018 и 937 см-1 для транс-изомера, 934 и 887 см-1 для 1,2-изомера (с необходимой поправкой на влияние стирола), 800 и 640 см-1 для цис-изомера и от 715 до 680 см-1 для стирола. Измерение поглощений в максимальных точках и знание величин коэффициента ослабления, измеренных на стандартных полимерах, охарактеризованных методом 1Н-ЯМР, позволяет рассчитать количество различных структур бутадиена и количество стирола по закону Ламберта-Беера.

2. Определение молекулярно-массового распределения (ММР)

Определение молекулярно-массового распределения проводят с помощью гельпроникающей хроматографии (ГПХ), также известной как эксклюзионная хроматография, проводимой путем пропускания раствора полимера в ТГФ, предмете анализа, через ряд колонок, содержащих твердую фазу, состоящую из сшитого полистирола, с порами, имеющими различные размеры.

Инструментальное сопровождение:

Хроматограф НР 1090

Растворитель ТГФ

Температура 25°

Колонки PL-Gel 105-105-104-103

ИК-детектор HP 1047 А

Определение молекулярных масс осуществляют универсальным методом калибровки с использованием следующих величин для k и α относительно количества стирола:

Стирол=25% k=0,000389 α=0,693

Стирол=30% k=0,000368 α=0,693

Стирол=40% k=0,000338 α=0,693

3. Определение среднемассовой молекулярной массы и измерение степени разветвленности методом SEC/MALLS проводили согласно внутреннему методу, взятому из работы, описанной в Application Note, Nr. 9, Wyatt Technology and Pavel Kratochvill, Classical Light Scattering from Polymer Solutions, Polymer Science Library, 5. Elsssevier Science Publishers B.V. 1987. Соединяя детектор светорассеяния под большими углами (MALLS) с традиционной системой элюирования SEC/RI, возможно одновременно провести абсолютное измерение молекулярной массы и радиусов вращения макромолекул, которые разделены хроматографической системой. Количество рассеянного света от макромолекулярных фрагментов в растворе может быть реально использовано для получения величин их молекулярных масс, тогда как угловое отклонение рассеяния прямо коррелирует со средними размерами молекул в растворе. Основное уравнение, которое используется для расчета, имеет следующий вид:

где

К* = оптическая константа, которая зависит от использованной длины волны света, dn/dt полимера, использованного растворителя,

Mw = среднемассовая молекулярная масса,

с = концентрация полимерного раствора,

Rθ = интенсивность рассеянного света, измеренная под углом θ,

Рθ = функция, которая описывает угловое отклонение рассеянного света,

A2 = второй вириальный коэффициент растворителя, равный 1 для угла θ, равного 0.

Для очень малых концентраций (типичных для SEC системы) 1 снижается до

и проведение измерений под различными углами, экстраполяция до нулевого угла функции К*с/Rθ в зависимости от sin2θ/2 прямо дает величину молекулярной массы на точке пересечения и радиус вращения по наклону.

Кроме того, так как данное измерение проводят для каждого участка хроматограммы, можно получить распределение обоих параметров, молекулярной массы и также радиуса вращения.

Размеры макромолекул в растворе прямо коррелируют со степенью их разветвленности: при одной и той же молекулярной массе, чем меньше размеры макромолекулы относительно соответствующей линейной макромолекулы, тем выше степень разветвленности; так как макромолекула, имеющая клубки внутри себя (радиальные структуры и разветвленные структуры), имеет одну и ту же молекулярную массу, то чем меньше гидродинамический объем относительно линейной молекулы, тем наклон прямой, описывающей вышеуказанную зависимость (коэффициент α), будет больше или меньше, в зависимости от более низкой или более высокой степени взаимозацеплений структур. В частности, для линейных макромолекул коэффициент пропорциональности между радиусом вращения и молекулярной массой оказывается равным 0,58, тогда как для разветвленных молекул названная величина становится прогрессивно ниже с увеличением числа клубков, присутствующих в макромолекуле. В качестве примера статистический бутадиен-стирольный сополимер, полученный радикальной полимеризацией в эмульсии (Э-БСК), имеет величину α, равную 0,35-0,38.

Информация, касающаяся микроструктуры полимера, количественно оценивается по показателю разветвленности gM, который определяют для каждой макромолекулы как отношение между средним квадратичным радиусом вращения разветвленной макромолекулы и им же для линейной макромолекулы, при одинаковой молекулярной массе:

Средний показатель разветвленности gM представляет среднее значение данного отношения к молекулярно-массовому распределению и лежит в интервале от 0 до 1.

Инструментальное сопровождение:

ИК-детектор НР 1047 А

WALLS Wyatt Technology mod. DAWN-DSP

Дифференциальный рефрактометр KMX16-CROMATIX

4. Определение последовательностей и полистирольных блоков

Метод включает химическую деструкцию сополимеров стирол/бутадиен озонолизом двойных связей бутадиена с последующим восстановлением и элюированием ВЭЖХ образованных олигомеров, чтобы получить количественную оценку распределения стирольных звеньев в статистических и частично статистических БСК. Возможность использования двойного УФ-МС детектора позволяет количественно определить % площади от УФ зависимости и одновременно контролировать молекулярные массы элюируемых фрагментов.

5. Определение вязкости по Муни и Δ вязкости по Муни

Определение вязкости по Муни проводили при 100°С с ротором L и временем (1+4); отклонение от номинального значения вязкости по Муни (ΔМуни) определяется как разница вязкости по Муни смеси и исходного полимера. Отклонение от номинального значения вязкости по Муни, как определено, образует систему оценки степени дисперсности наполнителя в эластомерной матрице; чем лучше дисперсность, тем ниже будет увеличение вязкости по Муни.

ASTM D 1646

6. Определение свойств при растяжении (удлинение при разрыве, относительное удлинение при разрыве, модуль упругости)

ASTM D 412

6. Определение динамических свойств (tan δ)

Измерение коэффициента затухания, коррелирующего с сопротивлением качению (tan δ RR), проводят при 60°С, 5% деформации при частоте 1 Гц, тогда как величину tan δ, коррелирующую со сцеплением при торможении или в смесях, представленных протекторной смесью (tan δ Wet), измеряют при температуре 0°С, при частоте 0,1 Гц и при деформации, установленной на 0,1%.

Сравнительный пример 1 (LC1)

Непрерывное получение линейного бутадиен-стирольного

сополимера (стирол 25%; 1,2-66%)

Эксперимент проводили в двух реакторах типа CSTR, соединенных последовательно, каждый из которых имел объем 100 литров и был предназначен для сополимеризации, а затем в третьем 50-литровом реакторе для обеспечения почти полной конверсии мономеров (>95,5%); все реакторы были снабжены системой очистки стенок, состоящей из скребка для чистки стенок, насаженного на вал мешалки. Подачу ингредиентов в реакционную смесь проводили с помощью измерителей масс. Смесь реагентов (циклогексан, стирол, бутадиен, модификатор, состоящий из THFA-метил и присадки, предохраняющей от порчи) готовили в реакторе с мешалкой под давлением азота, в количестве, достаточном для обеспечения значительного режима работы, поддержания композиции поданных реагентов постоянной с течением времени. Инициатор (раствор н-бутиллития в гексане) подавали через ввод первого реактора. Первый полимеризационный реактор является реактором варочного типа; он заполняется не полностью, и часть растворителя конденсируется и возвращается в реактор на рецикл; регулирование давления в реакторе последовательно характеризует и регулирует температуру. Все ингредиенты подают в районе днища реактора; изменения времен нахождения в реакторе осуществляют через изменения расходов исходного сырья. Дополнительный контроль температуры возможет за счет регулирования температуры растворителя и мономеров на входе в первый реактор с помощью теплообменника.

Сополимеризацию бутадиена и стирола проводили в условиях, описанных выше, подачей раствор