Способ получения 3-замещенных 2-амино-5-галогенбензамидов

Иллюстрации

Показать все

В изобретении раскрыт способ получения соединения формулы 1 путем взаимодействия соединения формулы 2, где R1 представляет собой Н, C1-C4 алкил, циклопропил, циклопропилметил или метилциклопропил, R2 представляет собой CH3 или Cl; и X представляет собой Cl или Br, включающий взаимодействие соединения формулы 2 с R1-NH2 в присутствии карбоновой кислоты в, по существу, безводной реакционной среде, включающей подходящий органический растворитель, а также способ получения соединения формулы 2, где R2 представляет собой СН3 или Cl; и X представляет собой Cl или Br; включающий взаимодействие соединения формулы 4, где R3 представляет собой C16 алкил или С36 алкенил, каждый из которых необязательно замещен не более чем 3 атомами галогена и не более чем 1 фенилом, с трибромидом фосфора. Также заявляется соединение 4, где R2 представляет собой CH3 или Cl; R3 представляет собой C16 алкил или С36 алкенил, каждый из которых необязательно замещен не более чем 3 атомами галогена и не более чем 1 фенилом; и X представляет собой Cl или Br; при условии когда R2 и X каждый представляет собой Cl, тогда R3 отличен от CH3. 3 н. и 9 з.п. ф-лы, 6 пр., 4 сх., 4 табл.

Реферат

Уровень техники

Как указано в патентных публикациях PCT WO 2003/015518, WO 2006/055922 и WO 2006/062978, 3-замещенные 2-амино-5-галогенбензамиды являются полезными исходными соединениями для получения диамидов антраниловой кислоты, проявляющих активность против членистоногих. В WO 2006/062978 раскрыто, что 3-замещенные 2-амино-5-галогенбензамиды могут быть получены галогенированием соответствующих 3-замещенных 2-аминобензамидов. Поскольку аминогруппа в значительной степени активирует электрофильное замещение в бензольном кольце, 3-замещенные 2-аминобензамиды быстро взаимодействуют с электрофильными галогенирующими реагентами по положению 5. Однако поскольку образующиеся продукты являются производными анилина и лишь частично деактивируются в результате моногалогенирования, они могут быть подвергнуты дальнейшему галогенированию. Соответственно, существует потребность в способах получения 3-замещенных 2-амино-5-галогенбензамидов без непосредственного взаимодействия анилина с галогенирующим агентом.

Сущность изобретения

Настоящее изобретение обеспечивает способ получения соединения формулы (1)

где

R1 представляет собой H, C1-C4 алкил, циклопропил, циклопропилметил или метилциклопропил;

R2 представляет собой CH3 или Cl; и

X представляет собой Cl или Br;

включающий взаимодействие соединения формулы 2

с соединением формулы 3

R1-NH2

3

в присутствии карбоновой кислоты.

Настоящее изобретение также обеспечивает способ получения соединения формулы 2, где R2 представляет собой CH3 или Cl; и X представляет собой Cl или Br; включающий взаимодействие соединения формулы 4

где R3 представляет собой С16 алкил или С36 алкенил, каждый из которых необязательно замещен не более чем 3 атомами галогена и не более чем 1 фенилом;

с трибромидом фосфора.

Настоящее изобретение далее относится к новому соединению формулы 4, где R2 представляет собой CH3 или Cl; R3 представляет собой С16 алкил или С36 алкенил, каждый из которых необязательно замещен не более чем 3 атомами галогена и не более чем 1 фенилом; и X представляет собой Cl или Br; при условии что если R2 и X каждый представляет собой Cl, тогда R3 не является CH3; причем указанное соединение представляет собой полезное промежуточное соединение для получения соединений формул 1 и 2 указанными выше способами.

Настоящее изобретение также относится к способу получения соединения формулы 5

где

X представляет собой Cl или Br;

Z представляет собой CR7 или N;

R1 представляет собой H, С14 алкил, циклопропил, циклопропилметил или метилциклопропил;

R2 представляет собой CH3 или Cl;

R4 представляет собой Cl, Br, CF3, OCF2H или OCH2CF3;

R5 представляет собой F, Cl или Br;

R6 представляет собой H, F или Cl; и

R7 представляет собой H, F, Cl или Br;

с использованием соединения формулы 1. Данный способ отличается тем, что соединение формулы 1 получают из соединений формул 2 и 3 способом, показанным выше.

Подробное описание изобретения

Как используется в настоящем описании, термины «содержит», «содержащий», «включает», «включающий», «имеет», «имеющий» или любые другие их варианты относятся к включению, не исключающему других возможностей. Например, композиция, способ, метод, изделие или агрегат, которые включают перечень элементов, необязательно ограничиваются только этими элементами, но могут включать другие элементы, которые не перечислены явно или не присущи такой композиции, способу, методу, изделию или агрегату. Далее, если прямо не указано противоположное, частица «или» имеет включающий, а не исключающий смысл. Например, условие «A или B» удовлетворяется любой из следующих ситуаций: A верно (или присутствует) и B ложно (или не присутствует), A ложно (или не присутствует) и B верно (или присутствует), и A и B верны (или присутствуют).

Кроме того, форма единственного числа, относящаяся к элементу или компоненту изобретения, также включает множественное число, если не очевидно, что число является единственным.

Термин «необязательно замещенный» в определении радикала (например, алкила или алкенила) означает, что данный радикал является незамещенным или замещен одним или несколькими заместителями вплоть до любого установленного предела числа заместителей. Поскольку термин «необязательно замещенный» включает возможность отсутствия замещения, фраза «каждый необязательно замещен 1-3 заместителями» означает, что возможно присутствие 0, 1, 2 или 3 заместителей. Следовательно, фраза «каждый необязательно замещен 1-3 заместителями» является синонимом фразе «каждый необязательно замещен 0-3 заместителями» и фразе «каждый необязательно замещен не более чем 3 заместителями». Родственные фразы, включающие словосочетание «необязательно замещенный», определяются аналогичным образом. В качестве дополнительного примера фраза «каждый необязательно замещен не более чем 3 атомами галогена» является синонимом фразе «каждый необязательно замещен 1-3 атомами галогена» и фраза «каждый необязательно замещен не более чем 1 фенилом» является синонимом «каждый необязательно замещен 0-1 фенилом». Когда галоген приведен в контексте диапазона, включающего 1 или более одного (например, «не более 3 атомов галогена»), форма единственного числа слова «галоген» означает «галогены» или «атомы галогена», когда присутствует более одного атома галогена. Когда присутствует более одного заместителя, каждый заместитель независим от других. Например, если в качестве заместителей присутствуют два атома галогена или более, каждый из атомов галогена может быть одинаковым или различным галогеном.

Соотношения, как правило, приводятся в настоящем описании в виде одного числа, которое соотносится с числом 1; например, соотношение 4 означает 4:1.

В настоящем описании и формуле изобретения термин «карбоновая кислота» означает химическое органическое соединение, включающее по меньшей мере одну карбоксильную функциональную группу (т.е. -C(O)OH). Термин «карбоновая кислота» не включает угольную кислоту (т.е. HOC(O)OH). Карбоновые кислоты включают, например, муравьиную кислоту, уксусную кислоту, пропионовую кислоту, хлоруксусную кислоту, бензойную кислоту, малеиновую кислоту и лимонную кислоту. Термин «эффективное значение pKa» относится к pKa функциональной группы карбоновой кислоты или, если соединение имеет более чем одну функциональную группу карбоновой кислоты, термин «эффективное значение pKa» относится к pKa наиболее кислотной функциональной группе карбоновой кислоты. В настоящем описании «эффективное значение pH» неводного вещества или смеси, такой как реакционная смесь, определяют смешиванием аликвоты вещества или смеси примерно с 5-20 объемами воды с последующим измерением pH полученной водной смеси (например, с помощью pH-метра). В настоящем описании термин «по существу безводное» вещество означает, что вещество содержит не более примерно 1% воды по массе. Химическое название «изатоевый ангидрид» является другим наименованием, соответствующим современному наименованию согласно номенклатуре Chemical Abstracts «2H-3,1-бензоксазин-2,4(1H)-дион».

Варианты осуществления настоящего изобретения включают:

Вариант осуществления A1. Способ, описанный в разделе «Сущность изобретения», получения соединения формулы 1, включающий взаимодействие соединения формулы 2 с соединением формулы 3 в присутствии карбоновой кислоты.

Вариант осуществления A2. Способ варианта осуществления A1, где R1 представляет собой C1-C4 алкил, циклопропил, циклопропилметил или метилциклопропил.

Вариант осуществления A3. Способ варианта осуществления A2, где R1 представляет собой C1-C4 алкил или циклопропилметил.

Вариант осуществления A4. Способ варианта осуществления A3, где R1 представляет собой метил.

Вариант осуществления A5. Способ варианта осуществления A1, где мольное соотношение соединения формулы 3 к соединению формулы 2 составляет примерно от 1,1 до примерно 2.

Вариант осуществления A5a. Способ варианта осуществления A5, где мольное соотношение соединения формулы 3 к соединению формулы 2 составляет примерно от 1,1 до примерно 1,5.

Вариант осуществления A5b. Способ варианта осуществления A5a, где мольное соотношение соединения формулы 3 к соединению формулы 2 составляет примерно от 1,1 до примерно 1,3.

Вариант осуществления A5c. Способ варианта осуществления A5b, где мольное соотношение соединения формулы 3 к соединению формулы 2 составляет примерно от 1,2 до примерно 1,3.

Вариант осуществления A6. Способ варианта осуществления A1, где соединение формулы 2 подвергают взаимодействию с соединением формулы 3 в присутствии карбоновой кислоты и в присутствии подходящего органического растворителя.

Вариант осуществления A7. Способ варианта осуществления A1, где соединение формулы 2 подвергают взаимодействию с соединением формулы 3 в присутствии карбоновой кислоты в реакционной среде, включающей подходящий органический растворитель.

Вариант осуществления A8. Способ варианта осуществления A7, где реакционная среда содержит 5 мас.% воды или менее.

Вариант осуществления A9. Способ варианта осуществления A8, где реакционная среда содержит 1 мас.% воды или менее.

Вариант осуществления A10. Способ варианта осуществления A9, где реакционная среда содержит 0,1 мас.% воды или менее.

Вариант осуществления A11. Способ варианта осуществления A7, где реакционная среда является по существу безводной.

Вариант осуществления A12. Способ любого из вариантов осуществления A6 и A7, где в органический растворитель входят один или несколько растворителей, выбранных из сложных эфиров, кетонов, нитрилов, галогеналканов, простых эфиров и галогенированных и негалогенированных ароматических углеводородов.

Вариант осуществления A13. Способ варианта осуществления A12, где органический растворитель включает эфир C2-C3 алкилкарбоновой кислоты и C1-C3 алканола.

Вариант осуществления A14. Способ варианта осуществления A13, где органический растворитель включает этилацетат.

Вариант осуществления A15. Способ варианта осуществления A1, где взаимодействие проводят в реакционной среде, имеющей pH в диапазоне примерно от 3 до примерно 7.

Вариант осуществления A16. Способ варианта осуществления A15, где карбоновая кислота выбрана таким образом, чтобы обеспечить pH в пределах указанного диапазона.

Вариант осуществления A17. Способ варианта осуществления A1, где карбоновая кислота имеет эффективное значение pKa примерно от 2 до примерно 5.

Вариант осуществления A18. Способ варианта осуществления A1, где карбоновая кислота представляет собой C2-C18 алкилкарбоновую кислоту.

Вариант осуществления A19. Способ варианта осуществления A18, где карбоновая кислота представляет собой уксусную кислоту.

Вариант осуществления A20. Способ варианта осуществления A1, где мольное отношение соединения формулы 3 к карбоновой кислоте составляет примерно от 0,6 до примерно 3.

Вариант осуществления A20a. Способ варианта осуществления A20, где мольное отношение соединения формулы 3 к карбоновой кислоте составляет примерно от 0,6 до примерно 1,2.

Вариант осуществления A20b. Способ варианта осуществления A20, где мольное отношение соединения формулы 3 к карбоновой кислоте составляет примерно от 0,8 до примерно 3.

Вариант осуществления A20c. Способ варианта осуществления A20b, где мольное отношение соединения формулы 3 к карбоновой кислоте составляет примерно от 0,8 до примерно 1,2.

Вариант осуществления A21. Способ варианта осуществления A1, где соединение формулы 2 подвергают взаимодействию с соединением формулы 3 и карбоновой кислотой при температуре примерно от 5 до примерно 75°C.

Вариант осуществления A21a. Способ варианта осуществления A21, где температура находится в пределах примерно от 15°C до примерно 70°C.

Вариант осуществления A21b. Способ варианта осуществления A21a, где температура находится в пределах примерно от 35°C до примерно 60°C.

Вариант осуществления A21c. Способ варианта осуществления A21b, где температура находится в пределах примерно от 35°C до примерно 55°C.

Вариант осуществления A21d. Способ варианта осуществления A21b, где температура находится в пределах примерно от 50°C до примерно 60°C.

Вариант осуществления A22. Способ варианта осуществления A21d, где температура находится в пределах примерно от 50°C до примерно 55°C.

Вариант осуществления A23. Способ варианта осуществления A1, где соединение формулы 3 добавляют в смесь соединения формулы 2 и карбоновой кислоты.

Вариант осуществления A24. Способ варианта осуществления A23, где соединение формулы 3 добавляют в безводной форме (т.е. по существу безводной форме).

Вариант осуществления A25. Способ варианта осуществления A1, где соединение формулы 2 получают путем взаимодействия соединения формулы 4 с трибромидом фосфора.

Вариант осуществления A26. Способ варианта осуществления A1, где соединение формулы 3 добавляют в смесь, содержащую соединение формулы 2 и карбоновую кислоту.

Вариант осуществления B1. Способ, описанный в разделе «Сущность изобретения», получения соединения формулы 2, включающий взаимодействие соединения формулы 4 с трибромидом фосфора.

Вариант осуществления B4. Способ варианта осуществления B1, где R3 представляет собой C1-C4 алкил.

Вариант осуществления B5. Способ варианта осуществления B4, где R3 не содержит разветвления у атома углерода, связанного с кислородом.

Вариант осуществления B6. Способ варианта осуществления B5, где R3 представляет собой метил или этил.

Вариант осуществления B7. Способ варианта осуществления B1, где соединение формулы 4 подвергают взаимодействию с трибромидом фосфора в присутствии подходящего органического растворителя.

Вариант осуществления B8. Способ варианта осуществления B1, где органический растворитель включает один или несколько растворителей, выбранных из сложных эфиров, нитрилов, углеводородов и галогенированных углеводородов.

Вариант осуществления B8a. Способ варианта осуществления B8, где органический растворитель включает один или несколько растворителей, выбранных из сложных эфиров, нитрилов, галогеналканов, а также галогенированных и негалогенированных ароматических углеводородов.

Вариант осуществления B9. Способ варианта осуществления B8a, где органический растворитель включает один или несколько растворителей, выбранных из галогеналканов и галогенированных и негалогенированных ароматических углеводородов.

Вариант осуществления B10. Способ варианта осуществления B9, где органический растворитель включает один или несколько растворителей, выбранных из 1,2-дихлорэтана, бензола, толуола, ксилола и хлорбензола.

Вариант осуществления B11. Способ варианта осуществления B10, где органический растворитель включает толуол.

Вариант осуществления B12. Способ варианта осуществления B1, где мольное соотношение трибромида фосфора и соединения формулы 3 составляет примерно от 0,3 до примерно 3.

Вариант осуществления B12a. Способ варианта осуществления B12, где мольное соотношение трибромида фосфора и соединения формулы 3 составляет примерно от 0,3 до примерно 0,5.

Вариант осуществления B13. Способ варианта осуществления B12a, где мольное соотношение трибромида фосфора и соединения формулы 3 составляет примерно от 0,33 до примерно 0,40.

Вариант осуществления B14. Способ варианта осуществления B1, где соединение формулы 3 подвергают взаимодействию с трибромидом фосфора при температуре в диапазоне примерно от 50°C до примерно 90°C.

Вариант осуществления B14a. Способ варианта осуществления B14, где температура находится в диапазоне примерно от 50°C до примерно 80°C.

Вариант осуществления B14b. Способ варианта осуществления B14a, где температура находится в диапазоне примерно от 60°C до примерно 75°C.

Вариант осуществления B15. Способ варианта осуществления B14b, где температура находится в диапазоне примерно от 60°C до примерно 70°C.

Вариант осуществления C1. Способ по любому из вариантов осуществления A1 и B1, где R2 представляет собой метил.

Вариант осуществления C2. Способ по любому из вариантов осуществления A1 и B1, где X представляет собой Cl.

Вариант осуществления C3. Способ по любому из вариантов осуществления A1 и B1, где X представляет собой Br.

Вариант осуществления C4. Способ по любому из вариантов осуществления A1, A4 и B1, где R2 представляет собой CH3 и X представляет собой Cl.

Вариант осуществления D1. Соединение формулы 4, где R2 представляет собой CH3 или Cl; R3 представляет собой C1-C6 алкил или C3-C6 алкенил, каждый из которых необязательно замещен не более чем 3 атомами галогена и не более чем 1 фенилом; и X представляет собой Cl или Br; при условии что когда R2 и X каждый является Cl, R3 отличен от CH3.

Вариант осуществления D2. Соединение по варианту осуществления D1, где R2 представляет собой CH3.

Вариант осуществления D3. Соединение по варианту осуществления D1, где R3 представляет собой C1-C4 алкил.

Вариант осуществления D4. Соединение по варианту осуществления D3, где R3 не содержит разветвления у атома углерода, связанного с кислородом.

Вариант осуществления D5. Соединение по варианту осуществления D4, где R3 представляет собой метил или этил.

Вариант осуществления D6. Соединение по варианту осуществления D1, где X представляет собой Cl.

Вариант осуществления D7. Соединение по варианту осуществления D1, где X представляет собой Br.

Вариант осуществления D8. Соединение по варианту осуществления D1, где R2 представляет собой CH3, и X представляет собой Cl.

Вариант осуществления D9. Соединение по варианту осуществления D1, где R2 представляет собой CH3, и X представляет собой Br.

Вариант осуществления D10. Соединение по любому из вариантов осуществления D1, D8 и D9, где R3 представляет собой C1-C2 алкил.

Вариант осуществления D11. Соединение по варианту осуществления D10, где R2 представляет собой CH3, R3 представляет собой CH3, и X представляет собой Cl.

Вариант осуществления D12. Соединение по варианту осуществления D10, где R2 представляет собой CH3, R3 представляет собой CH3, и X представляет собой Br.

Вариант осуществления D13. Соединение по варианту осуществления D10, где R2 представляет собой CH3, R3 представляет собой CH2CH3, и X представляет собой Cl.

Вариант осуществления D14. Соединение по варианту осуществления D10, где R2 представляет собой CH3, R3 представляет собой CH2CH3, и X представляет собой Br.

Вариант осуществления D15. Соединение по варианту осуществления D1, где если X представляет собой Cl, то R2 отличен от Cl.

Вариант осуществления D16. Соединение по варианту осуществления D1, где R2 представляет собой CH3.

Вариант осуществления E1. Способ, описанный в разделе «Сущность изобретения», получения соединения формулы 5, включающий использование соединения формулы 1, полученного из соединений формул 2 и 3.

Вариант осуществления E2. Способ варианта осуществления E1, где X представляет собой Cl.

Вариант осуществления E3. Способ варианта осуществления E1, где X представляет собой Br.

Вариант осуществления E4. Способ варианта осуществления E1, где Z представляет собой N.

Вариант осуществления E5. Способ варианта осуществления E1, где R1 представляет собой С14 алкил, циклопропил, циклопропилметил или метилциклопропил.

Вариант осуществления E6. Способ варианта осуществления E5, где R1 представляет собой С14 алкил или циклопропилметил.

Вариант осуществления E7. Способ варианта осуществления E6, где R1 представляет собой метил.

Вариант осуществления E8. Способ варианта осуществления E1, где R2 представляет собой CH3.

Вариант осуществления E9. Способ варианта осуществления E1, где R4 представляет собой Br.

Вариант осуществления E10. Способ варианта осуществления E1, где R5 представляет собой Cl.

Вариант осуществления E11. Способ варианта осуществления E1, где R6 представляет собой H.

Вариант осуществления E12. Способ варианта осуществления E1, где R1 представляет собой CH3, R2 представляет собой CH3, R4 представляет собой Br, R5 представляет собой Cl, R6 представляет собой H, X представляет собой Cl, и Z представляет собой N.

Варианты осуществления настоящего изобретения можно комбинировать любым образом.

Способы и промежуточные соединения по настоящему изобретению более подробно описаны ниже. На приведенных ниже схемах определения R1, R2, R3, R4, R5, R6, R7, X и Z являются такими, как определено выше, если не указано иное.

Как показано на схеме 1, в способе по настоящему изобретению замещенный антраниламид формулы 1 получают путем взаимодействия замещенного изатоевого ангидрида формулы 2 с амином формулы 3 в присутствии карбоновой кислоты.

Схема 1

Поскольку амины, такие как соединение формулы 3, являются основаниями, в отсутствие карбоновой кислоты смесь соединений формул 2 и 3 должна являться основной (например, эффективное значение pH>7). В способе по настоящему изобретению карбоновая кислота действует в качестве буфера, уменьшая эффективное значение pH реакционной смеси. В способе по настоящему изобретению могут быть использованы самые различные карбоновые кислоты, поскольку единственным условием является наличие хотя бы одной группы карбоновой кислоты для придания соединению кислотности. В молекуле карбоновой кислоты могут присутствовать другие функциональные группы, а также может присутствовать более чем одна группа карбоновой кислоты. Обычно карбоновая кислота в способе по настоящему изобретению имеет эффективное значение pKa в диапазоне примерно от 2 до примерно 5. Карбоновые кислоты включают, например, муравьиную кислоту, пропионовую кислоту, хлоруксусную кислоту, бензойную кислоту, фталевую кислоту, малеиновую кислоту, винную кислоту и лимонную кислоту. С точки зрения стоимости предпочтительны недорогие карбоновые кислоты, такие как муравьиная кислота, уксусная кислота, пропионовая кислота и бензойная кислота. Особенно предпочтительна уксусная кислота, которая может быть приобретена по невысокой стоимости в безводной форме (известной как «ледяная уксусная кислота»).

Комбинация карбоновой кислоты с основным амином формулы 3 образует соль амина и карбоновой кислоты. Соль амина может быть получена перед добавлением изатоевого ангидрида формулы 2, или соль амина может быть получена in situ путем добавления определенного количества амина формулы 3 в смесь соединения формулы 2 и карбоновой кислоты. При любом способе добавления наилучшее осуществление способа по настоящему изобретению заключается в поддержании эффективного pH смеси во время реакции в диапазоне примерно от 3 до примерно 7.

Поскольку эффективное значение pH смеси является результатом буферного действия карбоновой кислоты в комбинации с амином формулы 3, эффективный pH может быть отрегулирован в соответствии с эффективным значением pKa карбоновой кислоты, за счет регулирования мольного соотношения карбоновой кислоты и амина формулы 3. Как правило, мольные соотношения амина формулы 3 и карбоновой кислоты находятся в пределах примерно от 0,6 до примерно 3, преимущественно примерно от 0,8 до примерно 3. В частности, если способ смешивания реагентов включает добавление определенного количества амина формулы 3 в смесь изатоевого ангидрида формулы 2 и карбоновой кислоты, мольное соотношение амина формулы 3 и карбоновой кислоты предпочтительно составляет примерно от 0,85 до примерно 3. Когда способ смешивания реагентов включает получение соли амина перед добавлением соединения формулы 2, мольное соотношение амина формулы 3 и карбоновой кислоты предпочтительно составляет примерно от 0,8 до примерно 1,05; если применяется почти эквимолярное соотношение (например, приблизительно от 0,95 до приблизительно 1,05) амина формулы 3 и карбоновой кислоты, полученную при этом соль амина используют в мольном соотношении примерно от 1,1 до примерно 5 к соединению формулы 2. Для достижения оптимального превращения молярное отношение амина формулы 3 к изатоевому ангидриду соединения формулы 2 должно составлять не менее 1,0, хотя предпочтительно, чтобы это отношение составляло примерно от 1,1 до примерно 1,5, с точки зрения эффективности и экономии, независимо от способа смешивания компонентов. Количество молей амина формулы 3 по отношению к соединению формулы 2 может значительно превышать 1,5, в частности когда используется почти эквимолярное соотношение амина и кислоты (например, приблизительно от 0,95 до приблизительно 1,05).

Способ, приведенный на схеме 1, обычно дает возможность добиться наиболее высоких выходов и чистоты продукта, когда реакционная среда является по существу безводной. Поэтому в реакционную среду, обычно, добавляют по существу безводные соединения формул 2 и 3 и карбоновую кислоту. Предпочтительно реакционная среда и составляющие ее вещества содержат примерно 5% или менее, более предпочтительно примерно 1% или менее, и наиболее предпочтительно примерно 0,1% или менее воды (по массе). Если карбоновая кислота представляет собой уксусную кислоту, ее предпочтительно используют в виде ледяной уксусной кислоты.

Реакцию по схеме 1, как правило, проводят в жидкой фазе. Во многих случаях реакция может быть осуществлена без специального растворителя, отличного от соединений формул 1, 2, 3 и карбоновой кислоты. Однако предпочтительная методика включает использование растворителя, в котором можно суспендировать или по меньшей мере частично растворить реагенты. В число предпочтительных растворителей входят такие растворители, которые не обладают реакционной способностью в отношении компонентов реакционной смеси и имеют диэлектрическую константу, равную 5 или более, такие как алкилнитрилы, сложные эфиры, простые эфиры или кетоны. Предпочтительно растворитель должен быть по существу безводным, чтобы была возможность получить по существу безводную реакционную среду. Массовое соотношение растворителя к соединению формулы 2 составляет, как правило, примерно от 1 до примерно 20 и предпочтительно примерно 5, по соображениям эффективности и экономичности.

В способе, изображенном на схеме 1, в качестве побочного продукта образуется диоксид углерода. При проведении способа обычно большая часть образовавшегося диоксида углерода выделяется из реакционной смеси в виде газа. Добавление соединения формулы 2 в реакционную среду, содержащую амин формулы 3, или добавление амина формулы 3 в реакционную среду, содержащую соединение формулы 2, предпочтительно проводят с такой скоростью и при такой температуре, которые позволяют контролировать выделение диоксида углерода. Как правило, температура реакционной среды составляет примерно от 5 до 75°C, чаще примерно от 35 до 60°C.

Продукт формулы 1 может быть выделен стандартными методами, известными в данной области, включая регулирование значения pH, экстракцию, выпаривание, кристаллизацию и хроматографию. Например, реакционную смесь можно разбавить примерно 3-15 массовыми частями воды, относительно массы исходного соединения формулы 2, pH необязательно можно изменить до желаемого с помощью кислоты или основания для оптимизации удаления или кислотных, или основных загрязнений, водная фаза может быть необязательно отделена и большая часть органического растворителя может быть удалена отгонкой или выпариванием при пониженном давлении. Поскольку соединения формулы 1 при комнатной температуре являются, как правило, твердыми кристаллическими веществами, их по существу легче всего выделять фильтрованием, необязательно с последующим промыванием водой и затем сушкой. Как правило, регулирование pH необходимо во время обработки реакционной среды, и вода является средой, которую можно использовать для кристаллизации продуктов формулы 1. Следовательно, особенно удобная методика заключается в разбавлении реакционной среды водой, удалении большей части органического растворителя отгонкой при атмосферном давлении и затем охлаждении водной смеси для кристаллизации продукта, который затем может быть отделен фильтрованием. Способ, показанный на схеме 1, проиллюстрирован приведенными ниже примерами 2-5.

Как показано на схеме 2, в другом аспекте настоящего изобретения замещенный изатоевый ангидрид формулы 2 получают путем взаимодействия соединения формулы 4 с трибромидом фосфора.

Схема 2

Не ограничиваясь какой-либо конкретной теорией, можно предположить, что трибромид фосфора взаимодействует с соединением формулы 4, образуя наряду с бромистым водородом соединение формулы 10, как показано на рис.1, в качестве промежуточного соединения, которое затем взаимодействует с образованием соединения формулы 2 и R3Br, в качестве итогового побочного продукта.

Рисунок 1

В способе по схеме 2 стехиометрическое количество трибромида фосфора, необходимое для достижения полного превращения соединения формулы 4 в соединение формулы 2, составляет одну треть мольного эквивалента. Как правило, количество используемого трибромида фосфора составляет примерно от 0,3 до 3 мольных эквивалентов, причем с точки зрения экономичности предпочтительно количество примерно от 0,33 до примерно 0,4 эквивалентов.

Способ, изображенный на схеме 2, как правило, проводят в жидкой фазе, обычно содержащей растворитель, для по меньшей мере частичного растворения соединения формулы 4. Растворитель должен быть инертен в отношении трибромида фосфора и предпочтительно должен иметь температуру кипения при нормальном давлении выше 50°C, предпочтительно выше 70°C, для обеспечения необходимой температуры реакции. Примерами растворителей, подходящих для данной реакции, являются углеводороды (например, циклогексан, бензол, толуол), галогенированные углеводороды (например, 1-хлорбутан, 1,2-дихлорэтан, хлорбензол, о-дихлорбензол), сложные эфиры (например, н-бутилацетат) или нитрилы (например, ацетонитрил, бензонитрил).

Способ по схеме 2 удобно осуществлять путем разбавления соединения формулы 4 растворителем с последующим добавлением трибромида фосфора. Как правило, трибромид фосфора добавляют в реакционную смесь, содержащую соединение формулы 4, с такой скоростью, чтобы температура реакционной смеси составляла диапазон примерно от 50 до 80°C. Предпочтительно скорость добавления трибромида фосфора выбирают таким образом, чтобы поддерживать температуру реакционной смеси в диапазоне примерно от 60 до 75°C, поскольку это дает возможность управлять экзотермической реакцией и добиться максимальной чистоты продукта.

После завершения реакции продукт формулы 2 может быть выделен с помощью стандартных методик, известных в данной области, включая барботирование газа, регулирование pH, экстракцию, выпаривание, кристаллизацию и хроматографию. Большая часть побочного продукта R3Br и оставшийся в реакционной смеси бромистый водород можно удалить барботированием воздуха или газа, например, азота. Соединения формулы 2, как правило, являются твердыми кристаллическими веществами; при охлаждении реакционной смеси продукт обычно кристаллизуется в виде твердого вещества, которое может быть отделено фильтрованием, промыто водой для удаления остатков фосфорной кислоты и бромистого водорода и высушено. Способ по схеме 2 проиллюстрирован примером 1.

Соединения формулы 4 могут быть получены согласно общим способам, известным в данной области, включая, например, галогенирование соответствующих соединений формулы 11 с хлором или бромом, как показано на схеме 3.

Схема 3

Особенно пригодными для галогенирования по схеме 3 являются хлор или бром в момент выделения, которые образуются при взаимодействии водных растворов хлористоводородной или бромистоводородной кислот с пероксидом водорода, согласно общему способу патентной публикации Германии DE 2750292-A1. Данный способ проиллюстрирован справочным примером 1, в котором X представляет собой хлор. Соответствующие соединения могут быть получены по данной методике при замене хлористоводородной кислоты бромистоводородной кислотой.

Можно надеяться, что специалист в данной области техники сможет использовать настоящее изобретение в самой полной степени без дополнительных исследований. Поэтому следующие далее примеры следует истолковывать только как иллюстративные, а не ограничивающие каким бы то ни было образом раскрытие настоящего изобретения. Процентные соотношения указаны по массе, за исключением смесей растворителей для хроматографии или тех случаев, где это специально оговорено. Части и процентные доли для смесей хроматографических растворителей приведены по объемам, если не указано иное. Чистоту продуктов, содержащих 2-амино-5-хлор-N,3-диметилбензамид, определяли ВЭЖХ с обращенной фазой, используя колонку Ace C4 (Advanced Chromatography Technologies, Aberdeen, Scotland) и градиент смеси ацетонитрил/вода, содержащей 0,005 М буфер NaH2PO4/H2O, pH которого доводили до 3 добавлением H3PO4. Данные спектров 1H ЯМР приведены в миллионных долях сдвига в слабое поле относительно тетраметилсилана; “с” означает синглет, “д” означает дублет, “т” означает триплет, “кв” означает квартет, “м” означает мультиплет, “дд” означает дублет дублетов, “дт” означает дублет триплетов, “ушир.с” означает уширенный синглет, и “ушир.м” означает уширенный мультиплет.

Справочный пример 1

Получение 5-хлор-2-[(этоксикарбонил)амино]-3-метилбензойной кислоты (соединение формулы 4)

В 2-л реактор, снабженный верхней мешалкой и термопарой, загружали 150 г (0,672 моль) 2-[(этоксикарбонил)амино]-3-метилбензойной кислоты (прибл. 98% чистоты) и уксусную кислоту (500 г). Полученную суспензию нагревали до 35-40°C, с получением раствора, который охлаждали до 30°C и затем добавляли хлористоводородную кислоту (37%, 150 г, 1,5 моль, 2,2 экв). Поддерживая температуру смеси на уровне 30°C, добавляли водный раствор пероксида водорода (30%, 96 г, 0,85 моль, 1,25 экв) в течение примерно 1 ч. Затем смесь нагревали до 35°C и выдерживали при этой температуре в течение примерно 1 ч. В течение примерно 30 минут добавляли приблизительно 600 мл воды, поддерживая температуру на уровне 30-35°C. Смесь охлаждали до 10°C, отделяли продукт фильтрованием и влажный осадок на фильтре промывали водой (3×100 мл); при третьей промывке испытывали воду на отрицательную реакцию с помощью индикаторной бумаги KI-крахмал. Влажный осадок сушили до постоянной массы в вакуумной печи при 50°C. Выход неочищенного вещества составлял примерно 150 г (примерно 84%, исходя из измеренной чистоты 2-[(этоксикарбонил)амино]-3-метилбензойной кислоты 98% и измеренной чистоты продукта 95%). Часть неочищенного продукта подвергали первичной перекристаллизации из толуола и затем повторно перекристаллизовывали из водного метанола, получая образец для анализа с температурой плавления 124-126°C.

1H ЯМР (ДМСО-d 6) δ 1,19 (т, 3Н), 2,22 (с, 3Н), 4,05 (кв, 2Н), 7,54 (м, 2Н), 8,9 (ушир.с, 1Н), 13,1 (ушир.с, 1Н).

Пример 1

Получение 6-хлор-8-метил-2H-3,1-бензоксазин-2,4(1H)-диона (соединение формулы 2)

В 1-л трехгорлую колбу, снабженную капельной воронкой, термометром, обратным холодильником, устройством для барботирования азота и поглотителем щелочи, загружали 5-хлор-2-[(этоксикарбонил)амино]-3-метилбензойную кислоту (т.е. продукт справочного примера 1) (74,0 г, 0,288 моль) и толуол (300 мл). Смесь нагревали до 60-65°C и при этой температуре в течение примерно 60