Микропористое покрытие на основе полиуретан-полимочевины

Настоящее изобретение относится к способу изготовления микропористых покрытий, при котором вспенивают и высушивают композицию, содержащую водную, анионно- гидрофилированную полиуретановую дисперсию (I) и катионный коагулянт (II), причем катионный коагулянт (II) является полимером со среднечисленным молекулярным весом от 500000 до 50000000 г/моль, который имеет структурные звенья общих формул (1) и (2)

где R означает С=O, -СОО(СН2)2- или -СОО(СН2)3- и X- означает ион галогенида. Также описаны микропористое покрытие, полученное указанным выше способом, композиция для получения микропористых покрытий и субстрат с указанным нанесенным микропористым покрытием. Технический результат - изготовление новым способом микропористых покрытий, обладающих хорошими механическими свойствами и тонкой микропористой структурой. 4 н. и 6 з.п. ф-лы, 9 пр., 1 табл.

Реферат

Изобретение касается новых микропористых покрытий, а также способа изготовления микропористых покрытий.

В сфере покрытий текстильных полотен полиуретаны в их разнообразных формах применения - раствор с высоким содержанием твердой фазы, водные дисперсии - традиционно имеют большое значение. При этом тенденция в области покрытий, в первую очередь, в интересах экологии, уже много лет все интенсивней направляется от растворителей к системам с высоким содержанием твердой фазы и особенно к водным системам.

Несколько иная ситуация для полиуретановых кожезаменителей. Эти микропористые покрытия по современному техническому состоянию в большинстве случаев изготавливаются еще по так называемой технологии коагуляции в жидкой среде.

В процессе жидкостной коагуляции, широко применяемом до настоящего времени, текстиль покрывается растворенным в органических растворителях (например, в диметилформамиде) полиуретаном или пропитывается им. Коагуляция осуществляется непосредственно путем погружения в водяную баню. Полученные покрытия отличаются мягкостью и хорошей проницаемостью водяного пара. Способ ограничен из-за специфических свойств органического растворителя (растворяющая способность, смешиваемость с водой и пр.) в применении этого растворителя.

Недостатками данного способа являются необходимые и применяемые меры для безопасного обращения, для обработки и переработки с целью дальнейшего использования очень больших объемов растворителя.

В альтернативных методах, таких как коагуляция выпариванием, которые основаны на применении летучего растворителя и менее летучего нерастворимого компонента для связующего средства, при щадящем нагревании сначала улетучивается растворитель, так что связующее вещество благодаря постоянно увеличивающейся доли нерастворимого компонента способствует коагуляции; однако недостатки этих методов, кроме потребности в больших количествах растворителя, заключаются в чрезмерной трудоемкости и очень ограниченных возможностях оптимизации с помощью технологических параметров.

Применяемая солевая, кислотная или другая электролитическая коагуляция также осуществляется путем погружения покрытого субстрата или, как в случае с перчатками, сначала окунанием в дисперсию, а затем в концентрированный солевой раствор или в разбавленную кислотой воду или в другой раствор, причем связующее средство способствует коагуляции благодаря высокому содержанию электролита. Недостатки этого способа заключаются в сложном техническом исполнении и, прежде всего, в высоком выходе загрязненных сточных вод.

Метод с использованием процесса форполимеризации, после которого покрытая изоцианат-форполимеризатом подложка погружается в воду, и затем при отщеплении СO2 получается полимочевина с пористой структурой, также оценивается как невыгодный способ, среди прочего, из-за очень высокой реакционной способности композиций и связанных с этим коротких времен обработки.

Коагуляция, возможная для термочувствительных неспособных к структурированию связующих средств путем повышения температуры, часто приводит к неприемлемым результатам процесса покрытия.

В DE-А 19856412 описывается способ коагуляции в водной среде, базирующийся на отверждающихся водных полиуретановых дисперсиях, который обходится без органического растворителя или лишь с малым его содержанием и без использования солевых кислотных или прочих электролитических ванн, и в итоге представляет простой процесс. Описанный способ пригоден для покрытия немикропористых компактных пленок с уменьшенной толщиной слоя.

В DE-A 10300478 описывается способ, базирующийся преимущественно на водных способных к структурированию полиуретановых дисперсиях, согласно которому последние наносятся на текстильную поверхность в виде пены и под действием тепла при температурах от 100°С до 110°С коагулируют под воздействием специальных коагуляторов. Такой способ применяется для изготовления компактных покрытий, которые находят применение, например, в виде набивной искусственной замши, в автомобилях и для обивки мебели.

Изготовление микропористых покрытий с большой поверхностью путем водной коагуляции на основе неблагоприятных для экологии водных дисперсий полиуретан-мочевины (ПУР-дисперсии) на данный момент еще не решено удовлетворительно и поэтому является задачей данного изобретения.

Добавление обычных коагулянтов к ПУР-дисперсиям приводит к спонтанному осаждению полиуретана и поэтому не представляется подходящим методом для изготовления пригодных для намазывания паст.

Неожиданно было найдено, что пригодные для намазывания пасты могут быть получены с использованием специальных ПУР-дисперсий (I) в комбинации с катионными коагулянтами (II).

Кроме того, было найдено, что микропористые покрытия большой площади могут быть изготовлены новым способом, включающим следующие технологические операции:

А. Изготовление состава для нанесения покрытия (1), содержащего намазывающуюся водную анионную гидрофилирующую дисперсию полиуретан-полимочевины (I) и катионный коагулянт (II).

В. Вспенивание состава (1) при одновременной, по крайней мере, частичной коагуляции пены при пониженной температуре.

С. Нанесение пенистого и, по крайней мере, частично коагулированного состава (1) на текстильное основу.

D. Сушка и, при необходимости,

Е. закрепление пенообразной матрицы путем дополнительного процесса сушки при повышенной температуре.

Предметом настоящего изобретения является также способ изготовления пригодного для намазывания состава покрытия (1), отличающийся тем, что его компоненты выбираются из следующих групп:

I) водные анионные гидрофилирующие полиуретановые дисперсии с содержанием групп -COO-, -SO3- или PO32- от 0,1 до 15 миллиэквивалентов на 100 г твердого полимера;

II) катионные коагулянты, предпочтительно содержащие структурные элементы в соответствии с общей формулой (2), особенно предпочтительно структурные элементы в соответствии с общей формулой (1) и общей формулой (2),

где

R означает C=O, -COO(CH2)2- или -COO(CH2)3- и

X- означает ион галогенида, предпочтительно хлорида;

III) пенообразующее вещество;

IV) сеткообразующее вещество и,

V) при необходимости, загуститель,

и которые перед шагом В) смешиваются обычным способом в любой последовательности.

Содержащиеся в составах согласно изобретению водные, анионные гидрофилирующие полиуретановые дисперсии (I) могут быть получены следующими путями:

A) форполимеры с изоцианатными группами из

A1) органических полиизоцианатов;

A2) полимерных многоатомных спиртов со среднечисленными молекулярными весами от 400 до 8000 г/моль, преимущественно от 400 до 6000 г/моль и особенно предпочтительно от 600 до 3000 г/моль, и функциональностью по OH-группам от 1,5 до 6, предпочтительно от 1,8 до 3, особенно предпочтительно от 1,9 до 2,1, и,

A3) при необходимости, соединений с гидроксильными группами с молекулярными весами от 32 до 400 г/моль, и,

A4) при необходимости, активных к изоцианатным группам, анионных или частично анионных и/или, при необходимости, неионогенных средств с гидрофильными свойствами,

B) свободные NCO-группы которых затем полностью или частично преобразовываются при удлинении цепи,

B1) при необходимости, с помощью соединений с аминогруппами с молекулярными весами от 32 до 400 г/моль, и/или

B2) соединений, активных к изоцианатным группам, предпочтительно анионных или потенциально анионных гидрофилирующих средств с аминогруппами, и полученные таким образом форполимеры перед стадией В), во время нее или после нее диспергируются в воде, причем содержащиеся в некоторых случаях потенциально ионные группы путем частичного или полного обмена с нейтрализующим веществом переводятся в ионную форму.

Для достижения анионной гидрофильности на стадиях А4) и/или В2) следует использовать средства, обеспечивающие гидрофилирующие свойства, которые имеют такие действующие на NCO-группы, как амино-, гидрокси- или тиоловые группы, и, кроме того, COO- или -SO3- или -PO32- в качестве анионных групп или их полностью или частично протонированные аци-формы в качестве потенциально анионных групп.

Предпочтительные водные, анионные полиуретановые дисперсии (I) имеют меньшее отношение к гидрофильным анионным группам, предпочтительно от 0,1 до 15 миллиэквивалентов на 100 г жесткого полимера.

Чтобы добиться хорошей стабильности седиментации, среднечисленный размер частиц дисперсии полиуретана (I), измеренный посредством спектроскопии с лазерной корреляцией, предпочтительно должен быть менее 750 нм, более предпочтительно менее 500 нм и особенно предпочтительно менее 400 нм.

Соотношение NCO-групп соединений из компонентов А1) к NCO-реакционным группам, как амино-, гидрокси- или тиоловые группы соединений компонентов А2) - А4) при изготовлении NCO-активных форполимеров, составляет 1,05-3,5, предпочтительно 1,2-3,0 и особенно предпочтительно 1,3-2,5.

Соединения с аминогруппами на стадии В) применяются в таком количестве, чтобы эквивалентное соотношение изоцианат-реакционных аминогрупп этих соединений к свободным изоцианатным группам форполимера составляло 40-150%, предпочтительно от 50 до 120%, особенно предпочтительно от 60 до 120%.

Подходящие полиизоцианаты компонентов А1) известны специалисту как ароматические, жирноароматические, алифатические или циклоалифатические полиизоцианаты с функциональностью по NCO-группам 2.

Примерами таких подходящих полиизоцианатов являются 1,4-бутилендиизоцианат, 1,6-гексаметилендиизоцианат (HDI), изофорон-диизоцианат (IPDI), 2,2,4 и/или 2,4,4-триметилгексаметилен-диизоцианат, изомерные бис(4,4'-изоцианатоциклогексил)-метаны или их смеси с любым содержанием изомеров, 1,4-цикло-гексилендиизоцианат, 1,4-фенилендиизоцианат, 2,4- и/или 2,6-толуилендиизоцианат, 1,5-нафтилендиизоцианат, 2,2'- и/или 2,4'- и/или 4,4'-дифенилметандиизоцианат, 1,3- и/или 1,4-бис-(2-изоцианато-проп-2-ил)-бензол (TMXD1), 1,3-бис-(изоцианатометил)бензол (XDI), а также алкил-2,6-диизоцианатогексаноаты (лизиндиизоцианаты) с С1-С8-алкильными группами.

Кроме названных выше полиизоцианатов могут также применяться в соответствующих долях модифицированные диизоцианаты с уретдионовой, изоциануратной, уретановой, аллофанатной, биуретовой, иминооксадиазиндионовой и/или оксадиозинтрионовой структурой, а также может быть немодифицированный полиизоцианат с более чем 2 NCO-группами на молекулу, например, 4-изоцианатометил-1,8-октандиизоцианат (нонантриизоцианат) или трифенилметан-4,4',4''-триизоцианат.

Предпочтительно речь идет о полиизоцианатах или о смеси полиизоцианатов названного выше типа с изоцианатными группами, исключительно с алифатической и/или циклоалифатической связью, и усредненной функциональностью смеси по NCO-группам от 2 до 4, предпочтительно от 2 до 2,6 и особенно предпочтительно от 2 до 2,4.

Особенно предпочтительно применение в А1) 1,6-гексаметилендиизоцианата, изо-форондиизоцианата, изомерных бис(4,4'-изоцианатоциклогексил)метанов, а также их смесей.

В А2) применяются полимерные многоатомные спирты со среднечисленным молекулярным весом Mn от 400 до 8000 г/моль, предпочтительно от 400 до 6000 г/моль и особенно предпочтительно от 600 до 3000 г/моль. Их функциональность по OH-группам предпочтительно составляет от 1,5 до 6, более предпочтительно от 1,8 до 3 и особенно предпочтительно от 1,9 до 2,1.

Такими полимерными многоатомными спиртами, известными в технологии полиуретановых лаков, являются сложные полиэфирполиолы, полиакрилатполиолы, полиуретанполиолы, поликарбонатполиолы, простые полиэфирполиолы, сложные полиэфирполиакрилатполиолы, полиуретанполиакрилатполиолы, сложные полиуретанполиэфирполиолы, простые полиуретанполиэфирполиолы, полиуретанполикарбонатполиолы и сложные полиэфирполикарбонатполиолы. Они могут применяться в А2) по отдельности или в любой смеси друг с другом.

Такие сложные полиэфирполиолы являются известными полимерами, полученными поликонденсацией из диолей или, при необходимости, из триолей и тетраолей, и из дикарбоновых кислот, или, при необходимости, из три- и тетракарбоновых кислот или гидроксикарбоновых кислот или лактонов. Вместо свободных поликарбоновых кислот для получения сложных полиэфирполиолов могут использоваться также соответствующие ангидриды поликарбоновых кислот или соответствующие эфиры поликарбоновых кислот низших спиртов.

Примерами подходящих диолей являются этиленгликоль, бутиленгликоль, диэтиленгликоль, триэтиленгликоль, полиалкиленгликоль как полиэтиленгликоль, далее 1,2-пропандиол, 1,3-пропандиол, бутандиол(1,3), бутандиол(1,4), гександиол(1,6) и изомеры, неопентилгликоль или неопентилгликолевый эфир гидроксипивалиновой кислоты, причем предпочтительными являются гександиол(1,6) и изомеры, неопентилгликоль и неопентилгликолевый эфир гидроксипивалиновой кислоты. Кроме того, могут также применяться такие полиоли, как триметилолпропан, глицерин, эритрит, пентаэритрит, триэмтилолбензол или трисидроксиэтилизоцианурат.

В качестве дикарбоновых кислот могут применяться фталевая кислота, изофталевая кислота, терефталевая кислота, тетрагидрофталевая кислота, гексагидрофталевая кислота, циклогексадикарбоновая кислота, адипиновая кислота, азелаиновая кислота, себациновая кислота, глутаровая кислота, тетрахлорфталевая кислота, малеиновая кислота, фумаровая кислота, итаконовая кислота, малоновая кислота, пробковая кислота, 2-метилянтарная кислота, 3,3-диэтилглутаровая кислота и/или 2,2-диметилянтарная кислота. В качестве источника кислот могут также использоваться соответствующие ангидриды.

Если средняя функциональность предназначенных для образования сложных эфиров полиолей больше 2, то могут дополнительно применяться также такие монокарбоновые кислоты, как бензойная кислота и гексанкарбоновая кислота.

Предпочтительными кислотами являются алифатические или ароматические кислоты названного выше типа. Особенно предпочтительны адипиновая кислота, изофталевая кислота и, в некоторых случаях, тримеллитовая кислота.

Гидроксикарбоновыми кислотами, которые могут применяться в качестве компонента реакции при изготовлении сложного полиэфирполиола с концевыми гидроксильными группами, являются, например, гидроксикапроновая кислота, гидроксимасляная кислота, гидроксидекановая кислота, гидроксистеариновая кислота и подобные им. Подходящими лактонами являются капролактон, бутиролактон и гомолог. Предпочтителен капролактон.

Равным образом в А2) могут применяться поликарбонаты, содержащие гидроксильные группы, предпочтительно поликарбонатдиолы со среднечисленным молекулярным весом Mn от 400 до 8000 г/моль, предпочтительно от 600 до 3000 г/моль. Они получаются в результате реакции производных угольной кислоты, такой как дифенилкарбонат, диметилкарбонат или фосген, с многоатомными спиртами, предпочтительно с двухатомными спиртами.

Примерами такого рода диолей являются этиленгликоль, 1,2- и 1,3-пропандиол, 1,3-и 1,4-бутандиол, 1,6-гександиол, 1,8-октандиол, неопентилгликоль, 1,4-бисгидроксиметилциклогексан, 2-метил-1,3-пропандиол, 2,2,4-триметилпентандиол-1,3, дипропиленгликоль, полипропиленгликоли, дибутиленгликоль, полибутиленгликоли, бисфенол А и модифицированные лактоном диоли названного выше вида.

Предпочтительно поликарбонатдиол содержит 40-100 вес.% гександиола, предпочтительно 1,6-гександиола и/или производных гександиола. Такие производные гександиола кроме концевых OH-групп имеют группы простых и сложных эфиров. Эти производные получаются в результате реакции гександиола с избыточным капролактоном или путем этерификации гександиола с образованием простых эфиров и превращением в ди- или тригексиленгликоль.

Вместо чистых поликарбонатдиолей или дополнительно к ним в А2) могут применяться также простой полиэфир-поликарбонатдиолы.

Поликарбонаты, содержащие гидроксильные группы, имеют предпочтительно линейную структуру.

В А2) могут использоваться также полиолы на основе простых полиэфиров.

Например, пригодны известные в химии полиуретанов простые политетраметиленгликольполиэфиры, полученные в результате полимеризации тетрагидрофурана посредством раскрытия катионного кольца.

Пригодными простыми полиэфирполиолами являются также известные продукты присоединения окиси стирола, окиси этилена, окиси пропилена, окиси бутилена и/или эпихлоргидрина к ди- или полифункциональным исходным молекулам. Простые полиэфирполиолы, базирующиеся, по крайней мере, на частичном присоединении окиси этилена к ди - или полифункциональным исходным молекулам, могут также применяться в качестве компонентов А4) (неиногенные гидрофилирующие средства).

Подходящими исходными молекулами могут быть все известные из уровня техники соединения, как, например, вода, бутилдигликоль, глицерин, диэтиленгликоль, три-метиолпропан, пропиленгликоль, сорбит, этилендиамин, триэтаноламин, 1,4- бутандиол. Предпочтительными исходными молекулами являются вода, этиленгликоль, пропиленгликоль, 1,4-бутандиол, диэтиленгликоль и бутилдигликоль.

Особенно предпочтительные формы получения полиуретановых дисперсий (I) содержат в качестве компонентов А2) смесь из поликарбонатполиолей и политетраметиленгликольполиолей, причем в этой смеси содержание поликарбонатполиолей составляет в смешанном виде 20-80 вес.%, а на долю политетраметиленгликольполиолей приходится 80-20 вес.%. Предпочтительное содержание политетраметиленгликольполиолей составляет 30-75 вес.%, а содержание поликарбонатполиолей 25-70 вес.%. Особенно предпочтительным представляется содержание политетраметиленгликольполиолей в 35-70 вес.% и содержание поликарбонатполиолей в 30-65 вес.%, соответственно при условии, что в сумме весовой процент поликарбонатполиолей и политетраметиленгликольполиолей составляет 100%, и суммарное содержание поликарбонатполиолей и политетраметиленгликольполиолей в компонентах А2) составляет, по меньшей мере, 50 вес.%, предпочтительно 60 вес.% и особенно предпочтительно 70 вес.%.

Соединения компонентов A3) имеют молекулярные веса от 62 до 400 г/моль.

В A3) могут применяться полиолы названного диапазона молекулярных весов с атомами углерода до 20 единиц, как этиленгликоль, диэтиленгликоль, три-этиленгликоль, 1,2-пропандиол, 1,3-пропандиол, 1,4-бутандиол, 1,3-бутиленгликоль, циклогександиол, 1,4-циклогександиметанол, 1,6-гександиол, неопентилгликоль, простой гидрохинондигидроксиэтилэфир, бисфенол А (2,2-бис(4-гидроксифенил)-пропан), гидрированный бисфенол А, (2,2-бис(4-гидроксициклогексил)пропан), триметилолпропан, глицерин, пентаэритрит, а также их любые смеси друг с другом.

Пригодны также диолы на основе сложных эфиров названного диапазона молекулярных весов, такие как α-гидроксибутил-ε-гидроксикапроновая кислота-эфир, ω-гидроксигексил-γ-гидроксимасляная кислота-эфир, адипиновая кислота-(β-гидроксиэтил)эфир или терефталевая кислота-бис(β-гидроксиэтил)-эфир.

Кроме того, в A3) могут применяться также монофункциональные, изоцианат реакционные соединения, содержащие гидроксильные группы. Примерами таких монофункциональных соединений являются этанол, н-бутанол, этиленгликольмонобутилэфир, диэтиленгликольмонометилэфир, этиленгликольмонобутилэфир, диэтиленгликольмонобутилэфир, пропиленгликольмонометилэфир, дипропиленгликольмонометилэфир, трипропиленгликольмонометилэфир, дипропиленгликольм о-нопропилэфир, пропиленгликольмонобутилэфир, дипропиленгликольмонобутилэфир, трипропипенгликольмонобутилэфир, 2-этилгексанол, 1-октанол, 1-додеканол, 1-гексадеканол.

Предпочтительными соединениями компонентов A3) являются 1,6-гександиол, 1,4-бутандиол, неопентилгликоль и триметилолпропан.

Под анионными или потенциально анионными гидрофилирующими соединениями компонентов А4) понимаются все соединения, которые имеют, по крайней мере, одну изоцианат реакционную группу, например гидроксильную группу, и, по крайней мере, одну функциональность, как, например, -COO-M+, -SO3-M+, -PO(O-M+)2 с M+, т.е., к примеру, с катионом металла, H+, NH4+, NHR3+где R может быть С1-С12-алкильным остатком, C5-C6-циклоалкильным остатком и/или C2-C4-гидроксиалкильным остатком, которая при взаимодействии с водными средами обеспечивает зависимое от рН равновесие диссоциации и таким образом может быть нейтральной или отрицательно заряженной. Подходящими анионными или потенциально анионными гидрофилирующими соединениями являются моно- и дигидроксикарбоновые кислоты, моно- и гидроксисульфоновые кислоты, а также моно- и дигидроксифосфоновые кислоты и их соли. Примерами таких анионных или потенциально анионных гидрофилирующих средств являются диметилолпропионовая кислота, диметилолмасляная кислота, гидроксипивалиновая кислота, яблочная кислота, лимонная кислота, гликолевая кислота, молочная кислота и пропоксилированный продукт реакции 2-бутендиола и NaHSO3, как это описано в патенте DE-A 2 446 440, стр.5-9, формулы I-III. Предпочтительными анионными или потенциально анионными гидрофилирующими средствами являются такие из приведенных выше типов, которые имеют карбоксилатные группы или группы карбоновых кислот и/или сульфонатные группы.

Особенно предпочтительными анионными или потенциально анионными гидрофилирующими средствами А4) являются такие, которые содержат карбоксилатные группы или группы карбоновых кислот в качестве ионогенных или потенциально ионогенных групп, такие как диметилолпропионовая кислота, диметилолмасляная кислота и гидроксипивалиновая кислота и их соли.

Пригодными гидрофилирующими соединениями компонентов А4) являются, например, простые полиоксиалкиленэфиры, которые содержат, по крайней мере, одну гидрокси- или аминогруппу, предпочтительно, по крайней мере, одну гидроксигруппу.

Примерами являются моноспирты гидроксифункциональных полиалкиленоксидполиэфиров, имеющих в среднем 5-70, предпочтительно 7-55, единиц окиси этилена на молекулу, которые могут быть получены известным способом путем алкоксилирования подходящих исходных молекул (например, в Энциклопедии технической химии Ульмана, 4-е издание, том 19, изд-во Chemie, Weinheim, стр.31-38).

Это могут быть или чистые полиэтиленоксидэфиры, или смешанные полиалкиленоксидэфиры, содержащие, по крайней мере, 30 мол.%, предпочтительно 40 мол.%, единиц окиси этилена относительно всех содержащихся единиц окиси алкилена.

Особенно предпочтительными неионогенными соединениями являются монофункциональные смешанные полиалкиленоксидэфиры, имеющие 40-100 мол.% единиц окиси этилена и 0-60 мол.% единиц окиси пропилена.

Подходящими исходными молекулами для таких неионогенных гидрофилирующих средств являются такие насыщенные моноспирты, как метанол, н-пропанол, изопропанол, н-бутанол, изобутанол, втор-бутанол, изомерные пентанолы, гексанолы, октанолы и нонанолы, н-деканол, н-додеканол, н-тетрадеканол, н-гексадеканол, н-октадеканол, циклогексанол, изомерные метилциклогексанолы или гидроксиметилциклогексан, 3-этил-3-гидроксиметилоксетан или тетрагидрофурфуриловый спирт, диэтиленгликольмоноалкилэфир, как, например, диэтиленгликольмонобутилэфир;

ненасыщенные спирты, как аллиловый спирт, 1,1-диметилаллиловый спирт или олеиновый спирт; ароматические спирты, как фенол, изомерные крезолы или метоксифенолы; жирноароматические спирты, такие как бензиловый спирт, анисовый спирт или коричный спирт; вторичные моноамины, как диметиламин, диэтиламин, дипропиламин, диизопропиламин, дибутиламин, бис-(2-этилгексил)-амин, N-метил- и N-этилциклогексиламин или дициклогексиламин, а также такие гетероциклические вторичные амины, как морфолин, пирролидин, пиперидин или 1H-пиразол.

Предпочтительными исходными молекулами являются насыщенные моноспирты названного выше типа. Особенно предпочтительно применение в качестве исходных молекул диэтиленгликольмонобутилэфиров или н-бутанола.

Пригодными для реакции алкоксилирования оксидами алкилена являются, в первую очередь, окись этилена и окись пропилена, которые могут использоваться для реакции алкоксилирования в любой последовательности или даже в смеси.

В качестве компонентов В1) могут применяться ди- или полиамины, как 1,2-этилендиамин, 1,2- и 1,3-диаминопропан, 1,4-диаминобутан, 1,6-диаминогексан, изо-форондиамин, смесь изомеров 2,2,4- и 2,4,4-триметилгексаметилендиамин, 2-метилпентаметилендиамин, диэтилентриамин, триаминононан, 1,3- и 1,4-ксилилендиамин, α,α,α',α'-тетраметил-1,3- и -1,4-ксилилендиамин и 4,4-диаминодициклогексилметан и/или диметилэтилендиамин. Возможно также применение гидразина или гидразидов, таких как дигидразид адипиновой кислоты. Предпочтительными являются изофорондиамин, 1,2-этилендиамин, 1,4-диаминобутан, гидразин и диэтилентриамин.

Кроме того, в качестве компонентов В1) могут также применяться соединения, которые кроме одной первичной аминогруппы имеют и вторичные аминогруппы или кроме одной аминогруппы (первичной или вторичной) имеют OH-группы. Например, такие первичные/вторичные амины, как диэтаноламин, 3-амино-1-метиламинопропан, 3-амино-1-этиламинопропан, 3-амино-1-циклогексиламинопропан, 3-амино-1-метиламинобутан; алканоламины0 как N-аминоэтил-этаноламин, этаноламин, 3-аминопропанол, неопентанопамин.

Далее в качестве компонентов В1) могут применяться также монофункциональные изоцианат реакционные соединения аминов, как, например, метиламин, этиламин, пропиламин, бутиламин, октиламин, лауриламин, стеариламин, изононилоксипропиламин, диметиламин, диэтиламин, дипропиламин, дибутиламин, N-метил-аминопропиламин, диэтил (метил)аминопропиламин, морфолин, пиперидин, или подходящие замещенные производные от них, амидамины из вторичных аминов и монокарбоновых кислот, монокетоны вторичных аминов, первичные/третичные амины, как N,N-диметиламинопропиламин.

Предпочтительными соединениями компонентов В1) являются гидразин, 1,2-этилендиамин, 1,4-диаминобутан и изофорондиамин.

Под анионными или потенциально анионными гидрофилирующими соединениями понимаются все соединения, которые имеют, по крайней мере, одну изоцианат-реакционную группу, предпочтительно одну аминную группу, а также, по крайней мере, одну функциональность, как, например, -COO-M+, -SO3-M+, -PO(O-M+)2, где M+, к примеру, представляет катион металла, H+, NH4+, NHR3+, причем R, соответственно, может быть C1-C12-алкильным остатком, C5-C3-циклоалкильным остатком и/или C2-C4-гидроксиалкильным остатком, который при взаимодействии с водными средами приводит к равновесию диссоциации, зависящей от рH, и таким образом может быть заряжен отрицательно или остаться нейтральным.

Подходящими анионными или потенциально анионными гидрофилирующими соединениями являются моно- или диаминокарбоновые кислоты и их соли. В качестве примеров таких анионных или потенциально анионных гидрофилирующих средств можно назвать N-(2-аминоэтил)-β-аланин, 2-(2-амино-этиламино)-этансульфокислоту, этилендиамин-пропил- или -бутилсульфокислоту, 1,2- или 1,3-пропилендиамин-β-этилсульфокислоту, глицин, аланин, таурин, лизин, 3,5-диаминобензойную кислоту и продукт присоединения IPDA и акриловой кислоты (ЕР-А 0916647, пример 1). Кроме того, в качестве анионного или потенциально анионного гидрофилирующего средства может применяться известная из патента WO-A 01/88006 циклогексиламинопропансульфокислота (CAPS).

Предпочтительными анионными или потенциально анионными гидрофилирующими средствами компонентов В2) являются такие из названного выше вида, которые имеют карбоксилатные или группы карбоновой кислоты и/или сульфонатные группы, как N-(2-аминоэтил)-β-аланин, соли 2-(2-аминоэтиламино)этансульфокислоты или продукта присоединения IPDA и акриловой кислоты (ЕР-А 0916647, пример 1).

Для придания гидрофильных свойств могут применяться также смеси из анионных или потенциально анионных гидрофилирующих средств и неионогенных гидрофилирующих средств.

В предпочтительной форме исполнения компоненты А1)-А4) и В1)-В2) для получения специальных полиуретановых дисперсий берутся в следующих количествах, при общем объеме отдельных компонентов, равном 100%:

5-40 вес.% компонента А1),

55-90 вес.% А2),

0,5-20 вес.% сумма компонентов A3) и В1)

0,1-25 вес.% суммы компонентов А4) и В2), причем 0,1-5 вес.% анионных или потенциально анионных гидрофилирующих средств относительно общего количества компонентов А1)-А4) и В1)-В2) используются из А4) и/или В2).

В особенно предпочтительной форме исполнения компоненты А1) - А4) и В1) - В2) для изготовления специальных полиуретановых дисперсий берутся в следующих количествах, при общем объеме отдельных компонентов, равном 100%:

5-35 вес.% компоненты А1),

60-90 вес.% А2),

0,5-15 вес.% сумма компонентов A3) и В1).

0,1-15 вес.% суммы компонентов А4) и В2), причем 0,1-4 вес.% анионных или потенциально анионных гидрофилирующих средств относительно общего количества компонентов А1)-А4) и В1)-В2) используются из А4) и/или В2).

В наиболее предпочтительной форме исполнения для изготовления специальных полиуретановых дисперсий компоненты А1)-А4) и В1)-В2) берутся в следующих количествах, при общем объеме отдельных компонентов, равном 100%:

10-30 вес.% компоненты А1),

65-85 вес.% А2),

0,5-14 вес.% сумма компонентов A3) и В1)

0,1-13,5 вес.% сумма компонентов А4) и В2), причем 0,5-3,0 вес.% анионных или потенциально анионных гидрофилирующих средств относительно общего количества компонентов А1)-А4) и В1)-В2) используются из А4) и/или В2.

Изготовление анионных гидрофилирующих полиуретановых дисперсий (1) может осуществляться в одну или в несколько стадий гомогенной реакции обмена или при многостадийной реакции, частично в дисперсной фазе. После полностью или частично выполненного полиприсоединения А1)-А4) осуществляется этап диспергирования, эмульгирования или растворения. Затем, при необходимости, осуществляется следующее полиприсоединение или модификация в дисперсной фазе.

При этом применяются все известные из уровня техники методы, такие как, например, способ смешивания форполимеров, способ ацетонирования или способ диспергирования расплавов. Предпочтительно применение способа ацетонирования.

Для изготовления по способу ацетонирования обычно берутся полностью или частями компоненты А2)-А4) и компоненты полиизоцианата А1) для получения изоцианат-функционального полиуретанового форполимера и, при необходимости, разбавляются растворителем, смешиваемым с водой, но инертным к изоцианатным группам, и нагреваются до температур в диапазоне от 50 до 120°С. Для ускорения реакции присоединения изоцианата могут использоваться известные в химии полиуретанов катализаторы.

Подходящими растворителями являются обычные алифатические, содержащие кето-группу растворители, как ацетон, 2-бутанон, которые могут добавляться не только к началу изготовления, но и, при необходимости, частями на более поздних стадиях. Предпочтение отдается ацетону и 2-бутанону.

Дополнительно могут использоваться другие растворители, как ксилол, толуол, циклогексан, бутилацетат, метоксипропилацетат, N-метилпирролидон, N-этилпирролидон, растворители с группами простого или сложного эфира, полностью или частично перегнанные, или оставленные в виде дисперсии в случае применения N-метилпирролидона, N-этилпирролидона. Однако предпочтительно не применять другие растворители, кроме обычных алифатических, содержащих кетогруппу растворителей.

Затем подмешиваются не добавленные к началу реакции компоненты А1)-А4).

При получении полиуретанового форполимера из А1-А4) количественное соотношение изоцианатных групп к изоцианат-реакционным группам составляет 1,05-3,5, предпочтительно 1,2-3,0, особенно предпочтительно 1,3-2,5.

Реакция преобразования компонентов А1)-А4) в форполимер осуществляется частично или полностью, но предпочтительно полное превращение. Таким образом полиуретановые форполимеры, содержащие свободные изоцианатные группы, получаются в виде вещества или в растворе.

На стадии нейтрализации для частичного или полного превращения потенциально анионных групп в анионные группы используются основания, такие как третичные амины, например триалкиламины с 1-12, предпочтительно с 1-6 и особенно предпочтительно с 2 или 3 атомами углерода в каждом алкильном остатке, или основания щелочных металлов, такие как соответствующие гидроксиды.

Примером этому являются триметиламин, триэтиламин, метилдиэтиламин, трипропиламин, N-метилморфолин, метилдиизопропиламин, этилдиизопропиламин и диизопропилэтиламин. Алкильные остатки могут, например, включать также гидроксильную группу, как в диалкилмоноалканол-, алкилдиалканол- и триалканоламине. В качестве нейтрализующего средства могут использоваться, при необходимости, и неорганические основания, такие как водный раствор аммиака или гидроксид натрия или калия.

Предпочтительными являются аммиак, триэтиламин, триэтаноламин, диметилэтаноламин или диизопропилэтиламин, а также гидроксид натрия и гидроксид калия, особенно предпочтительны гидроксид натрия и гидроксид калия.

Количество оснований составляет 50 и 125 мол.%, предпочтительно от 70 до 100 мол.%, относительно количества предназначенных для нейтрализации кислотных групп. Нейтрализация может проводиться также одновременно с процессом диспергирования, при котором диспергирующая вода уже содержит средство нейтрализации.

По окончании процесса на следующей стадии способа полученный форполимер растворяется, если это еще не произошло или произошло только частично, с помощью алифатических кетонов, как ацетон или 2-бутанон.

При удлинении цепи на стадии В) NH2- и/или NH-активные компоненты частично или полностью преобразовываются с еще оставшимися изоцианатными группами форполимера. Удлинение/завершение цепи предпочтительно проводить перед диспергированием в воде.

Для завершения цепи применяются обычные амины В1) с реакционными в отношении изоцианата группами, такие как метиламин, этиламин, пропиламин, бутиламин, октиламин, лауриламин, стеариламин, изононилоксипропиламин, диметиламин, диэтиламин, дипропиламин, дибутиламин, N-метиламинопропиламин, диэтил(метил)аминопропиламин, морфолин, пиперидин, или их подходящие замещенные производные, амидамины из вторичных аминов и монокарбоновых кислот, монокетоны вторичных аминов, первичные/третичные амины, как N,N-диметиламинопропиламин.

Если для частичного или полного удлинения цепи анионные или потенциально анионные профилирующие средства в соответствии с определением В2) применяются вместе с NH2- или NH-группами, то удлинение цепи форполимера предпочтительно осуществлять перед диспергированием.

Аминные компоненты В1) и В2), при необходимости, разбавленные водой или растворителем, в способе согласно изобретению могут применяться по отдельности или в смеси, причем возможна любая последовательность их добавления.

Если для разбавления используется вода или органический растворитель, то содержание разбавителя в используемых в В) компонентах для удлинения цепи составляет предпочтительно 70-95 вес.%.

Диспергирование выполняется предпочтительно по завершении удлинения цепи. Для этого либо растворенный полиуретановый полимер с удлиненной цепью вводится, при необходимости, при интенсивном перемешивании в воду для диспергирования или, наоборот, диспергирующая вода подмешивается к раствору полиуретанового полимера с удлиненной цепью. Предпочтительно добавлять воду в растворенный полимер полиуретана с удлиненной цепью.

Содержащийся еще в дисперсии растворитель после процесса диспергирования удаляется обычным способом дистилляцией. Возможно также его удаление во время процесса диспергирования.

Содержание остатка органических растворителей в полиуретановых дисперсиях (I) составляет, как правило, менее 1,0 вес.% относительно всей дисперсии.

рH полиуретановых дисперсий (I) согласно изобретению имеет значение обычно менее 9,0, предпочтительно менее 8,5, более предпочтительно менее 8,0 и особенно предпочтительно от 6,0 до 7,5.

Содержание твердого вещества в полиуретановых дисперсиях (I) составляет 40-70, предпочт