Микрокапсулы с ацетиленкарбамид-полимочевинными полимерами и их композиции для регулированного высвобождения

Иллюстрации

Показать все

Настоящее изобретение относится к микрокапсулам, используемым в агрохимических композициях, в составе какого-либо типа композиции, приемлемого для применения в сельском хозяйстве, а также для микрокапсуляции фармацевтических или медицинских соединений, замедлителей горения, материалов фазового превращения, термореактивных материалов, чернил, катализаторов. Микрокапсулы заключают материал с растворимостью в воде ниже 750 мг/л при 20°С, причем стенка микрокапсул сформирована посредством реакции межфазовой полимеризации материалов, формирующих стенку: (а) алифатический изоцианат(ы), и (b) ароматический изоцианат(ы), и (с) соединение(ия) формулы (I), ацетиленкарбамидные производные,

где R1, R3, R5, R7 представляют собой, независимо друг от друга, метил, этил, n-пропил, изопропил, n-бутил, изобутил, втор-бутилен, трет-бутил; R2, R4, R6, R8 представляют собой, независимо друг от друга, водород, метил, этил, n-пропил, изопропил, n-бутил, изобутил, втор.-бутил, трет.-бутил; R9, R10 представляют собой водород или гидроксиметил; включая олигомерные формы соединений (I), где число молей соединений (I) составляет от 2 до 10; и микрокапсулы имеют средний диаметр от 0,3 до 25 мкм при измерении обычным лазерным дифракционным анализатором размеров частиц с предварительным обычным растворением в воде при перемешивании. Также описаны способ получения агрохимической композиции типичной капсульной суспензии, включающей указанные выше микрокапсулы, и варианты применения таких микрокапсул. Технический результат - получение микрокапсул с возможностью регулирования скорости высвобождения микрокапсулированного материала, а также улучшение токсикологического профиля микрокапсул и композиций, их содержащих. 6 н. и 6 з.п. ф-лы, 13 ил., 12 пр.

Реферат

Данное изобретение касается альтернативного способа межфазовой полимеризации микрокапсуляции, микрокапсул, полученных им, микрокапсулированных агрохимикатов, фармацевтических препаратов, катализаторов и материалов с фазовым переходом и их композиций, посредством микрокапсул и исходных материалов с намного более низким токсикологическим профилем, чем обычные микрокапсулированные материалы, и с долей ацетиленкарбамидных производных в окончательной структуре стенки микрокапсулы.

Область изобретения

Данное изобретение касается полимерной микрокапсуляции для регулированного высвобождения активных ингредиентов и композиций, содержащих микрокапсулы.

Известный уровень техники

Проблема, стоящая перед данным изобретением, заключается в обеспечении альтернативного способа микрокапсуляции и полученных им микрокапсул для регулируемой доставки агрохимикатов (или других соединений со структурами, относящимися ко всем различным типам структур агрохимикатов для какого-либо приемлемого способа, также материалов фазового превращения, РСМ, чернил, термореактивных материалов и катализаторов) таким образом, что угрозы, связанные с получением и самим продуктом, снижены (посредством используемых материалов, формирующих стенку, с более низкой токсичностью по сравнению с имеющимися промышленными способами), в то время как микрокапсулы, полученные этим способом (и сформулированные микрокапсулы), регулируют скорость высвобождения приемлемым путем для надлежащей функциональности.

Методы микрокапсуляции для доставки агрохимикатов известны с 40-ых годов. Физические методы, разделение фаз и межфазовая реакция являются тремя главными методиками микрокапсуляции. Наиболее успешная межфазовая полимеризация для микрокапсуляции агрохимикатов разработана в начале 70-ых Scher и др. (Stauffer Chemical Company), и группа Stauffer (сначала Zeneca, затем ICI, а сейчас Syngenta) получила много патентов, основанных на модификациях одной и той же первоначальной концепции, а именно формирование полимочевинной стенки микрокапсулы для включения химикатов.

Данное изобретение содержит несколько аспектов. В этом случае для синергических или комбинированных эффектов многих параметров, исходя из реагентов, необходимо капсулирование материалов до окончательных модификаций для окончательных промышленно применимых композиций, особенно в сельском хозяйстве, для окончательной надлежащей функциональности.

i) Раскрыт промышленный способ микрокапсуляции, никогда ранее не представленный, который включает применение, по меньшей мере, ароматического изоцианата, по меньшей мере, алифатического изоцианата и, по меньшей мере, производного ацетилен карбамида (ACD) формулы (I) как материалов, формирующих стенку.

ii) Заключенные в данные микрокапсулы материалы имеют конкретную скорость высвобождения, которая в некоторых вариантах осуществления является более выгодной, чем у имеющихся коммерческих продуктов, а в некоторых вариантах осуществления является альтернативной (меньшая токсичность) в имеющихся способах, изменяясь от быстрого высвобождения (например, лямбда-цигалотрин), поддерживаемого высвобождения (например, фторохлоридон, кломазон), до практически отсутствия высвобождения, например (воски фазового превращения).

iii) Агрохимические композиции, описанные здесь, являются новыми и функционально применимыми, что значит, могут применяться в области, как применяются имеющиеся микрокапсулированные композиции в настоящее время, с теми же устройствами, предосторожностями и методиками, к которым привык сельскохозяйственный производитель, или с тем же самым применением в тканях и покрытиях для РСМ (материалы фазового превращения), или тем же самым применением в реакциях для микрокапсулированных катализаторов, как у имеющихся микрокапсулированных катализаторов.

iv) Сухие композиции микрокапсул можно применять для микрокапсуляции РСМ путем включения в воски масляной фазы или масла с точками плавления в диапазоне от 0 до 50°С (которые могут представлять только масляный растворитель) или диспергированием твердых материалов в приемлемую масляную фазу, также для катализаторов и термореактивных материалов.

Заметьте, что речь пойдет о производных ацетиленкарбамида с аббревиатурой ACD. Речь пойдет о композициях микрокапсул в сельском хозяйстве, о каком-либо виде агрохимических композиций, содержащих микрокапсулы, а не только об общепринятых композициях "капсульной суспензии" (CS). Не ограничивающими примерами под выражением "микрокапсульная композиция" являются суспоэмульсии, а также диспергируемые в воде гранулы (WG композиции), содержащие микрокапсулы, масляные суспензии, где в масле находятся смеси агрохимикатов (по меньшей мере, один микрокапсулированный) и т.д. Также, очевидно, что данное изобретение позволяет комбинацию микрокапсул, заключающих один или более активный ингредиент с другими немикрокапсулированными активными ингредиентами в той же композиции.

Данное изобретение отличается от известного уровня техники следующим. Существует дополнительное неотъемлемое средство кросс-полимеризации, которое придает микрокапсулам уникальные параметры, а именно, производные ацетиленкарбамида (ACD). ACD вызывают коренные изменения в проницаемости стенки капсулы при низких концентрациях (исходя из 0,05-5% всей композиции). Полимерная стенка не является стенкой из полимочевины (уже заявленной во многих других патентах), а скорее стенкой из полимочевины - производного ацетиленкарбамида (никогда не описанной ранее). Эта стенка представляет дополнительный параметр, относительно известного уровня техники, для регулирования проницаемости стенки микрокапсулы, а именно соотношение ACD/изоцианатов, определенное экспериментально.

Существует потребность (не обязательно) добавлять первый катализатор для формирования связей полимочевины, потому что микрокапсулы ограничены применением алифатических изоцианатов и ароматических изоцианатов (которые менее реакционно способны), предпочтительно диалкилолова эфир жирной кислоты. Избегаются высокотоксичные изоцианаты, как описано в предыдущих патентах (как TDI), благодаря новой комбинации менее токсичных изоцианатов, способных формировать полимочевинную стенку, ACD кросс-линкерам и катализаторам, адаптированным для данного способа, и способности концевых функциональных групп изоцианата, не участвующих в реакции. Различные материалы, подлежащие капсулированию, реакционные продукты, катализаторы и рассматриваемый химический состав, время и температура реакций представляют собой все характерные особенности. Данным способом можно капсулировать какой-либо химикат, который по природе не вступает в реакцию с функциональными группами материалов стенки, принадлежит какому-либо структурному химическому типу, не реагирует с материалами, формирующими стенку, и имеет приемлемые молекулярный размер, способность растворяться, диспергироваться или применяемую чистоту.

Обычными и распространенными применяемыми материалами микрокапсуляции для многих сельскохозяйственных композиций (продаваемых во всем мире в больших количествах, например, Karate® Zeon, Syngenta) является применяемое как часть стенки высокотоксичное и канцерогенное для человека соединение 2,4-толуолдиизоцианат (TDI), CAS# [584-84-9]. В предпочтительных вариантах осуществления данного изобретения применяются изоцианаты с сильно сниженными токсикологическими профилями, чем у упомянутого TDI, например m-TMXDI, CAS# [2778-42-9], известный в продаже как TMXDI® производства Cytec. Следует отметить, что TMXDI никогда не отражался в значительном, если не совсем не отражался, промышленном применении в области микрокапсуляции жидкостей или агрохимикатов, так же как и для других микрокапсуляций. Как можно прочитать на сайте CYTEC "смолы TMXDI являются общеприменимыми в инструментальной промышленности, для капсулирования и защиты электроники, покрытий печатных плат и фильтров с прилипающим уплотнением". Это представляет комбинацию изоцианатов с ACD абсолютно новой и не очевидной.

Ниже приводится сравнительная таблица токсикологических различий между TMXDI и TDI (согласно MSDS (характеристика безопасности материала) от Sigma-Aldrich и CYTEC).

Токсические эффекты TDI ТMXDI
канцерогенный (анализ Эймса), канцероген 2В по IARC (международное агентство исследований в области раковых заболеваний), CMR (вещества, оказывающие канцерогенное и мутагенное влияние или обладающие репродуктивной токсичностью)
рак кат.3 - канцероген не канцерогенный (анализ Эймса)
острая ингаляционная токсичность (LC50) 10 ppm в течение 4 часов у мышей 27 ppm в течение 4 часов у мышей
легочная сенсибилизация у да нет
морских свинок
повреждения дыхательной системы у людей в течение длительного времени (3 года) да нет
температура воспламенения >132°С >153°С
хранение необходимо хранить в азоте необходимо хранить только при температуре <80°С

Таким образом, для решения проблемы создания микрокапсул с возможностью регулирования скорости высвобождения химикатов в данном изобретении улучшен токсикологический профиль микрокапсул (и их композиций). Важно отметить, что известные способы микрокапсуляции обычно полностью не завершаются, тогда непрореагировавший остаток изоцианатов наносит вред здоровью конечных потребителей. Содержание непрореагировавших изоцианатов снижается не только применением ACD. В то же время, какой-либо непрореагировавший изоцианат, присутствующий во время применения микрокапсульной композиции, или в стенке, или диспергирован/растворен непосредственно в композиции, имеет намного более низкую токсичность (например, TMXDI по сравнению с TDI).

Патент США 4285720 (первоначально поданный в 1973 г. Scher и др., Stauffer), включенный в данное описание ссылкой, представляет основной способ межфазовой микрокапсуляции. Другие последние патенты не сообщают больше, чем в этом документе, в отношении данного изобретения. В патенте США 4285720 заявлен способ микрокапсуляции с капсулами полимочевины без добавления второго реагента, при котором обеспечивают органическую фазу, с несмешиваемым с водой материалом, подлежащим микрокапсулированию, и с органическим полиизоцианатом в водной фазе, содержащей раствор воды, сурфактант и защитный коллоид, нагревают, после чего указанный несмешивающийся с водой материал капсулируют в дискретные полимочевинные капсулярные оболочки. ACD не упомянуты. Более того, катализатор можно необязательно добавлять для ускорения реакции, причем указанный катализатор является алкил олова ацетатом. По данному изобретению необходим катализатор типа алкил олова эфир (предпочтительно дибутиловый эфир).

В патенте США 4874832 описан способ микрокапсуляции с алифатическим изоцианатом, но комбинированным с полиэфирными полиолами для формирования полиуретанов. Патенты США 4417916 и 4874832 поясняют в деталях микрокапсуляцию с алифатическими изоцианатами, но не комбинированными с производными ацетиленкарбамида. В патенте США 5925595 раскрыто применение TMD (триметилгексаметилендиизоцианат) и PAPI (полиарилполиизоцианат), и влияние TMXDI на скорость высвобождения, когда последний включен в смесь изоцианатов. Однако, по патенту США 5952595, главным образом, материалы, формирующие стенку, нуждаются в применении полиамина (указано в описании, а также в вариантах осуществления, где всегда применяется амин): в данном изобретении действительно при любом применении необходим полиамин для формирования полимочевинной стенки, главное отличие данного изобретения заключается и в отношении химического способа, и в окончательной структуре и особенностях микрокапсулы. Более того, патент США 5925595 не упоминает применение ACD.

Одним существенным новым и изобретательским аспектом данного изобретения является применение для синтеза стенки микрокапсул ACD. Существование брошюр по ACD (например, Powderlink® 1174 от CYTEC) поясняют, исходя из использования их в способе микрокапсуляции, на основе их низкой реакционной способности и потребности специальных инициаторов и температурных требований, и необходимости дополнительных гидроксильных групп для их реакции.

В международной публикации WO 92/13448 (эквивалент европейскому патенту 571396 и патенту США 5332584) заявлено, что аминопластовые полимеры для применения их в микрокапсуляции могут быть выполнены с различными типами соединений, а именно: мочевиноформальдегид, меламиноформальдегид, бензогуанаминоформальдегид и ацетиленкарбамид(гликольурил-)формальдегид. Однако в этом документе не упомянуто полностью упомянутое применение какого-либо изоцианатного соединения для части стенки микрокапсулы в комбинации с каким-либо мочевинным, меламиновым, бензогуанамин гликольурил формальдегидом, как сделано в данном изобретении (независимый пункт 1 и зависимый пункт 4 европейского патента 571396 В1 касаются только применения аминорезиновых соединений без изоцианатов).

В результате исследования обнаружили, далеко от того, что было раскрыто в известном уровне техники и в чрезвычайно супрессивном пути, что можно ввести ACD в полимочевинную стенку, в то же время, используя комбинацию изоцианатов (в предпочтительном варианте осуществления, PAPI и TMXDI), менее токсичную, чем традиционная смесь PAPI и TDI.

Существуют документы, которые далеки от решения данного изобретения. Дополнительно уровень техники можно проиллюстрировать патентом США 5563224. Там раскрыто применение соединений (включая ACD) для закрепленных защитных средств от ультрафиолетового излучения для получения пластмасс, что нуждается в ACD (для реакционной способности закрепления этих защитных средств от ультрафиолетового излучения) с применением серной кислоты. В том же патенте заявлено, что ацетиленкарбамидные мономеры для реакционной способности должны находиться в сильных кислотных условиях и при нагревании. Вероятно, для способа по данному изобретению химический потенциал, необходимый для активации ACD, обеспечен возбужденным состоянием самого изоцианата и/или локальным усилением температуры экзотермической реакции изоцианата. Следует указать, что патент США 5563224 не упоминает какой-либо случай применения полимеров в конкретной и очень специфической области микрокапсуляции. В данном изобретении не применяются сильные кислоты и сильное нагревание (что может разрушить активные ингредиенты для капсулирования).

Следующие документы процитированы в расширенном европейском отчете о поиске, и обсуждались в отношении новизны и изобретательского шага перед данным изобретением. В патенте DD 108760 (Makower и др., 1974) раскрыты ACD, которые с большим ограничением (этоксилаты) могут представлять некоторые из соединений (I) по данному изобретению, и, более того, в областях весьма далеких от микрокапсуляции, например, большие куски пластических материалов. Не упоминается комбинация для формирования полимочевинных микрокапсул. В международной публикации WO 92/13450 (ICI, 1992) в пункте 1 раскрыты только полимочевинные соединения, сформированные способом реакции изоцианатов для формирования полимочевинных стенок без добавления второго реагента, таким образом, пояснения далеки от включения ACD. Патент США 4889719 (Ohtsubo и др., 1989) раскрывает микрокапсулированную инсектицидную композицию, включающую органофосфорный инсектицид, капсулированный в стенке, сформованной из полимочевины; однако не упоминается о формировании комбинированного полимера с ACD. Кроме того, патент США 4889719 далек от комбинации ароматического изоцианата и алифатического изоцианата по данному изобретению (колонка 1, линии 38-40: смеси ароматических и алифатических изоцианатов не являются предпочтительными, потому что различие в скорости реакции между ними не позволяет легко получить однородную стенку). Выяснили, что это не происходит в данном изобретении, поскольку по данному изобретению получается очень однородная стенка, и, более того, очень однородный размер частиц микрокапсул. Патент США 4458036 (Fesman и др. 1984) касается полиуретанов с включением ACD в отдаленной области в качестве замедлителей горения в форме пены, а не в микроскопические структуры в качестве микрокапсул. Возможно, выполняют тысячи реакций для формирования пластмасс или пен (в патенте США 4458036, матрацы, обивочный материал, подушка), но этот документ не определяет, что ACD можно комбинировать с полимочевинами для формирования микрокапсул. Макроскопическая структура полимеров, раскрытых в патенте США 4458036, не приводит к однородным сферам полимеров полимочевины и ACD, не заявляется о каком-либо применении упомянутых полимеров в области микрокапсуляции. Патент США 3766204 (Mathew C. и др., US, 1973) также касается отдаленных областей, таких как полиэфиры, алкидные смолы и полиуретаны, смазочные средства и поверхностно-активные средства. Более того, ACD, раскрытые там, абсолютно отличаются от заявленных в данном изобретении. Нет никакого упоминания, почему не должна приниматься во внимание этоксилированная цепь соединений, раскрытых в патенте США 3766204, чтобы попасть в заявленные ACD, и много меньше, чтобы выбрать их как составные части стенки из полимочевины и ACD для микрокапсул. Примечательно, что в данной области возрастает интерес к микрокапсуляции, ACD никогда не описывались для применения в микрокапсулах (не смотря на то, что это такая простая возможность).

Следует отметить, что нагревание, необходимое при способах микрокапсуляции (включая способ по данному изобретению), может иногда превышать максимальный предел стабильности химикатов, подлежащих капсулированию. Это происходит, например, с конкретными пиретроидами, где некоторые нежелательные энантиомерные, или диастереоизомерные, или изомерные формы возникают из-за температуры. В таких случаях для предотвращения изомеризации можно добавлять антиоксиданты. Во-первых, не очевидно, что антиоксидант может предотвратить изомеризацию (существует множество химических путей, в которых молекула может быть изомеризована), а во-вторых, идея включения антиоксидантов в масляную фазу никогда не высказывалась в случае изомеризации пиретроидов. На основе способа по данному изобретению возможно добавить растворимые в масле антиоксиданты (например, ВНТ, бутилгидрокситолуол, ВНА, бутилгидроксианизол, или их смеси) непосредственно в масляную фазу по данному изобретению. В конкретном примере можно добавить 0,05% ВНТ и 0,01% ВНА (относительно процента общего веса всей масляной фазы) в Solvesso 200, который в то же время является растворителем в предпочтительном варианте осуществления микрокапсуляции суперцигалотрина (количества ВНТ, ВНА или других антиоксидантов можно применять согласно рекомендациям соответствующих методик). Это предотвращает изомеризацию суперцигалотрина, которая начинается уже при 40°С в темноте.

Идея добавления дополнительного кросс-связывающего материала низкой реакционной способности, такого как ACD (когда сравнивают его реакционную способность с известными компонентами стенки микрокапсул, например, только изоцианаты или аминопластмассовые смолы), в полимочевинную стенку не очевидна. Не ожидали, что небольшие проценты ACD могут изменять характеристики скорости высвобождения микрокапсул в диапазонах, необходимых для применений в сельском хозяйстве, или быть применимыми для микрокапсулирования катализаторов, термореактивных материалов или РСМ (последние случаи нуждаются в более высоком содержании материалов, формирующих стенку, пока скорость высвобождения приемлема для каждой необходимой цели). Кроме того, тот факт, что некоторые ADC (например, Powderlink 1174) являются твердыми, проигнорирован, потому что это удобно (и уровень техники представляет это) использовать жидкие материалы как материалы, формирующие стенку, в межфазовой микрокапсуляции (включенные в масляной фазе). Можно включать твердые ACD в диспергированной форме в масляной фазе (например, с помощью Atlox® LP-1, или LP-5, или LP-6), но наблюдают, что это иногда приводит к избыточному количеству непрореагировавшего ACD.

Даже желая добавить кросс-связывающее средство в полимочевинную стенку для модификации известных стенок, эксперт выбрал бы какое-либо кросс-связывающее средство, более реакционно способное, чем ACD. Несколько научных статей написаны о химии и свойствах ACD как кросс-линкеров, но никогда не упоминался способ микрокапсуляции, лишь в областях, достаточно далеких, чтобы касаться способа микрокапсуляции (например, обработка ткани, покрытия для автомобильных тканей и т.д.). Не следует путать едва описанные особенности ACD с их специфическим новым и изобретательным применением в микрокапсуляции, и следует понимать сложность включения в реакцию кросс-связывания на границе масляной и водной фаз, in situ, двух типов изоцианатов и ACD, далеких для сравнения с реакцией образования пластмассовой пленки или лаков. Даже в описанных способах полимеризации в отдаленных технических областях с использованием ACD оставшиеся неполимеризованные мономеры должны извлекаться или удаляться из окончательного продукта, обстоятельство, не имеющее места в данном изобретении. В частности, полимеры с относительно большими порами (но не микрокапсулы как закрытые объемы) можно сформировать с ацетиленкарбамид-формальдегидами, но постоянно эти способы представляют, что ацетиленкарбамид формальдегид должен быть сначала эмульгирован в водной фазе. Химия этих способов сильно отличается от данного изобретения.

Детальное описание изобретения

Микрокапсуляцию активного ингредиента(ов) в растворе (органическая фаза) выполняют способами межфазовой полимеризации, основанными на реакции изоцианатов с производным ацетиленкарбамида формулы (I). Поскольку полимер, который представляет микрокапсульную стенку по данному изобретению, является новым, конкретно в области микрокапсуляции, формула изобретения направлена собственно на полимер.

В частности, вышеупомянутый полимер можно описать как полимер для микрокапсуляции несмешивающегося с водой материала, как "первичного" материала для микрокапсулирования (или смесь несмешивающихся с водой материалов). "Вторичный" материал для микрокапсулирования может быть твердым материалом, диспергированным в масляной фазе, подлежащим микрокапсулированию вместе с несмешивающимся с водой материалом и/или компонентами композиции для технологических целей (сурфактант) или защитных целей (например, антиоксиданты). Очевидно, что материалы, подлежащие микрокапсулированию, должны быть совместимыми и не реагировать нежелательно до окончательного применения микрокапсул.

"Первичный" материал для микрокапсулирования не смешивается с водой, что означает в этом случае растворимость в воде ниже 750 мг/л при 20°С. Указанный заявленный полимер сформирован посредством межфазовой реакции полимеризации и заключает несмешивающийся с водой материал(ы), отличающийся тем, что такой полимер сформирован реакцией: мономерного алифатического изоцианата, преполимерного ароматического изоцианата,

N,N′,N′′,N′′′-алкоксиалкильного и/или гидроксиалкильного производного ацетиленкарбамида или смеси таких соединений, где алкокси означает: метокси, этокси, пропокси, изопропокси, бутокси, изобутокси, ter-бутокси, а алкил означает метил, этил, n-пропил, изопропил, n-бутил, изобутил, трет-бутил, втор-бутил, независимо друг от друга, замещенные азотом, и

микрокапсулы имеют средний диаметр от 0,3 до 25 мкм, предпочтительно от 0,8 до 15, а 90% микрокапсул имеют диаметр меньше 100 мкм, предпочтительно меньше 30 мкм, при измерении обычным лазерным дифракционным анализатором размеров частиц при предварительном обычном растворении в воде при перемешивании.

Чем больше гидроксильных групп присутствует в ACD, тем больше его реакционная способность. Выяснили, что избыточное число гидроксильных групп на молекулу замещенного ACD приводит к ускорению реакции, приемлемому в некоторых случаях, но более сложному ее регулированию. Единственный способ выбрать правильный ACD для конкретной цели состоит в том, чтобы экспериментально проверить результат реакции и адаптировать время реакции (например, путем повышения/уменьшения скорости, при которой происходит эмульсификация масляных капель и/или повышения/уменьшения количества катализатора, отвечающего за формирование полимочевинных связей, и катализатора для включения кросс-связывания ACD). Возможно, что алкокси или алкильных групп больше, чем атомов углерода. В таком случае капсульная стенка более проницаемая из-за большего размера кросс-связывающего средства. Применение соединений до 6 атомов углерода для алкокси и алкильных групп тогда необходимо снизить в смеси материалов, формирующих стенку, чтобы избежать чрезмерно быстрое высвобождение. Также, большее количество гидроксильных групп в ACD вызывает усиление реакционной способности, что может быть приемлемо для определенных применений, где требуется более непроницаемая структура стенки, например в случае с материалами фазового превращения (РМС). Данное изобретение включает все виды ACD в диапазоне представленных заместителей с учетом стереохимической конфигурации. Обычно, применение этих соединений ограничено коммерчески доступными, но возможная очистка определенной стереохимической структуры в будущем ACD не будет ограничивать применение такого соединения по данному изобретению. Более определенная структура такого входящего в полимер ACD (I) следующая (Фигура 13):

где

a) R1, R3, R5, R7 представляют собой, независимо друг от друга, метил, этил, n-пропил, изопропил, n-бутил, изобутил, втор-бутил, трет-бутил, и

b) R2, R4, R6, R8 представляют собой, независимо друг от друга, водород метил, этил, n-пропил, изопропил, n-бутил, изобутил, втор-бутил, трет-бутил, и

с) R9, R10 представляют собой водород или гидроксиметил, более предпочтительно оба заместителя являются водородом,

включая соединения (I) все изомерные и стереоизомерные конфигурации, которые могут присутствовать в зависимости от радикалов, как упомянуто, за исключением из соединений (I) всех комбинаций радикалов, которые не способны формировать полимеры из полимочевинных производных ацетиленкарбамида (ACD), когда такие ACD реагируют, как описано в данном изобретении, со смесью изоцианатов.

ACD являются фундаментальной частью стенки окончательной микрокапсулы по данному изобретению. В типичном способе имеется две фазы, масляная фаза и водная фаза, масляная фаза эмульгируется в водной фазе при 45-70°С, начинаются реакции полимочевины, температура повышается до 60-90°С, и добавляется катализатор для реакционной способности ACD, после начала реакций полимочевины, в непрерывную водную фазу. Время выдержки составляет от около 1 до 4 часов при 50-90°С. Затем формируется уникальная содержащая полимер микрокапсульная стенка в водно-масляной интерфазе масляных капель.

Типичная масляная фаза по данному изобретению состоит из:

мономерного алифатического изоцианата (например, TMXDI),

преполимерного ароматического изоцианата (например, PAPI),

мономерного ацетиленкарбамида (например, тетра-бутоксиметил

ацетиленкарбамид) (относящийся к "мономерному ацетилен карбамиду", когда содержание в мономерах выше 50% общего коммерческого ацетиленкарбамидного продукта: в промышленных условиях сложно получить чистый мономерный ацетиленкарбамидный продукт),

растворитель (например, циклогексанон для растворения тетра-бутоксиметил ацетиленкарбамида),

активный ингредиент(ы) (например, суперцигалотрин),

необязательно, диспергированные твердые активные ингредиенты (например, измельченный альфациперметрин с размерами кристаллов <5 мкм и Atlox® LP-1),

необязательно, диспергированные и/или растворенные антиоксиданты и/или защитные средства от ультрафиолетового излучения,

необязательно, (для обеспечения меньших размеров микрокапсул) сурфактант с низким HLB (гидрофильно-липофильный баланс) (например, Atlox® 4912).

Соотношение композиции типично является следующим:

мономерный алифатический изоцианат к преполимерному ароматическому изоцианату от 1:3 до 1:1,

преполимерные ароматические изоцианаты к мономерному ацетиленкарбамиду от 9:1 до 4:1,

мономерные алифатические изоцианаты к мономерному ацетиленкарбамиду от 2:1 к 5:1,

наиболее предпочтительным соотношением мономерного алифатического изоцианата к преполимерным ароматическим изоцианатам к мономерному ацетиленкарбамиду является 3:6:1.

Масляная фаза до эмульсификации всегда содержится в дегидратированной атмосфере (путем химических или физических средств, например, сушка, или абсорбция, или выделение, и также возможна обработка в инертной атмосфере газами, предпочтительно СО2, N2, He, или только регулированием относительной влажности участка реакции).

Водная фаза типично содержит:

воду,

первичный сурфактант (например, алкил этоксилированный/пропоксилированный сополимер типа Symperonic®),

растворимый в воде или диспергируемый полимер(ы) (например, поливинилпирролидон PVP-30),

гидроколлоид(ы) (например, гуаровая камедь),

лигносульфонат(ы) (например, типа Kraftsperse®).

На этой стадии во время способа дисперсии органическая фаза эмульгируется в водную фазу при температуре около 45-70°С. Основной размер частиц диспергированной фазы должен находиться в диапазоне 1-25 мкм. Как только достигают целевого размера частиц, перемешиватель с высоким сдвигом останавливают, а главный перемешиватель (якорь) регулируют до наименьшей величины для снижения напряжения сдвига во время нагревания как периода структурирования.

Присутствие катализатора в органической фазе инициирует реакцию формирования стенки, которая далее будет усилена нагреванием до около 60-90°С. Затем добавляют катализатор для включения ACD в полимочевинную стенку (например р-толуолсульфоновая кислота, растворенная в спирте с цепью, длиннее 8 атомов углерода; если применяют замещенный сульфонимид, затем температуру реакции необходимо повысить). Микрокапсулы оставляют на время от одного до около двух часов при 50-90°С для полного расходования изоцианатных остатков. Затем смеси позволяют остыть, обычно до комнатной температуры.

Значение рН выдержанной микрокапсульной суспензии регулируют до рН, более приемлемого для стабильности и требуемых свойств агрохимиката, 50% водным раствором гидроксида натрия.

Окончательно, добавляют модификаторы вязкости типа глин (например, инертные цеолиты) и гидроколлоиды (например, ксантановая камедь), алюминия сульфат и натрия триполифосфат для предотвращения отделения микрокапсул от воды при длительном хранении из-за их различной плотности. Используют буферную систему (предпочтительно, с целью экономии, на основе натрия карбоната или в лимонной кислоте) для поддержания в композиции необходимой рН. Также отмечено, что для растворов в щелочных условиях применяют натрия карбонат (или какой-либо другой источник карбонатных ионов), потому что абсорбируется диоксид углерода, образованный в реакции остаточных изоцианатов с водой при хранении, тем самым предотвращается какое-либо повышение давления в емкостях с окончательным продуктом, ситуация предполагается только в исключительных случаях, когда партия не хранится правильно.

Добавляют какой-либо биоцид для защиты композиции от биологического влияния во время срока хранения продукта (предпочтительно типа имидазолидинил мочевина или другие традиционные бактериостатики, бактериоциды или микробоциды).

Способ, как поясняется, начинается растворением алифатических и ароматических изоцианатов и активного ингредиента, в конечном итоге, сурфактанта, или защитного средства от ультрафиолетового излучения или антиоксиданта, в несмешивающимся с водой растворителе. Растворитель присутствует для растворения активного ингредиента(ов), а. и., в случае если а. и. твердый, или только для обеспечения масляной фазы, где а. и. присутствует. В определенных случаях, если количество а. и. достаточно высоко и все материалы, формирующие стенку, способны растворяться, "растворитель" главным образом заменяется самим а. и., который действует и как а. и., и как растворитель (что является исключительной ситуацией). ACD включается в масляную фазу посредством второго растворителя, когда необходимо. Дополнительная масляная фаза содержит катализатор, который будет инициировать реакции формирования стенки (в присутствии воды). Также, твердые активные ингредиенты могут быть диспергированы в масляной фазе. Водная фаза служит средой-носителем (непрерывная фаза) для микрокапсул, содержащих активный ингредиент(ы), но водная фаза может также содержать диспергированные или растворенные активные ингредиенты (например, глифосат или дикват для использования в сельском хозяйстве). Водную фазу готовят добавлением эмульгаторов, защитных коллоидов и других компонентов композиции, которые способны эмульгировать масляные капли, которые будут находиться в ядре окончательных микрокапсул, и также необязательно служат окончательными компонентами композиции, необходимыми для надлежащей функциональности окончательной композиции.

Предпочтительные материалы, формирующие стенку

Из ACD предпочтительно применять тип коммерческих продуктов Powderlink® 1174 и Cymel®, более предпочтительно Cymel® 1711 и Cymel® 1170. Применение преполимеров типа Cymel приводит к более беспорядочному течению реакции по сравнению с применением Powderlink® 1174 в специфических опытах по данному изобретению. Тем самым, наиболее предпочтительным ACD является Powderlink® 1174. Следует отметить, что коммерческие продукты могут иметь некоторые другие соединения, чем мономеры, упомянутые на маркировочном знаке (например, Powderlink® 1174 может содержать олигомеры).

Для полифункциональной изоцианатной системы предпочтителен один алифатический изоцианат и один ароматический изоцианат (алифатический предпочтителен в том случае, когда -NCO группа не присоединена непосредственно к ароматическому кольцу). Плотность полимера можно варьировать путем изменения соотношения полифункционального (например, преполимерный алифатический PAPI) до полифункционального алифатического изоцианата (например, Cythane® 3174, TMXDI, последний является предпочтительным алифатическим изоцианатом по данному изобретению). Более высокое соотношение, большее кросс-связывание приводят к более высокому коэффициенту диффузии и более высокой проницаемости. Когда включен ACD, сложность реакций кросс-связывания затрудняет прогнозирование окончательной скорости высвобождения, которую можно измерить при экспериментальных опытах со сформированными микрокапсулами.

Предпочтительным ароматическим изоцианатом по данному изобретению является PAPI® и его серия от Dow®. Ниже показан тип предпочтительных соединений

,

где n= от 0 до 6.

Для n=1, PAPI, CAS# [009016-87-9], коммерческое название Specflex® NE 138.

Предпочтительными алифатическими изоцианатами являются TMXDI и Cythane® 3174, представленные формулами ниже:

Содержание NCO(вес/вес)~34,4 Cythane® 3174 - преполимер в бутилацетате
Содержание NCO(вес/вес)~10,2

Очевидно, что польза включенных производных ацетиленкарбамида в стенку, сформированную TDI и PAPI, может наблюдаться, однако, в этом случае в способе получения и самих капсулах возникает проблема значительной токсичности TDI, другими словами, применение производных ацетиленкарбамида и TDI, и PAPI является очевидным существенным предметом обсуждения данного изобретения, а также какая-либо обычная комбинация изоцианатов для формирования полимочевинных стенок. Имеется опыт, что ACD можно включить во многие типы полимочевинных стенок, получая полимеры полимочевина-ACD.

Также, выяснили, что включение ароматических изоцианатов, отличных от соответствующих формуле выше, дает полностью функциональные стенки микрокапсул.

Применение алифатических изоцианатов (NCO группы