Земляное сооружение на многолетнемерзлых грунтах и способ его возведения с укреплением основания в районах распространения вечной мерзлоты

Иллюстрации

Показать все

Изобретение относится к области строительства на вечной мерзлоте и может быть преимущественно использовано при возведении высоких (более 3 м) дорожных насыпей на просадочных при оттаивании мерзлых грунтах, в сейсмоопасных районах распространения высокотемпературной (-0,5…-1,5°С) неустойчивой вечной мерзлоты прерывистого и островного распространения, в условиях происходящего глобального потепления, с оптимальным использованием естественных (экологичных) механизмов образования и усиления вечной мерзлоты. Технический результат - повышение прочности и устойчивости (термической и сейсмической) основания земляного сооружения на вечной мерзлоте. Земляное сооружение содержит насыпь и соединенные между собой нижележащим слоем скального грунта периферийные прослойки из скального грунта, контактирующие с воздухом в откосных, водонепроницаемых снизу зонах. На поверхности грунтового основания устроен слой из водонасыщенного, водоудерживающего материала. В периферийных прослойках из скального грунта устроены «отверстия-продухи», контактирующие с нижней частью соединительного слоя из скального грунта, выполненного, в нижней части, из более крупных скальных обломков или трапециевидных габионов (в виде усеченных пирамид) на частичной геотекстильной прослойке, погруженных в слой водонасыщенного, водоудерживающего материала. Устройство реализуется способом возведения земляного сооружения на многолетнемерзлых грунтах с укреплением основания в районах распространения вечной мерзлоты. 2 н. и 6 з.п. ф-лы, 2 ил.

Реферат

Предлагаемое изобретение относится к области строительства на вечной мерзлоте и может быть преимущественно использовано при возведении высоких (3-5 м и более) дорожных насыпей на просадочных при оттаивании мерзлых грунтах, в сейсмоопасных районах распространения высокотемпературной (-0,5…-1,5°С), неустойчивой вечной мерзлоты прерывистого и островного распространения, в условиях происходящего глобального потепления, с оптимизацией использования существующих естественных (природных) механизмов образования и усиления вечной мерзлоты.

Известно земляное сооружение [А.с. 1656078 СССР, МКИ Е02Д 17/18. Земляное сооружение на протаивающих вечномерзлых грунтах / Жданова С.М., опубл. 15.06.91 г. Бюл. №22] на протаивающих (неустойчивых) вечномерзлых грунтах, содержащее тело земляного полотна и упорные призмы в периферийных зонах. При этом внутренняя часть призм, прилегающая к грунтам несущей части тела земляного полотна и основания, выполнена в виде непрерывной прослойки из сортированного скального грунта, контактирующей в верхней и нижней частях призм с воздухом.

Недостатками данного технического решения является то, что в нем прослойки из сортированного скального грунта, находящиеся в основании откосных частей и контактирующие там с воздухом, в теплый период могут пропускать в основание сооружения теплую внешнюю воду. Наличие приточной внешней воды в основании откосных частей практически неизбежно приводит к деградации неустойчивой вечной мерзлоты и потере сооружением местной устойчивости. При этом в зимний период внизу у сооружения быстро образуются значительные снежные отложения. Эти отложения, перекрывая нижний контакт вентиляционных прослоек с холодным воздухом, препятствуют обеспечению эффективного воздухообмена и необходимой зимней «подзарядке» холодом мерзлого основания. В результате неустойчивая вечная мерзлота в основании земляного сооружения начинает оттаивать (деградирует), а само сооружение теряет свою устойчивость на длительный период.

Наиболее близким по технической сущности и достигаемому результату является земляное сооружение на многолетнемерзлых грунтах [пат. 2256030. Российская Федерация, МПК7 Е02Д 17/18. Земляное сооружение на многолетнемерзлых грунтах / Поленова Л.А., Тугарин A.M., Русаков B.C., Захаренко А.В., Лонский В.Н., опубл. 10.07.2005 г. Бюл. №19], включающее тело земляного полотна и прослойки из скального грунта, контактирующие с воздухом в периферийных зонах, при этом периферийные зоны в откосных частях снизу выполнены водонепроницаемыми, а прослойки из скального грунта соединены между собой нижележащим слоем скального грунта.

Недостатками данного технического решения является то, что оно преимущественно предназначено для сохранения вечной мерзлоты в основании сооружения в обычных (сложившихся) природных условиях и не рассчитано на возможность повышения средней температуры воздуха до 2,0°С за 150-200 лет.

Задачей изобретения является повышение устойчивости насыпных земляных сооружений (высоких насыпей), возводимых на неустойчивой, высокотемпературной вечной мерзлоте прерывистого и островного распространения с сохранением и укреплением ее в основании сооружения, путем создания и обеспечения работоспособности оптимальной совокупности природных (экологически чистых) «подмораживающих» эффектов.

Технический результат - повышение прочности и устойчивости (термической и сейсмической) основания земляного сооружения на вечной мерзлоте. Достигается это тем, что в земляном сооружении на многолетнемерзлых грунтах, включающем насыпь и соединенные между собой нижележащим слоем скального грунта периферийные прослойки из скального грунта, контактирующие с воздухом в откосных, водонепроницаемых снизу зонах, на поверхности грунтового основания устроен слой из водонасыщенного, водоудерживающего материала, а в периферийных прослойках из скального грунта устроены «отверстия-продухи», контактирующие с нижней частью соединительного слоя из скального грунта, выполненного в нижней части из более крупных скальных обломков или трапециевидных габионов (в виде усеченных пирамид) и т.д., частично на геотекстильной прослойке, погруженных в слой водонасыщенного, водоудерживающего материала. При этом толщина слоя водонасыщенного водоудерживающего материала (грунта) находится в пределах:

для минеральных материалов (грунтов с влажностью Wп.в. до 100%):

Нл.о≥Нос.в.*[1+(1-Wп.в.)]

для органических материалов (грунтов с влажностью Wп.в. до 1000%)

Нл.о.≥Нос.в.*[1+(1-Wп.в./10)],

где Нл.о. - толщина летнего оттаивания водонасыщенного, водоудерживающего материала в земляном сооружении, м;

Но - толщина слоя водоудерживающего материала (грунта), м;

Нс.в. - толщина критического слоя стоячей воды, под которым в природных условиях начинает образовываться вечная мерзлота (в среднем 0,10-0,20 м для южной, 0,20-0,30 м центральной и 0,30-0,40 м северной подзоны распространения вечномерзлых грунтов), м;

Wп.в. - влажность водоудерживающего материала, в полностью водонасыщенном состоянии, дол. ед.

Периферийные прослойки из скального грунта и соединительный слой закрыты сверху слоем геотекстиля и состоят из морозостойких камней со средним диаметром 0,2-0,4 м, более крупные скальные обломки в нижней части соединительного слоя до 4-6 раз крупнее, а слой водонасыщенного, водоудерживающего материала выполнен с поперечным уклоном к оси земляного сооружения. «Отверстия-продухи» в периферийных прослойках из скального грунта толщиной 1,0-1,2 м выполнены из труб диаметром 0,3-0,5 м или трапециевидных габионов (в виде усеченных пирамид), установленных вниз меньшей стороной с образованием «отверстий-продухов». Внешняя поверхность водонепроницаемых периферийных зон закрыта торфо-глинистой смесью в соотношениях 60/40-75/25 и подвижными (надвигающимися, переносными и т.д.) коробчатыми, сборными, проветривающимися элементами, светлых (светоотражающих) расцветок (например, из погодоустойчивых пластиков, стеклопластиков, оцинкованного металлического профиля и др.).

Заявляемая конструкция земляного сооружения отличается от аналогов и прототипа следующим:

- наличием дополнительных «отверстий-продухов», позволяющих обеспечить более эффективное и надежное промораживание грунта основания сооружения, с размерами отверстий, не допускающими их закупорки куржаком или слоем инея, в период обязательной зимней «подзарядки» холодом вечномерзлого основания сооружения (особенно в районах распространения неустойчивой, высокотемпературной прерывистой и островной мерзлоты, в условиях потепления климата);

- наличием крупных скальных обломков или трапециевидных габионов (в виде усеченных пирамид), установленных на основание меньшей стороной и др. на частичной геотекстильной прослойке, втопленных (заанкеренных) через слой водоудерживающего материала в частично оттаиваемое (при строительстве) с поверхности мерзлое грунтовое основание земляного сооружения. Это позволяет, во-первых, увеличить размер межобломочных пустот, контактирующих с «отверстиями-продухов», что защищает их от забивания куржаком и инеем; во-вторых, обеспечить надежное опирание на мерзлое основание и одновременно увеличить площадь водонасыщенного, водоудерживающего слоя, в пустотах на грунтовом основании, выполняющего функцию «теплового диода» с улучшением условий его вентиляции. Как «теплоизолятора-охладителя(испарением)» мерзлого грунтового основания летом и повышающего «подзарядку» холодом зимой, за счет увеличения температуропроводности водоудерживающего, водонасыщенного слоя в 6-7 раз после его промерзания; в-третьих, одновременно, дополнительно повышается общая сейсмоустойчивость земляного сооружения;

- частичная геотекстильная прослойка, преимущественно находящаяся между втопленных, крупных скальных обломков (или трапециевидных габионов и др.), в данной конструкции, во-первых, сглаживает (гасит) неравномерность выдавливания слоя водоудерживающего материала при строительном погружении в него крупных скальных обломков; во-вторых, в период эксплуатации защищает поверхность слоя водоудерживающего материала от периодически возможного размыва водой, одновременно способствуя более равномерному распределению ее по поверхности данного слоя, при необходимом ежегодном пополнении (подпитывании) его водой с откосов (ввиду наличия испарения воды из водоудерживающего слоя летом и сублимационного вымораживания зимой); в-третьих, выполняет функцию «фитиля», в процессе эксплуатации подпитывающего водой места возможных строительных неровностей (поднятий) водоудерживающего материала;

- наличием поперечного уклона поверхности водоудерживающего слоя к оси сооружения, обеспечивает в летний период, затекание дождевой воды с откосов внутрь сооружения с периодическим подпитыванием слоя водоудерживающего материала от откосов до оси (последний в полностью водонасыщенном состоянии наиболее эффективно выполняет функции «теплового диода»). В зимний период, наличие данного уклона способствует затеканию более тяжелого холодного воздуха внутрь земляного сооружения, улучшая условия зимнего охлаждения мерзлого основания;

- наличием слоя водоудерживающего, водонасыщенного материала (грунта), минимальной толщиной, обеспечивающей впитывание и удержание слоя воды, под которым в природных условиях начинает образовываться вечная мерзлота, чем обеспечивается наиболее эффективное срабатывание искусственно создаваемого слоя, выполняющего функцию «теплового диода». Как «теплоизолятора-охладителя» мерзлого основания летом (при испарении с поверхности водоудерживающего слоя 1 г воды затрачивается 539 калорий тепла, поступающего летом из воздуха на его нагревание и оттаивание), а в более длительный, чем летний, зимний период, обеспечивающего усиление «подзарядки» холодом, за счет увеличения температуропроводности данного слоя в 6-7 раз после промерзания. При этом максимальная толщина водоудерживающего слоя, для создания наиболее оптимальных условий по естественному понижению летней температуры на поверхности мерзлого грунтового основания с последующим обеспечением усиленной «подзарядки» холодом зимой, определяемая оптимальной сдвижкой эффекта «нулевой завесы», не должна превышать толщины сезонного (летнего) оттаивания данного слоя. В результате совмещения применения летней сдвижки «нулевой завесы» над поверхностью мерзлого грунтового основания до начала осенних заморозков и многократного увеличения зимней температуропроводности промерзшего водонасыщенного слоя, достигается сохранение поверхности грунтового основания в мерзлом состоянии в течение всего года, что особенно важно в период оттаивания. Одновременно, новой совокупностью полезных свойств, достигается понижение среднегодовой температуры, как поверхности, так и всей толщи вечномерзлого грунта основания. Это позволяет значительно укрепить мерзлое основание сооружения (т.к. с понижением среднегодовой температуры основания повышаются прочностные свойства мерзлых грунтов, слагающих его, а также увеличивается их устойчивость к оттаиванию, как сверху, так и снизу, от воздействия геотермального потока тепла). Данная совокупность взаимосвязанных полезных свойств не обнаружена в других технических решениях. Следовательно, предлагаемое техническое решение отвечает критерию «НОВИЗНА». Из наиболее близких технических решений также известен экран для защиты вечномерзлого грунта от прогрева [А.с. 628208 СССР, МКИ2 Е01С 3/06 F16L 59/00. Экран для защиты вечномерзлого грунта от прогрева / А.А.Коновалов, опубл. 15.10.78 г. Бюл. №38] из уложенных на грунт теплоизоляционных элементов, выполненных в виде влаго- и воздухонепроницаемой оболочки, заполненной незамерзающей жидкостью.

При этом предполагалось, что в теплое время года, когда температура грунта ниже температуры воздуха, в слое жидкости, расположенной на поверхности грунта, будет наблюдаться устойчивая стратификация (т.к. плотность воды при +4°С наибольшая) и слой с жидкостью будет срабатывать как теплоизолятор. В реальности данное предположение не осуществляется. Наоборот, как свидетельствуют практические наблюдения за развитием термокарста, наличие слоя воды на льдонасыщенной грунтовой поверхности, в летний период увеличивает скорость таяния льда в среднем, в 10 раз, по сравнению с оттаиванием на контакте с атмосферой.

В предлагаемом новом техническом решении, путем предотвращения конвективного теплообмена в воде (жидкости) скелетом водоудерживающего материала (а также гелеобразующей добавкой, при необходимости), в нем преимущественно срабатывает кондуктивная составляющая теплопроводности, обеспечивающая появление теплоизолирующего эффекта в талом состоянии (наблюдениями установлено, что 1 м деятельный слой оттаявшего водонасыщенного грунта понижает скорость оттаивания в 100 раз, по сравнению с оттаиванием на контакте с атмосферой) [Щур Ю.Л. Верхний горизонт толщи мерзлых пород и термокарст. Новосибирск: «Наука», 1988 г. Стр.101]. При промерзании водонасыщенного водоудерживающего материала (грунта), его температуропроводность наоборот возрастает в 6-7 раз, что позволяет, при оптимизации его толщины, обеспечивать через него усиленную зимнюю «подзарядку» холодом нижележащих вечномерзлых грунтов основания. На практике, это подтверждается частым наличием значительного (в десятки метров) слоя вечной мерзлоты под водонасыщенными торфяниками незначительной мощности (марями и др.), при отсутствии ее на окружающей территории, в районах распространения островной и прерывистой (неустойчивой) вечной мерзлоты. Предлагаемая новая конструктивная совокупность обеспечивает действительную летнюю теплоизоляцию и повышенный зимний «подмораживающий» эффект, что позволяет повысить устойчивость многолетнемерзлого грунтового основания насыпных земляных сооружений на высокотемпературной (неустойчивой) вечной мерзлоте островного распространения в условиях потепления климата. В результате изучения известных конструктивных решений земляных сооружений на вечной мерзлоте, в том числе на высокотемпературной (неустойчивой), прерывистого и островного распространения установлено, что известность указанной совокупности отличительных признаков, с теми же свойствами, в других конструктивных решениях отсутствует. Следовательно, данное техническое решение отвечает критерию «ИЗОБРЕТАТЕЛЬСКИЙ УРОВЕНЬ»

Способ возведения земляного сооружения на многолетнемерзлых грунтах, для реализации вышеприведенной конструкции на вечной мерзлоте, относится к области строительства и преимущественно предназначен для возведения транспортных сооружений (высоких насыпей автомобильных и железных дорог, мостовых подходов, сопряжений с выемками и т.д.) в районах распространения высокотемпературной (неустойчивой) вечной мерзлоты.

Известен способ сохранения холода в грунте [А.с. 1408825 СССР, МКИ Е02Д 3/115] (ДСП), где для его сохранения, теплоизоляционное покрытие образуют непосредственно в верхнем слое мерзлого грунта, до начала его естественного растепления, путем нагрева до температуры от 0 до -3°С (расчисткой от снега и укладкой полиэтиленовой пленки, сжиганием торфа или угля и т.д.).

Согласно данному изобретению нагрев мерзлого грунта до температуры от 0 до -3°С снижает его температуропроводность приблизительно в 1,5-2 раза. Такой искусственно оттаянный грунтовый слой и является теплоизолирующим покровом, предохраняющим от нагревания нижележащие мерзлые грунты.

Недостатками данного способа являются, во-первых, то, что искусственно (трудоемко и со значительными затратами тепловой энергии) уничтожаемый при оттаивании поверхностного грунтового слоя запас «холода», не хуже, а даже эффективнее теплоизолятора предохраняет нижележащий мерзлый грунт от оттаивания (так как под теплоизолятором мерзлый грунт может приобретать температуру выше 0°С, т.е. оттаивать, а под слоем мерзлого грунта нет), во-вторых, применение обычных талых грунтов в качестве теплоизолятора малоэффективно. Например, в наиболее распространенных обычных глинистых грунтах (суглинках, супесях) при переходе из мерзлого в талое состояние, их теплопроводность в среднем уменьшается всего в 1,05-1,07 раза, что явно недостаточно для обеспечения эффективной теплоизоляции. В результате, на практике, эффективная теплоизоляция обычным талым грунтом в основном зависит от его толщины и становится значимой при толщинах грунтового слоя, близких к 1 м и более, что требует значительных затрат тепла на нагревание такого слоя. Дополнительными недостатками данного способа являются, как необходимость ежегодных трудозатрат и затрат материальных ресурсов, так и затруднительность его применения в основаниях инженерных сооружений на вечной мерзлоте.

Наиболее близким к заявляемому является способ возведения насыпи в районах распространения вечномерзлых грунтов [А.с. 841418 СССР, МКИ3 Е01С 3/06, Е02Д 17/00. Способ возведения насыпи в районах распространения вечномерзлых грунтов / Плоцкий А.С, Лейтланд В.Г., Ланецкий Н.К., Анисимов Ю.Б.(СССР) №2853040/29-33: заявл. 14.12.79 г.] (ДСП), включающий укладку переувлажненного грунта и слоя дренирующего грунта, в котором перед укладкой слоя переувлажненного грунта на мерзлый грунт основания укладывают слой теплоизоляции (торфа), а после укладки слоя переувлажненного (глинистого) грунта его выдерживают в естественном состоянии до полного промораживания, после чего его поверхность и откосные части закрывают слоем теплоизоляции с образованием вокруг промороженного грунта замкнутой теплоизоляционной оболочки, а слой дренирующего грунта укладывают на поверхность теплоизоляционной оболочки.

Недостатком данного способа является то, что он не обеспечивает длительную термическую устойчивость мерзлому основанию высокой (более 3 м) насыпи, особенно в районах распространения неустойчивой, высокотемпературной вечной мерзлоты. Объясняется это тем, что ежегодная средняя глубина промерзания насыпи с поверхности составляет в данных районах 2,5-3,0 м. В результате не обеспечивается промерзание («подзарядка» холодом) вечномерзлого основания в высоких насыпях, без которого вечная мерзлота деградирует (оттаивает), от воздействия снизу теплового геотермального потока. В результате деградации вечной мерзлоты в основании высокой насыпи, она теряет свою устойчивость. Деградация (оттаивание) вечной мерзлоты в основаниях высоких насыпей с консолидационным уплотнением и, как правило, неравномерными деформациями поверхности насыпи, может продолжаться десятки лет. (На практике, например, на БАМе, Транссибе и др. в результате вводятся многочисленные ограничения скорости, создается угроза безопасности движения поездов, возрастают непроизводительные расходы, становится очевидным, что традиционный способ последующего поддержания железнодорожного пути в рабочем состоянии постоянной компенсацией осадки земляного полотна подъемкой на балласт, в условиях неустойчивой высокотемпературной вечной мерзлоты БАМ, является не только чрезвычайно затруднительным, но и по существу разорительным - одного только балласта ежегодно требуется несколько миллионов кубометров). [Бушин А.В. О задачах по обеспечению надежности земляного полотна железных дорог в современных условиях. // Ж.-д. транспорт. Сер. «Путь и путевое хозяйство»: ЭИ/ЦНИИТЭИ МПС. - 1992. - Вып.5-6. - стр.1-14].

Задачей изобретения является повышение устойчивости земляного сооружения (высокой насыпи) на просадочных при оттаивании многолетнемерзлых грунтах в расширяющихся, в связи с глобальным потеплением, районах распространения высокотемпературной (неустойчивой) вечной мерзлоты.

Технический результат - повышение прочности и устойчивости (термической и сейсмической) основания земляного сооружения на вечной мерзлоте.

Достигается это тем, что на грунтовом основании укладывают слой из водоудерживающего материала и устраивают частичную геотекстильную прослойку. Укладывают крупные скальные обломки, сверху отсыпают более мелкие скальные камни, поливают водой и уплотняют (виброуплотняют) отсыпанный скальный слой, одновременно водонасыщая нижележащий слой водоудерживающего материала. При этом необходимую массу (объем) воды, выливаемой на 1 м уплотняемого скального слоя, определяют как:

Кп*n*Wп.в.*Yско*1 м2>Vв≥Kп*n*[(Wп.в.-Wecт)*Yск*Ho*1 м2]

где Кп - эмпирический коэффициент потери воды на смачивание, впитывание и испарение, принимаемый в среднем равным - 1,06;

n - средняя пустотность низа скального слоя, контактирующая со слоем водоудерживающего материала, дол.ед.;

Wп.в. - влажность полной влагоемкости, водоудерживающего материала (грунта), дол.ед.;

Yск - вес скелета водоудерживающего материала (грунта), кг/м3;

Но - толщина слоя водоудерживающего материала (грунта), м;

Vв - масса (объем) воды, необходимой для эффективного уплотнения скального слоя и обеспечения требуемого водонасыщения нижележащего слоя водоудерживающего материала (грунта), кг (л);

Weст - естественная влажность водоудерживающего материала (грунта), дол.ед.

Отсыпают периферийные прослойки из скального грунта, в которых устраивают «отверстия-продухи», водонасыщенный, водоудерживающий слой промораживают в холодный период с последующим понижением температуры («зарядкой» холодом) вечномерзлого грунта основания, на поверхность скального слоя укладывают слой геотекстиля и досыпают сооружение грунтом (до требуемых высотных отметок).

Крупные скальные обломки (или трапециевидные габионы в виде усеченных пирамид) вдавливают (погружают) в слой водоудерживающего материала (грунта) и одновременно водонасыщают его при (вибро)уплотнении скального слоя. Виброуплотнение скального слоя осуществляют в конце теплого периода, при максимальном строительном оттаивании мерзлого грунта основания с поверхности, а водонасыщенный, водоудерживающий слой промораживают с понижением температуры многолетнемерзлого основания в холодный период, до перемены знака теплопотока на границе атмосферы и поверхности скального слоя. При необходимости слой водоудерживающего (органического) материала проливают гелеобразующим, водоудерживающим раствором реагента (например, 2-3% раствором реагента «Линда» Аквафора и др.). Частичную геотекстильную прослойку укладывают (раскатывают) в «клетку». Квадратные отверстия которой, имеют сторону 0,6-0,8 от среднего размера диаметра укладываемых крупных скальных обломков (или трапециевидных габионов в виде усеченных пирамид) и погружают последние преимущественно в данные отверстия, через слой водоудерживающего материала (грунта) виброуплотнением, в частично оттаявшее (при строительстве) с поверхности мерзлое грунтовое основание. При этом скальный слой, по изобретению отсыпаемый на высоту, снегонезаносимости его поверхности в зимний строительный период, без теплоизоляции снегом и верхней частью насыпи, получает условия для ускорения строительного промораживания водонасыщенного, водоудерживающего слоя и усиления «подзарядки» холодом (высокотемпературных) многолетнемерзлых грунтов основания. Температуру многолетнемерзлого основания в холодный период понижают до перемены знака теплопотока на границе атмосферы и поверхности скального слоя (т.е. до начала устойчивого оттаивания). Средне и слаборазложившиеся торфы, и аналогичные им материалы обладают хорошей дренажной способностью (коэффициентами фильтрации от 0,5 до 10 м/сут). В связи с этим, при необходимости, для большей нейтрализации конвективной составляющей теплопереноса воды в таких материалах, при строительстве возможна их дополнительная пропитка водоудерживающими, гелеобразующими реагентами (например, 2-3% водным раствором реагента «Линда» Аквафора и др.)

Способ отличается от аналогов и прототипа тем, что повышение устойчивости и укрепление вечномерзлого основания земляного сооружения в нем обеспечиваются:

- напитыванием водоудерживающего слоя оптимальной конструктивной толщины требуемым количеством воды, что обеспечивает создание необходимого «теплового диода». Известно, что объемная теплоемкость воды (4,2*106 Дж/м3*К) более чем в 2 раза больше теплоемкости льда (1,9*106 Дж/м3*К), а ее кондуктивные теплопроводность (0,57 Вт/м*К) и температуропроводность (4,9*10-4 м2/час) соответственно в 4 (2,2 Вт/м*К) и 8 (4,2*10-3 м2/час) раз меньше, чем у льда. В результате, более теплоемкий и значительно менее теплопроводный слой воды, над поверхностью оттаивающего льда (или льдонасыщенного грунта), должен выполнять теплоизолирующую роль и понижать скорость оттаивания. В реальности же, наоборот, скорость оттаивания льда с «теплоизолирующим» слоем воды на его поверхности, в среднем, в 10 и даже 100 раз выше (соответственно для стоячей и текущей воды), чем при непосредственном контакте поверхности льда с теплым воздухом. Причиной этого является наличие в слое воды не только кондуктивной, но и намного более значимых (для жидких сред), различных конвективных составляющих теплопереноса. Конвективные составляющие (воздействие течения, ветра, температурные изменения плотности и др.) за счет тепломассопереноса превращают слой воды из «кондуктивного теплоизолятора», в высокоэффективный переносчик (проводник) тепла. При предлагаемой нейтрализации конвективных составляющих теплопереноса в воде (например, путем связывания и удерживания воды слоем высокодисперсного глинистого грунта, торфа, другими водоудерживающими материалами, ввода в нее связывающих, гелеобразующих добавок и т.д.), скорость оттаивания льда (льдонасыщенного грунта) под слоем связанной грунтом воды толщиной 0,1 м, уменьшается, в среднем, в 10 раз (по сравнению со скоростью оттаивания льда, контактирующего непосредственно с воздухом) и в 100, и 1000 раз меньше, чем под слоем стоячей и текущей воды соответственно [Шур Ю.Л. Верхний горизонт толщи мерзлых пород и термокарст. Новосибирск «Наука», 1988 г. стр.101];

- для достижения лучшей уплотняемости и заклинки скального грунта его необходимо поливать водой. При этом, в обычных способах, не допускается ослаблять замачиванием нижележащее грунтовое основание. Это приводит к ограничению объема воды, выливаемой при уплотнении скальных грунтов в обычных конструкциях. В предлагаемом новом техническом решении, наоборот, вместе с поливом для уплотнения дополнительно необходимо максимальное водонасыщение нижележащего водоудерживающего слоя, что одновременно улучшает условия уплотнения скального слоя. Также облегчается процесс погружения (выполняемый одновременно с виброуплотнением) скальных обломков, через слой водоудерживающего материала, в частично оттаивающее (при строительстве) с поверхности мерзлое основание, что необходимо для обеспечения последующего (в процессе эксплуатации) надежного опирания сооружения на мерзлоту.

Из приведенных новых отличий следует, что предлагаемое техническое решение отвечает критерию «НОВИЗНА».

В результате изучения известных способов, также установлено, что известность указанных отличительных признаков в других способах возведения земляного сооружения (и укрепления его мерзлого основания) не обнаружена. Следовательно, данное техническое решение отвечает критерию «ИЗОБРЕТАТЕЛЬСКИЙ УРОВЕНЬ».

Сравнение заявляемого способа с другими техническими решениями позволяет сделать вывод, что он обеспечивает возможность более надежного подмораживания, просадочного при оттаивании, мерзлого грунтового основания в интенсивно расширяющихся районах распространения неустойчивой, высокотемпературной вечной мерзлоты. В результате достигается повышение как прочностных свойств мерзлых грунтов основания, так и их термической устойчивости, что в совокупности укрепляет мерзлое грунтовое основание земляного сооружения, обеспечивая более надежные условия его эксплуатации в циклические периоды потепления.

Изобретение поясняется чертежами. На фиг.1 изображен поперечный профиль(разрез) земляного сооружения на высокотемпературной (неустойчивой)вечной мерзлоте; на фиг.2 - вид трапециевидного габиона (в виде усеченной пирамиды).

Земляное сооружение включает грунтовую насыпь 1, отсыпанную на слой геотекстиля 2, уложенного на поверхность скального слоя 3, снизу выполненного из крупных скальных обломков 4, вдавленных через частичный геотекстильный слой 5, в слой водонасыщенного, водоудерживающего материала (грунта) 6, на поверхности многолетнемерзлого основания 7, «отверстия-продухи» 8, в периферийных прослойках из скального грунта 9, над откосными, водонепроницаемыми снизу зонами 10, закрытыми на внешних (откосных) поверхностях торфо-глинистой смесью 11, с возможным устройством сверху сборных, коробчатых, проветриваемых элементов 12, светлых (светоотражающих) расцветок, трапециевидные габионы 13. А - положение высокотемпературной (неустойчивой) вечной мерзлоты до возведения земляного сооружения, Б - после начала эксплуатации земляного сооружения. Например, многочисленный из переходных участков высоких насыпей, из выемки в долину, в гористо-холмистой местности (трассы Забайкалской ж/д, БАМа, проектируемые Трансаляскинская и Северо-Канадская ж/д магистрали и др.), характеризующейся прерывистым (островным) распространением высокотемпературной (неустойчивой) вечной мерзлоты. Склоны и дно долин, на которых устраиваются высокие насыпи, как правило, сложены осадочными, сильнольдистыми и просадочными при оттаивании многолетнемерзлыми породами со среднегодовой температурой от -0,5°С до -1,5°С, мощностью 20-30 м. Строительство в таких условиях высоких грунтовых насыпей, высотой, превышающей глубину промерзания грунта в них, прекращает необходимую для существования вечной мерзлоты, периодическую, «подзарядку» холодом мерзлых грунтов в основании. При этом воздействие на мерзлоту снизу геотермального теплового потока остается, что при незначительной по мощности, высокотемпературной, вечной мерзлоте, приводит к ее постепенной деградации в основании. Оттаивание (деградация) мерзлоты в основании насыпи сопровождается неравномерными деформациями поверхности насыпи, внезапными местными просадками, потерей устойчивости (оползанием и сплыванием) откосов и др. (особенно при соединении верхнего и нижнего фронтов оттаивания). В соответствии с предлагаемым техническим решением создается строительная и последующие усиленные («тепловым диодом», зимней вентиляцией), ежегодные «подзарядки» холодом мерзлого грунтового основания и теплоизоляция его летом в земляном сооружении. В весенний период, до начала оттаивания с поверхности естественного многолетнемерзлого грунтового основания - 7, (для обеспечения проходимости строительного транспорта и механизмов), на нем устраивают слой из водоудерживающего материала - 6, например, из слаборазложившегося торфа (или геотекстильных, прошитых матов, заполненных водоудерживающей, например, диатомовой и др. глиной). Слаборазложившийся торф предварительно послойно оттаивают и заготавливают в штабеля в предшествующий теплый период на ближайшем местном торфянике (мари) или разрабатывают непосредственно в мерзлом состоянии бульдозерными рыхлителями или буровзрывным способом и отсыпают с учетом осадки при оттаивании. При этом необходимую для создания эффективного «теплового диода» толщину талого торфа рассчитывают по предлагаемому расчетному соотношению для органических водоудерживающих материалов (грунтов). Так, для южной подзоны вечной мерзлоты, с толщиной критического слоя стоячей воды, под которым начинает образовываться вечная мерзлота Нс.в.=0,15 м, для характерного, слаборазложившегося верхового древесно-сфагнового торфа с естественной влажностью 400% и в полностью водонасыщенном состоянии до 700-800% (7-8 в дол.ед.), минимальная толщина слоя водоудерживающего материала составит:

Нл.о.≥Нос.в.*[1+(1-Wп.в./10)];

Но мин=0,15*[1+(1-7,5/10)]=0,19 м

Максимальную толщину водоудерживающего материала, равную глубине сезонного (летнего) оттаивания торфа в районе строительства, принимают по данным ближайщей метеостанции (или практическим замерам). В районе южной подзоны вечной мерзлоты, глубина сезонного оттаивания торфа, в среднем, составляет Нмакс.=0,5-0,7 м в зависимости от увлажненности, снегоотложения, альбедо и др. Учитывая, что глубина летнего оттаивания торфа в основании сооружения будет меньше, в первом приближении, принимают требуемую толщину, как среднее между минимальным и максимальным значением. В результате, требуемая толщина Н0 устраиваемого из слаборазложившегося торфа слоя водоудерживающего материала - 6, составит: Н0=(0,19 м + 0,6 м)/2=0,4 м.

После погрузки экскаватором или погрузчиком и доставки торфа автовозкой, его разравнивают бульдозером с приданием автогрейдером необходимого для обеспечения стока воды уклона, от краев слоя к его середине (оси сооружения) в 40-60‰. На поверхности спланированного слоя раскатывают в «клетку» рулоны геотекстильного полотна (нетканого синтетического материала - НСМ) - 2. При этом квадратные отверстия в «клетку», в частичной геотекстильной прослойке - 2, создают со стороной 0,6-0,8 от размера диаметра крупных скальных обломков - 4, (средним диаметром 0,8-1,2 м и до 1,5 м). Укладывают крупные скальные обломки - 4, краном преимущественно в данные отверстия с последующим их погружением через слой водонасыщаемого, водоудерживающего материала - 6, (при уплотнении тяжелыми виброкатками) до опирания последних на поверхность многолетнемерзлого основания - 7. При осуществлении раскладки скальных обломков - 4, (или установки габионов - 13), для достижения наиболее благоприятной, максимально возможной пустотности (до 40-50%) внизу устраиваемого скального слоя, раскладываемые скальные обломки или габионы, опирают друг на друга боковыми гранями. Сверху автовозкой и наталкиванием бульдозером, отсыпают скальный слой - 3, из морозостойких камней со средним диаметром 0,2-0,4 м. Устанавливают в откосных частях стальные, бетонные и т.д. трубы диаметром 0,3-0,5 м, через необходимые промежутки, для создания «отверстий-продухов» - 8, и обсыпают их сортированным скальным грунтом с созданием периферийных прослоек - 9. Вместо труб, в откосных частях могут устанавливаться вниз меньшей стороной трапециевидные габионы, с образованием «отверстий-продухов» - 8, треугольной формы с одновременным созданием из них периферийных прослоек - 9, из сортированного скального грунта. В конце теплого периода, при максимальном строительном оттаивании многолетнемерзлого грунтового основания - 7, с поверхности производят виброуплотнение отсыпанного скального слоя - 3, тяжелыми виброкатками за 25-30 проходов по одному следу с поливкой водой для улучшения уплотнения и одновременным водонасыщением нижележащего слоя водоудерживающего материала (слаборазложившегося торфа) - 6, с вдавливанием крупных скальных обломков - 4, или трапециевидных габионов - 13, через слой водоудерживающего материала (слаборазложившегося торфа) - 6, в максимально оттаявшее с поверхности, за строительный период, многолетнемерзлое грунтовое основание - 7. При этом необходимое общее количество воды в кг(л), выливаемой при виброуплотнении на 1 м2 скального слоя - 3, определяют по предлагаемому расчетному соотношению:

Кп*n*Wп.в.*Yско*1 м2>Vв≥Кп*n*[(Wп.в.-Wест)*Yско*1 м2];

1,06*0,45*7,5*160*0,4*1>Vв>1,06*0,45*[(7,5-4)*160*0,4*1];

275 л>Vв≥107 л

т.е. на 1 м2 уплотняемого скального слоя - 3, поливомоечной машиной в общем выливается не менее 107 л/м2 или 107 л: 25=4,3 л/м2 при одном проходе виброкатка.

Отсыпанный на высоту снегонезаносимости (1,5-2,0 м и более) уплотненный скальный слой - 3, частично погруженный (заанкеренный и опертый) нижней частью из крупных скальных обломков - 4, в оттаявшее с поверхности (в строительный период) многолетнемерзлое основание - 7, через слой водонасыщенного, водоудерживающего материала (слаборазложившегося торфа) - 6, промораживают в зимний период. При этом промораживается слой водонасыщенного, водоудерживающего материала (сл