Катионный латекс в качестве носителя биоактивных ингредиентов и способы его получения и использования

Иллюстрации

Показать все

Изобретение относится к химии полимеров, в частности к биоактивному катионному полимерному латексу. Биоактивный катионный полимерный латекс содержит латексный полимер, по меньшей мере, один биоактивный компонент, по меньшей мере, частично капсулированный латексным полимером и, необязательно, по меньшей мере, один объемный компонент, включенный в латексный полимер. Латекс получают эмульсионной полимеризацией мономеров с образованием полимерных латексов в присутствии, по меньшей мере, одного биоактивного компонента. Латекс является продуктом полимеризации, по меньшей мере, одного первого этиленненасыщенного мономера и, по меньшей мере, одного второго этиленненасыщенного мономера, который является катионным или предшественником катиона. В качестве биоактивного компонента могут быть использованы антибактериальные и противогрибковые средства. Описаны также способы получения и использования биоактивного катионного полимерного латекса. Технический результат - усиление противомикробной активности латекса, а также противомикробной активности продуктов, полученных из него. 5 н. и 38 з.п. ф-лы, 4 ил., 2 табл.

Реферат

Техническая область изобретения

Настоящее изобретение относится к области полимерных материалов, которые могут быть использованы в комбинации с широким рядом подложек, таких как текстильные материалы, металлические материалы, целлюлозные материалы, пластмассовые материалы и тому подобное, и к области биоактивных/противомикробных средств, таких как антибактериальные и противогрибковые материалы.

Предшествующий уровень техники

Осаждение латексных полимерных покрытий на твердые подложки долгое время использовали для придания указанным подложкам некоторых практических свойств, таких как гидрофобность, прочность, адгезивные свойства, совместимость и тому подобное. В зависимости от выбора исходных мономеров, поверхностно-активных веществ, условий эмульсионной полимеризации и других параметров осажденные полимеры могут быть разработаны таким образом, чтобы нести заряд аниона, катиона или быть амфолитами, характер которых непосредственно влияет на эффективность покрытия. Кроме того, образующийся латексный полимер может быть смешан с рядом других функциональных материалов для придания дополнительных или улучшенных свойств конечному покрывному материалу.

Одним особенно полезным свойством, проявляемым катионными латексными полимерами, раскрытыми в публикации патентной заявки США 2005/0003163, являются их специфические противомикробные характеристики. Катионные полимеры также могут быть смешаны с композициями, содержащими малые молекулы биоактивных соединений, обычно ассоциированные с противомикробной активностью, для усиления указанных свойств. Данные противомикробные компоненты обычно используют в относительно малых количествах в качестве составляющих ингредиентов, которые добавляют после получения полимера. Хотя такие смеси и применяются, многие практические задачи, связанные с усилением или контролем степени противомикробной защиты, которую указанные композиции могут оказывать, остаются нерешенными. Например, такие композиции и способы часто являются неподходящими для обеспечения защиты материалов в течение длительного времени, особенно для защиты их противогрибковых свойств. Способы усиления противомикробных свойств или их более точного контролирования также являются необходимыми. Нормативные вопросы, связанные с внедрением нового противомикробного материала, а именно полимера, могут иметь важное значение. Кроме того, подходы к продлению или увеличению эффективности противомикробных свойств остаются труднодостижимыми.

Отсюда следует, что существует необходимость в новых способах и подходах к приданию противомикробной активности латексным полимерам и усилению указанной активности, а также полученным из них покрытиям и изделиям. Также существует необходимость в способах более точной регуляции противомикробной активности таких материалов, включая подходы к увеличению эффективности их биологической активности.

Сущность изобретения

Изобретение охватывает новые способы и подходы к введению биоактивных или противомикробных ингредиентов, таких как антибактериальные и противогрибковые средства, в латекс таким образом, что противомикробные свойства латекса можно усилить и регулировать. Настоящее изобретение также относится к новым типам полимерных латексных материалов. В одном аспекте, данное описание предоставляет способ введения в латекс противомикробных ингредиентов в процессе эмульсионной полимеризации. Ранее противомикробные средства добавляли к латексу после реакции полимеризации и в относительно малых количествах в качестве консервантов для латексного продукта или для конечного назначения продукта, такого как краски. Настоящее изобретение позволяет применять более высокие концентрации широкого ряда биоактивных ингредиентов, включающих высокогидрофобные биоактивные ингредиенты, которые можно легко вводить в латексы, так что образовавшиеся латексные частицы могут служить в качестве носителей активных ингредиентов. Полное включение активного ингредиента в таком способе может способствовать практически гомогенному распределению добавки и привести к превосходному и продолжительному действию по сравнению с дисперсиями, приготовленными прежде.

В одном аспекте данного изобретения, эмульсионную полимеризацию осуществляют так, что биоактивные средства вводятся в полимер в течение эмульсионной полимеризации, обычно путем растворения биоактивного компонента в потоке мономера. В данном способе, биоактивные средства могут быть, по меньшей мере, частично капсулированы в полимерной матрице латекса. Одним преимуществом данного способа является способность включать или обволакивать большие количества биоактивных ингредиентов, включая гидрофобные компоненты, без существенной деградации биоактивного средства. В другом аспекте, данное изобретение также предоставляет “легко настраиваемую” противомикробную систему, основанную на катионном латексе, обладающем некоторыми характерными противомикробными свойствами, который также функционирует в качестве носителя, по меньшей мере, для одного биоактивного ингредиента, и необязательно также включающую другую биоактивную добавку, которая может быть смешана с приведенными в описании латексами. Таким образом, указанные латексы могут иметь много функций, таких как обеспечение связывающих, прочностных и дисперсионных характеристик, кроме функции носителя для активного функционального ингредиента, и необязательно представляющих собой один компонент смешанной противомикробной композиции.

В одном аспекте, поскольку биоактивные ингредиенты обычно вводятся в латекс в течение способа эмульсионной полимеризации, указанные биоактивные компоненты могут быть, по меньшей мере, частично капсулированы в полимерной матрице латекса. В другом аспекте, биоактивные компоненты могут быть в значительной степени капсулированы в полимерной матрице латекса. Не вдаваясь в теоретические детали, автор полагает, что путем доставки активного ингредиента к желаемому объекту конечного назначения латексный полимер с капсулированными биоактивными ингредиентами может предоставить продолжительное и контролируемое воздействие биоактивных ингредиентов на окружающую среду, в которую они помещены, тем самым обеспечивая более длительную и более эффективную защиту продукта или объекта применения. Кроме того, поскольку биоактивные катионные латексы могут быть образованы способом эмульсионной полимеризации, способы полимеризации успешно позволяют получать полимеры высокой молекулярной массы.

В другом аспекте, представленные в описании способы также дают возможность регулировать противомикробное действие при использовании комбинации подходов к внедрению противомикробного средства. Например, высокоспециализированные противомикробные свойства могут быть приданы продукту как путем введения биоактивного ингредиента в латекс в течение способа эмульсионной полимеризации, так и путем комбинирования образовавшегося латексного продукта с таким же или другим биоактивным компонентом в смеси. Такой подход позволяет достигать избирательных и регулируемых противомикробных свойств, используя полимер, добавку или и то и другое, в зависимости от требуемых условий и эффективности.

В другом аспекте, представленные в описании способы дают возможность капсулировать большие количества активного ингредиента латексной композицией, чем предусмотрено стандартными способами. Например, противомикробные компоненты в качестве составляющих ингредиентов обычно используют в относительно малых количествах после получения латексного полимера, и такие биоактивные компоненты обычно используют при концентрациях, колеблющихся в диапазоне приблизительно 1000-2000 ч./млн. В отличие от этого, противомикробный компонент латексных композиций согласно данному изобретению может быть использован в концентрациях приблизительно на 40 мас. процентов выше на основании общей массы мономеров. В данном аспекте, настоящее изобретение может предоставить стабильные, концентрированные дисперсии, которые могут быть использованы как таковые, или в качестве добавки, или концентрированные дисперсии, которые могут быть разбавлены и добавлены к другим системам, требующим противомикробной защиты. Высокие концентрации противомикробного компонента способствуют достижению эластичности данных латексных композиций и гарантируют их использование в качестве концентратов, а также использование в неконцентрированном виде.

Хотя представленные в описании способы могут быть применимы к любому биоактивному средству, которое требует специального конечного использования, настоящее описание в первую очередь относится к достижению или усилению противомикробных свойств латекса, подложки или отдельного конечного продукта. Рассматриваемая противомикробная активность может включать антибактериальную активность, противогрибковую активность, антивирусную активность, антипаразитарную активность или любую их комбинацию, в зависимости от отдельного выбора биоактивных средств. Как употребляют в описании, общий термин “биоактивный” компонент, средство или ингредиент используют взаимозаменяемо с термином “противомикробный” компонент, средство или ингредиент.

В другом аспекте, изобретение относится к биоактивному катионному полимерному латексу, включающему:

а) латексный полимер, включающий продукт полимеризации: i) по меньшей мере, одного первого этиленненасыщенного мономера; и ii) по меньшей мере, одного второго этиленненасыщенного мономера, который является катионным или предшественником катиона;

b) по меньшей мере, один биоактивный компонент, по меньшей мере, частично капсулированный латексным полимером; и

с) необязательно, по меньшей мере, один пространственно-объемный компонент, включенный в латексный полимер.

В данном аспекте, широкий диапазон процентов по массе первого этиленненасыщенного мономера и второго этиленненасыщенного мономера, который является катионным или предшественником катиона, который может быть назван как “катионный” мономер, может быть использован. Например, латекс может включать приблизительно от 0,01 до 75 мас. процентов катионного второго мономера, исходя из общей массы мономеров.

Также в данном аспекте, хотя, по меньшей мере, один пространственно-объемный компонент, включенный в латексный полимер, является необязательным компонентом, данное изобретение также относится к использованию широкого диапазона количеств и концентраций указанного компонента. Таким образом, как будет понятно специалисту в данной области, в биоактивных катионных полимерных латексах, которые не включают, по меньшей мере, один пространственно-объемный компонент, стабильность латекса можно усилить путем увеличения относительной доли катионного второго мономера, путем добавления поверхностно-активных веществ, таких как неионогенные поверхностно-активные вещества, и тому подобное, путем использования любой комбинации таких способов. Относительную долю катионного второго мономера можно снизить и/или поверхностно-активные вещества можно исключить, если присутствует, по меньшей мере, один пространственно-объемный компонент.

Кроме того, латексы согласно настоящему изобретению также могут содержать пространственно-объемный компонент, который включают в катионный полимерный латекс для пространственной стабилизации латекса. Указанные пространственно-объемные компоненты могут включать, но не ограничиваются ими, мономеры, полимеры и их смеси, как изложено ниже. Таким образом, мономер может быть включен как сомономер, который может быть присоединен или может составлять часть главной цепи катионного полимера, примеры которого включают алкоксилированный третий этиленненасыщенный мономер. Полимер может быть включен путем адсорбции или может быть привитым на поверхности латекса, пример которого включает поливиниловый спирт.

В другом аспекте, данное изобретение относится к способу получения биоактивного катионного полимерного латекса, включающего инициацию эмульсионной полимеризации водной композиции, содержащей в любое время в течение эмульсионной полимеризации:

а) по меньшей мере, один первый этиленненасыщенный мономер;

b) по меньшей мере, один второй этиленненасыщенный мономер, который является катионным или предшественником катиона;

с) по меньшей мере, один биоактивный компонент;

d) по меньшей мере, один инициатор свободно-радикальной полимеризации;

е) необязательно, по меньшей мере, один пространственно-объемный третий этиленненасыщенный мономер;

f) необязательно, по меньшей мере, один пространственно-объемный полимер; и

g) необязательно, по меньшей мере, одно неионогенное поверхностно-активное вещество.

Таким образом, в одном аспекте, по меньшей мере, один биоактивный компонент может быть растворен в мономере, подаваемом в реакцию в любое время в течение способа эмульсионной полимеризации. Также, в другом аспекте, компоненты водной композиции и, по меньшей мере, один биоактивный компонент могут быть представлены в виде дисперсии до инициации эмульсионной полимеризации. Таким образом, данное изобретение относится к периодическим технологическим способам, в которых, по меньшей мере, один биоактивный компонент присутствует на стадии затравки. В данном аспекте, эмульсионную полимеризацию начинают, когда все компоненты композиции, включая, по меньшей мере, один биоактивный компонент, присутствуют с момента инициации. Кроме того, данное изобретение также относится к полунепрерывному способу, в котором эмульсионную полимеризацию инициируют в то время, когда не все компоненты композиции присутствуют с момента инициации, но некоторые добавляют в разное время после инициации полимеризации. В данном аспекте, например, по меньшей мере, один биоактивный компонент может быть добавлен в любое время после стадии затравки. В другом аспекте, например, любой другой компонент или комбинация компонентов, представленные выше, могут быть добавлены в любое время после стадии затравки, за исключением, по меньшей мере, части общего количества любого компонента, которое требуется для инициации и продолжения эмульсионной полимеризации. Таким образом, биоактивный катионный латекс, представленный в описании, может быть получен с помощью любого вида периодических или полунепрерывных способов. Например, по меньшей мере, один биоактивный компонент может быть представлен в виде дисперсии и может быть добавлен к композиции в течение способа эмульсионной полимеризации.

В одном аспекте, биоактивные латексы согласно настоящему изобретению могут быть представлены или использованы в виде покрытий, которые могут быть нанесены на медицинские имплантаты, включающие искусственные шаровидные суставы, стержни, стенты, зубные имплантаты, штифты, винты, катетеры и тому подобное. Такие покрытия также могут быть нанесены на поверхности изделий повседневного пользования, таких как охлаждающие змеевики, воздухоочистители, трубы, кровельный материал, изделия для ванной комнаты, изделия для кухни и тому подобное. Такое покрытие может предохранять от микробных инфекций, таких как бактерии и плесень, в транспортных средствах, домах, больницах и других объектах. Дальнейшими примерами использования полученных продуктов является использование в качестве водного раствора или непосредственно в виде порошка, например, для стерилизационных систем с циркулирующей охлаждающей водой, или непрямое использование, например, путем добавления к краскам или другим поверхностным покрытиям.

Представленные выше и другие характеристики, аспекты, варианты осуществления и преимущества настоящего изобретения будут очевидны после рассмотрения следующего подробного описания изобретения. Следует учесть, однако, что данные аспекты, варианты осуществления изобретения и примеры описаны только с целью иллюстрации и не должны быть истолкованы в любом случае как налагаемые на объем изобретения ограничения.

Краткое описание рисунков

Фигура 1 представляет собой график, на котором представлена оценка противомикробных свойств различных противомикробных латексов, нанесенных на крафт-бумагу, с помощью теста ASTM G21.

Фигура 2 представляет собой график, на котором показаны результаты 30-III тестирования грибов, основанного на получении 1“Х1” чипа высушенного латекса, высевая грибы прямо на образец и затем наблюдая их рост после 7 дней.

Фигура 3 представляет собой график, на котором показаны результаты второго этапа тестирования образцов бумаги с покрытием, осуществляемого согласно тесту ASTM D-3273 в течение периода 28 дней. В данном исследовании, грибы не были прямо высеяны на поверхность, а сохранялись во влажной камере в виде спор, которые затем помещали на поверхность бумаги с покрытием.

Фигура 4 представляет собой график, на котором представлена оценка противомикробных свойств бумаги, в которую противомикробный латекс был включен на мокром этапе производства бумаги, по сравнению с бумагой с покрытием, используя тест ASTM D-3273.

Подробное описание изобретения

Настоящее изобретение относится к новым латексным полимерным материалам, которые могут быть использованы в комбинации с широким рядом подложек, таких как текстильные материалы, металлические материалы, целлюлозные материалы, пластмассовые материалы и тому подобное, где полимерные материалы включают биоактивные компоненты, введенные в латексный полимер. Данное изобретение также относится к новым методам и способам, которые способствуют введению высоких концентраций активного ингредиента, такого как противогрибковые средства, в процессе эмульсионной полимеризации. В одном аспекте, например, описанный способ может быть использован для введения приблизительно от 0,01 процента до 40 процентов с учетом общей массы мономера (“phm” или частей на сотню мономеров) в значительной степени гидрофобного биоактивного ингредиента в процессе эмульсионной полимеризации. Хотя биоактивный ингредиент может быть введен на любой стадии процесса полимеризации, включая раннюю стадию формирования затравки, в одном аспекте, биоактивный компонент или добавка (биодобавка) может быть добавлена на поздних стадиях процесса полимеризации, например, когда приблизительно от 30 процентов до 90 процентов мономера было подано в реакционный аппарат для проведения реакции полимеризации.

Пригодными биоактивными добавками могут быть твердые вещества, жидкости или их комбинации. Многие из биоактивных добавок, которые могут быть использованы в данном изобретении, являются в значительной степени нерастворимыми в воде или имеют ограниченную растворимость в воде. В данном аспекте, обычный, нерастворимый в воде, гидрофобный биоактивный агент может быть растворен, по крайней мере, в одном из мономеров, используемых в эмульсионной полимеризации. Таким образом, обычный гидрофобный, биоактивный ингредиент может быть внесен в реактор для полимеризации путем значительного или частичного растворения его в мономере, подаваемом в реактор в соответствующее время. Поэтому, типичные ингредиенты, выбранные для придания противомикробных свойств, обычно должны быть растворимы в мономерах, которые используют для получения полимерного латекса. В другом аспекте, пригодные биоактивные добавки в настоящем изобретении также могут быть, в основном, водорастворимыми, примеры которых включают о-фенилфенат (депротонированный о-фенилфенол) и подобные средства. В данном аспекте, необязательно такая гидрофильная биоактивная добавка должна быть растворимой в любом мономере, который подвергается полимеризации.

В другом аспекте, не требуется, чтобы противомикробные ингредиенты были растворимы, по меньшей мере, в одном из используемых мономеров, поскольку указанные ингредиенты также могут быть добавлены в качестве предварительно образованной дисперсии в воде. В данном аспекте, дисперсия может быть получена, наряду с другими способами, путем использования относительно концентрированной добавки и диспергирования при использовании поверхностно-активных веществ, диспергирующих средств и тому подобное, и обычно с помощью перемешивающего устройства, такого как высокоскоростной смеситель, гомогенизатор, смеситель Эппенбаха или подобные устройства. В таком случае, дисперсия может быть подана в реактор для доставки соответствующего количества активного ингредиента в латекс.

В одном аспекте, данное изобретение охватывает биоактивный катионный полимерный латекс, включающий:

а) латексный полимер, содержащий продукт полимеризации: i) по меньшей мере, одного первого этиленненасыщенного мономера; и ii) по меньшей мере, одного второго этиленненасыщенного мономера, который является катионным или предшественником катиона;

b) по меньшей мере, один биоактивный компонент, по меньшей мере, частично капсулированный латексным полимером; и

с) необязательно, по меньшей мере, один пространственно-объемный компонент, внесенный в латексный полимер.

Как представлено в описании, по меньшей мере, один пространственно-объемный компонент, внесенный в латексный полимер, может быть выбран независимо, по меньшей мере, из одного пространственно-объемного третьего этиленненасыщенного мономера, по меньшей мере, одного пространственно-объемного полимера или любой их комбинации. Каждый из указанных компонентов, а также необязательные или дополнительные компоненты, рассматриваются в описании.

В другом аспекте, данное изобретение также охватывает способ получения биоактивного катионного полимерного латекса, включающего водную композицию, инициирующую эмульсионную полимеризацию, содержащую в любое время способа эмульсионной полимеризации:

а) по меньшей мере, один первый этиленненасыщенный мономер;

b) по меньшей мере, один второй этиленненасыщенный мономер, который является катионным или предшественником катиона;

с) по меньшей мере, один биоактивный компонент;

d) по меньшей мере, один инициатор свободно-радикальной полимеризации;

е) необязательно, по меньшей мере, один пространственно-объемный третий этиленненасыщенный мономер;

f) необязательно, по меньшей мере, один пространственно-объемный полимер; и

g) необязательно, по меньшей мере, одно неионогенное поверхностно-активное вещество.

В другом аспекте, данное изобретение относится к способу получения биоактивного катионного полимерного латекса, включающему

а) получение водной композиции, содержащей:

i) по меньшей мере, один первый этиленненасыщенный мономер;

ii) по меньшей мере, один второй этиленненасыщенный мономер, который является катионным или предшественником катиона;

iii) необязательно, по меньшей мере, один пространственно-объемный третий этиленненасыщенный мономер;

iv) по меньшей мере, один инициатор свободно-радикальной полимеризации; и

v) необязательно, по меньшей мере, одно неионогенное поверхностно-активное вещество;

b) инициацию эмульсионной полимеризации композиции; и

с) добавление, по меньшей мере, одного биоактивного компонента к композиции в течение процесса эмульсионной полимеризации.

Многие соединения и виды, которые могут быть использованы в качестве первых этиленненасыщенных мономеров, вторых этиленненасыщенных мономеров и пространственно-объемных компонентов, описаны в европейском патенте номер ЕР 1109845 и соответствующей РСТ опубликованной патентной заявке WO 00/8008077, раскрытие которых включено в описании посредством ссылки во всей полноте.

Первые этиленненасыщенные мономеры

Различные первые этиленненасыщенные мономеры могут быть использованы в латексе согласно настоящему изобретению. В одном аспекте, первыми этиленненасыщенными мономерами могут быть мономеры, отличные от катионных. Примеры подходящих мономеров можно найти, по меньшей мере, в патенте США номер 5830934, в публикациях заявок на патенты под номерами 2005/0065284 и 2005/0003163 и в европейском патенте номер ЕР 1109845, все автора Krishan, раскрытие которых включено в описание посредством ссылки во всей полноте. В данном аспекте, примеры таких мономеров включают, но не ограничиваются ими, винилароматические мономеры, галоидированные или негалоидированные олефиновые мономеры, алифатические конъюгированные диеновые мономеры, сложные эфиры неароматических ненасыщенных моно- или дикарбоновых кислот, мономеры, основанные на неполном сложном эфире ненасыщенных дикарбоновых кислот, ненасыщенные моно- или дикарбоновые кислоты, азотсодержащие мономеры, нитрилсодержащие мономеры, циклические или ациклические аминсодержащие мономеры, мономеры разветвленные или неразветвленные алкилвиниловые сложные эфиры, галоидированные или негалоидированные алкилакрилатные мономеры, галоидированные или негалоидированные арилакрилатные мономеры, виниловые сложные эфиры карбоновой кислоты, алкениловые сложные эфиры уксусной кислоты, алкениловые сложные эфиры карбоновой кислоты, винилгалогенид, винилиденгалогенид или любую их комбинацию, любой из мономеров, имеющий вплоть до 20 атомов углерода. В данном аспекте, намерением заявителя является раскрыть акрилатные и метакрилатные фрагменты, хотя каждый фрагмент раскрыт в соответствующем мономере. Таким образом, обнаружение того, что акрилатный мономер является подходящим первым этиленненасыщенным мономером, также подпадает под раскрытие того, что соответствующий метакрилатный мономер также является подходящим первым мономером. Сокращение (мет)акрилат может быть использовано, чтобы представить такое раскрытие.

Многие различные первые этиленненасыщенные мономеры могут быть использованы при получении биоактивных латексов согласно настоящему изобретению. В одном аспекте, подходящие примеры первых этиленненасыщенных мономеров включают, но не ограничиваются ими, стирол, пара-метилстирол, хлорметилстирол, винилтолуол, этилен, бутадиен, метил(мет)акрилат, этил(мет)акрилат, пропил(мет)акрилат, бутил(мет)акрилат, пентил(мет)акрилат, глицидил(мет)акрилат, изодецил(мет)акрилат, лаурил(мет)акрилат, монометилмалеат, итаконовую кислоту, (мет)акрилонитрил, (мет)акриламид, N-метилол(мет)акриламид, N-(изобутоксиметил)(мет)акриламид, винилнеодеканоат, винилверсататы, винилацетат, С38 алкилвиниловые простые эфиры, С38 алкоксивиниловые простые эфиры, винилхлорид, винилиденхлорид, винилфторид, винилиденфторид, трифторэтилен, тетрафторэтилен, хлортрифторэтилен, гексафторпропилен, хлортрифторэтилен, перфторбутилэтилен, перфторированные С38 альфа-олефины, фторированные С38 алкилвиниловые простые эфиры, перфторированные С38 алкилвиниловые простые эфиры, перфторированные С38 алкоксивиниловые простые эфиры и тому подобное или любую их комбинацию. Таким образом, галоидированные аналоги подходящих первых этиленненасыщенных мономеров охвачены данным описанием, и намерением заявителя является раскрыть какой-либо или все подходящие галогензамещенные аналоги или производные указанных мономеров, включая фторзамещенные аналоги, хлорзамещенные аналоги, бромзамещенные аналоги и йодзамещенные аналоги. Термин “галогензамещенный” подразумевает охватить частично галогензамещенный и пергалогензамещенный аналоги, у которых любые галогеновые заместители могут быть одинаковыми или различными. В данном аспекте также намерением заявителя является раскрыть как акрилатные, так и метакрилатные фрагменты, хотя каждый фрагмент раскрывается в соответствующем мономере.

В другом аспекте, первый этиленненасыщенный мономер может быть галоидированным или негалоидированным. Аналогично, первый этиленненасыщенный мономер может быть фторированным или может быть нефторированным. Например, фторированные аналоги алкилакрилатов или метакрилатов могут быть использованы, а также нефторированные соединения. Первый этиленненасыщенный мономер может быть хлорированным или может быть нехлорированным. Первый этиленненасыщенный мономер может быть бромированным или может быть небромированным. Первый этиленненасыщенный мономер также может быть йодированным или может быть нейодированным. Например, фторированные аналоги алкилакрилатов или метакрилатов могут быть использованы, а также нефторированные соединения.

В другом аспекте данного изобретения, представленные в описании латексы могут содержать приблизительно от 20 процентов до 99,5 мас. процентов первого этиленненасыщенного мономера, исходя из общей массы мономеров. В данном аспекте, латекс согласно настоящему изобретению также может содержать приблизительно от 30 процентов до 99 процентов, приблизительно от 40 процентов до 97 процентов, приблизительно от 50 процентов до 95 процентов, приблизительно от 60 процентов до 90 процентов или приблизительно от 70 процентов до 90 мас. процентов первого этиленненасыщенного мономера, исходя из общей массы мономеров. В данном аспекте, намерением заявителя является раскрыть индивидуально каждое возможное количество, которое такие области значений могут обоснованно охватить, а также любые подобласти и комбинации подобластей, представленные в описании. В указанном аспекте, как будет очевидно специалисту в данной области, отдельные химические и физические свойства конкретного мономера будут иметь отношение к области процентов по массе, наиболее подходящей для такого мономера.

Вторые этиленненасыщенные катионные мономеры

В другом аспекте, латексный полимер согласно настоящему изобретению также содержит продукт полимеризации, по меньшей мере, одного второго этиленненасыщенного мономера, который является катионным мономером или предшественником катиона. Как представлено в описании, по меньшей мере, один второй этиленненасыщенный мономер, который является катионным мономером или предшественником катиона, может быть обобщенно назван термином “катионный мономер”, то есть любой мономер, который имеет положительный заряд или который может образовывать положительный заряд. В одном аспекте, такой положительный заряд может быть приобретен благодаря присутствию гетероатома в мономере, такого как азот, который может создавать участок присоединения протона или любой другой кислоты Льюиса, являющейся акцептором пары электронов, что должно придать мономеру положительный заряд. Например, мономеры с четвертичными аминогруппами могут быть использованы в качестве “катионного мономера” в латексе согласно изобретению, который включает мономеры с четвертичными аминогруппами, полученные из любого нейтрального аминсодержащего мономера, представленного в описании, путем, например, протонирования с помощью кислоты или алкилирования с помощью галоидалкила. Типичные гетероатомы включают, но не ограничиваются ими, азот, серу, фосфор и тому подобное. Таким образом, катионный мономер обычно встраивается в латексный полимер в силу его этиленовой ненасыщенности.

Примеры подходящих катионных мономеров можно найти, по меньшей мере, в публикации заявок на патенты под номерами 2005/0065284 и 2005/0003163 автора Krishnan. В данном аспекте, примеры катионных мономеров включают, но не ограничиваются ими, аминсодержащий мономер, амидсодержащий мономер, мономер с четвертичной аминогруппой, мономер с фосфониевой группой, мономер с сульфониевой группой или любую их комбинацию, любой из мономеров, имеющий вплоть до 20 атомов углерода. Кроме того, подходящие примеры этиленненасыщенных катионных мономеров, которые могут быть использованы в латексе согласно настоящему изобретению, включают, но не ограничиваются ими, диметиламиноэтилакрилат; диэтиламиноэтилакрилат; диметиламиноэтилметакрилат; диэтиламиноэтилметакрилат; третичный бутиламиноэтилметакрилат; N,N-диметилакриламид; N,N-диметиламинопропилакриламид; акрилоилморфолин; N-изопропилакриламид; N,N-диэтилакриламид; диметиламиноэтилвиниловый простой эфир; 2-метил-1-винилимидазол; N,N-диметиламинопропилметакриламид; винилпиридин; винилбензиламин; кватернизованный метилхлоридом диметиламиноэтилакрилат; кватернизованный метилхлоридом диметиламиноэтилметакрилат; диаллилдиметиламмонийхлорид; кватернизованный метилхлоридом N,N-диметиламинопропилакриламид; триметил-(винилоксиэтил)аммонийхлорид; 1-винил-2,3-диметилимидазолийхлорид; гидрохлорид винилбензиламина; гидрохлорид винилпиридиния; или любую их комбинацию. Хотя перечисленные выше примеры включают соединения, как в виде свободного основания, так и в виде различных четвертичных солей, такие как хлористоводородные соли или четвертичные аммониевые соли, основанные на хлористом метиле, любая подходящая кислота Льюиса, которая придает положительный заряд мономеру, может быть использована для образования катионных мономеров согласно данному описанию.

В другом аспекте, другие амины или соли аминов также могут быть использованы в качестве вторых этиленненасыщенных мономеров для приготовления латексного полимера согласно настоящему изобретению. Например, различные соли амина могут быть получены, например, взаимодействием эпоксигруппы со вторичным амином и последующей нейтрализацией вновь образованного третичного амина кислотой. Например, реакция глицидилметакрилата со вторичным амином может быть осуществлена с получением продукта, который может быть подвергнут свободнорадикальной полимеризации. Функциональность четвертичного амина также может быть образована как “постреакция” на предварительно полученном полимере, имеющем, например, эпоксигруппу. Примеры таких реакций описаны в статье “Polymer Compositions for Cationic Electrodepositable Coatings”, Journal of Coatings Technology, Vol. 54, No 686, March 1982, которая включена в описание посредством ссылки во всей полноте. Следует принять во внимание, что катионная функциональность также может быть придана посредством химии сульфониевых или фосфониевых групп, примеры которых описаны в данной ссылке, как оценит специалист в данной области.

В другом аспекте, латексный полимер согласно настоящему изобретению может содержать приблизительно от 0,01 до 75 мас. процентов второго этиленненасыщенного мономера, который является катионным или предшественником катиона, исходя из общей массы мономеров. В данном аспекте, латекс согласно настоящему изобретению также может включать приблизительно от 0,025 до 70 процентов, приблизительно от 0,05 до 60 процентов, приблизительно от 0,1 до 50 процентов, приблизительно от 0,25 до 40 процентов, приблизительно от 0,5 до 30 процентов, приблизительно от 1 до 20 процентов, или приблизительно от 1,5 до 15 мас. процентов катионного второго мономера, исходя из общей массы мономеров. В данном аспекте, намерением заявителя является раскрыть индивидуально каждое возможное количество, которое такие области может обоснованно охватить, а также любые подобласти и комбинации подобластей, охваченные данным описанием.

Компоненты с пространственно-объемной структурой

Как представлено в описании, один аспект настоящего изобретения охватывает катионный полимерный латекс, содержащий: а) латексный полимер, как указано в описании; b) по меньшей мере, один биоактивный компонент, по меньшей мере, частично капсулированный латексным полимером, и с) необязательно, один компонент с пространственно-объемной структурой, введенный в латексный полимер. По меньшей мере, один компонент с пространственно-объемной структурой, введенный в латексный полимер, может быть выбран независимо, по меньшей мере, из одного третьего этиленненасыщенного мономера с пространственно-объемной структурой, по меньшей мере, из одного полимера с пространственно-объемной структурой, или из любой их комбинации. В данном аспекте, и хотя заявитель не стремится вдаваться в теоретические детали, он полагает, что компонент с пространственно-объемной структурой вводят в катионный полимерный латекс для пространственной стабилизации латекса.

Как употребляют в описании, термин “введенный” в отношении использования, по меньшей мере, одного третьего этиленненасыщенного мономера с пространственно-объемной структурой включает, но не ограничивается указанным выражением, пр