Способ формирования фазовой пеленгационной характеристики (фпх)

Иллюстрации

Показать все

Изобретение относится к области антенной техники, а именно к способам формирования фазовой пеленгационной характеристики. Предлагается способ формирования (расширения) фазовых пеленгационных характеристик (ФПХ) с рабочим участком заданной угловой ширины в одной или двух ортогональных плоскостях с помощью одной или двух ортогональных пар приемных элементов при фиксированных расстояниях d1 и d2 между элементами пар. В качестве исходных данных для формирования ФПХ в каждой из ортогональных плоскостей используются разности фаз сигналов на выходах приемных элементов пар, измеряемые на двух частотах, а сама ФПХ формируется как разность указанных разностей фаз сигналов, соответствующих разным частотам. Способ применяется в случаях, когда рабочий участок пеленгационной характеристики, определенной на рабочей частоте, имеет угловую ширину меньше требуемой. Достигаемый технический результат - формирование ФПХ заданной ширины при фиксированных расстояниях между парами приемных антенн. 2 н.п. ф-лы, 5 ил.

Реферат

Область техники

Изобретение относится к области антенной и радиолокационной техники, а именно к способам формирования фазовой пеленгационной характеристики.

Уровень техники

Известны способы формирования фазовой пеленгационной характеристики (ФПХ) (см., например, Леонов А.И., Фомичев К.И. Моноимпульсная радиолокация. - М.: Радио и связь, 1984). Для формирования ФПХ в одной плоскости используются фазы сигналов на выходах двух приемных антенных элементов, разнесенных в пространстве на известное расстояние d. Информация об угловой координате цели содержится в разности фаз сигналов

где Δϕ - разность фаз сигналов; ϕ1 (θ, φ), ϕ2 (θ, φ) - фазы сигналов на выходах элементов в пространственном направлении (θ, φ).

Для формирования ФПХ одновременно в двух ортогональных плоскостях используются две ортогональные пары элементов. Однако известные способы основаны на использовании разности фаз приходящих сигналов на одной частоте (Леонов А.И., Фомичев К.И. Моноимпульсная радиолокация. - М.: Радио и связь, 1984, стр.10). При фиксированных электрических расстояниях между элементами ортогональных пар это обстоятельство определяет ширину рабочего участка пеленгационной характеристики. При больших электрических расстояниях между парами элементов рабочий участок пеленгационной характеристики (диапазон значений разности фаз Δϕ от -180° до +180°, центрированный в равносигнальном направлении) может оказаться недостаточно широким для обеспечения эффективной работы измерителя угловых координат, поскольку за пределами этого участка однозначное определение координат источника излучения невозможно в силу периодичности ФПХ, определяемой по формуле (1), как зависимость разности фаз от угла прихода сигнала, по результатам измерений фаз в диапазоне [0°, 360°] или [-180°, 180°]. Применение направленных излучателей в качестве элементов ортогональных пар может ослабить сигналы, принимаемые вне рабочего участка ФПХ, и тем самым устранить упомянутую неоднозначность, но не может изменить угловой размер рабочего участка ФПХ, так как он определен электрическим расстоянием между центрами элементов.

Две возможные схемы построения измерительной антенны такого типа приведены на фиг.1. На фиг.1,а приведена схема измерительной антенны с использованием четырех элементов 1-4, а на фиг.1,б - схема измерительной антенны с использованием трех элементов 1-3. В обеих схемах для проведения измерений используются две ортогональные пары приемных элементов.

Ниже предлагается способ формирования (расширения) фазовых пеленгационных характеристик с рабочим участком заданной угловой ширины в двух ортогональных плоскостях при фиксированных расстояниях d1 и d2 между элементами пар. В качестве исходных данных для формирования пеленгационной характеристики в каждой из плоскостей будет рассматриваться разность фаз сигналов Δϕ, определяемая по формуле (1). Способ применим в случаях, когда рабочий участок пеленгационной характеристики, определенной по формуле (1) на рабочей частоте, имеет угловую ширину меньше требуемой.

Ближайшим аналогом настоящего изобретения является способ формирования пеленгационной характеристики с помощью одной или двух ортогональных пар приемных элементов, в котором используются фазы сигналов на одной частоте (Леонов А.И., Фомичев К.И. Моноимпульсная радиолокация. - М.: Радио и связь, 1984, стр.13).

Такой способ не позволяет сформировать ФПХ заданной ширины при фиксированных расстояниях между парами приемных элементов.

Сущность изобретения

Рассмотрим систему из 4-х приемных элементов 1-4, расположенных в вершинах ромба так, как это показано на Фиг.1. Расстояние между элементами 2 и 3, расположенными вдоль оси X декартовой системы координат, равно d1, а расстояние между элементами 1 и 4, расположенными вдоль оси Y декартовой системы координат, равно d2.

Заявляемый способ формирования пеленгационной характеристики в одной из ортогональных плоскостей по формуле (1) состоит в следующем:

1. Измеряются значения фаз ϕA1 (θ, φ), ϕA2 (θ, φ) и ϕB1 (θ, φ), ϕB2 (θ, φ) сигналов на выходах пары приемных элементов А и В (элементов 2 и 3 или элементов 1 и 4 на фиг.1) в зависимости от пространственного направления (θ, φ) на двух частотах f1 и f2=f1(1+τ). Здесь (θ, φ) - направление прихода сигнала в сферической системе координат; τ - коэффициент, задающий частотный сдвиг.

2. Значения фаз ϕA1 (θ, φ), ϕA2 (θ, φ) и ϕB1 (θ, φ), ϕB2 (θ, φ) измеряются в диапазоне значений фаз [0°, 360°] и нормируются таким образом, чтобы нулевая фаза соответствовала середине расстояния d (равного, например, на фиг.1,а либо d1 для элементов 2 и 3 либо d2 для элементов 1 и 4) между элементами A и B, а значения фаз ϕA1 (θ, φ), ϕA2 (θ, φ) и ϕB1 (θ, φ), ϕB2 (θ, φ) находились в указанном выше диапазоне.

3. Вычисляются две разности фаз сигналов на выходах элементов A и B на частотах f1 и f2:

Как видно из формулы (2), если значение каждого слагаемого в правой части изменяется в диапазоне [0°, 360°], то значения разностей фаз изменяются в диапазоне [-360°, 360°].

4. Вычисляется разность разностей фаз, определенных по формуле (2), с использованием следующих соотношений:

Соотношения (3б) и (3в) могут применяться многократно вплоть до приведения Δ к интервалу [-180°, 180°].

Зависимость величины Δ от углового положения источника принимаемого сигнала используется в качестве пеленгационной характеристики.

5. Значение частоты f2=f1(1+τ) выбирается следующим образом.

Если заданный угловой диапазон [-Θ, +Θ] рабочего участка пеленгационной характеристики превышает рабочий угловой диапазон пеленгационной характеристики, определяемой по формуле (1) на рабочей частоте f1, то частотный сдвиг τ вычисляется по формуле

τ=1/[(2d/λ)sinΘ],

где d - расстояние между приемными элементами,

λ - длина волны, соответствующая рабочей частоте f1,

Θ - предельный угол рабочего участка пеленгационной характеристики.

6. При формировании пеленгационных характеристик в двух ортогональных плоскостях в системе из двух пар излучателей с расстояниями d1 и d2 между элементами пар с использованием одного частотного сдвига τ ФПХ для одной пары элементов (например, с наибольшим расстоянием между элементами) вычисляется по формуле (3), а ФПХ для другой пары элементов вычисляется также по формуле (3) и нормируется на отношение расстояний d1 и d2 таким образом, чтобы ширины рабочих участков ФПХ совпали в обеих плоскостях.

При использовании направленных элементов с лепестковой диаграммой направленности (ДН) возможно пропадание сигнала в угловых направлениях, соответствующих нулям ДН. Такая амплитудная модуляция принимаемого сигнала ДН элемента может привести к возникновению зон нечувствительности на рабочем участке ФПХ. Для устранения этого недостатка можно использовать приемные элементы, не имеющие нулей или глубоких провалов ДН в области рабочего участка ФПХ или применить методы управления формой ДН (методы синтеза ДН, см., например, Зелкин Е.Г., Соколов В.Г. Методы синтеза антенн. - М: Советское радио, 1980) для ее расширения в требуемой угловой зоне.

Для формирования ФПХ в двух ортогональных плоскостях можно использовать пары элементов, геометрически расположенные не строго ортогонально друг другу.

Перечень фигур чертежей

Фиг.1. Возможные схемы размещения приемных элементов.

Фиг.2. Зависимости разностей фаз в азимутальной плоскости от угла прихода сигнала, рассчитанные по формулам (5) для горизонтальной пары элементов.

Фиг.3. Фазовая пеленгационная характеристика в азимутальной плоскости, рассчитанная по формулам (3).

Фиг.4. Зависимости разностей фаз в угломестной плоскости от угла прихода сигнала, рассчитанные по формулам (5) для вертикальной пары элементов.

Фиг.5. Фазовая пеленгационная характеристика в угломестной плоскости, рассчитанная по формулам (3).

Сведения, подтверждающие возможность осуществления изобретения

Приводится описание предпочтительной реализации, но при этом необходимо иметь в виду, что возможно внесение незначительных изменений без отклонения от рамок и духа настоящего изобретения.

Рассматриваемая реализация описанного выше способа построена на основе численного моделирования данного способа с использованием антенной системы моноимпульсной РЛС, содержащей четыре идентичных антенных модуля, расположенных согласно конфигурации, изображенной на фиг.1 таким образом, что антенные модули (1, 4) и (2, 3) расположены симметрично относительно центра антенной системы, пары модулей (1, 4) и (2, 3) ортогональны друг другу. Расстояния между центрами модулей в горизонтальной и вертикальной плоскостях равны d1=14.3λ и d2=24.8λ, соответственно.

В качестве исходных данных использовались фазы сигналов на выходах модулей антенной системы, которые рассчитывались на двух частотах f1 и f2=f1(1+τ) при сканировании антенной системы в пределах ±90°:

где ϕji - фаза j-го модуля с координатами x(j), y(j) на i-й частоте,

j=1÷4 - номер модуля,

(θ, φ) - направление прихода волны в сферической системе координат.

Вычисляются разности фаз сигналов на выходах элементов 2, 3 (в горизонтальной плоскости) и 1, 4 (в вертикальной плоскости) на частотах f1 и f2 по формулам (2) с использованием формул (4) для фаз:

Формулы (5) использовались для получения разностей фаз Δ1 и Δ2 по формулам (3) для двух ортогональных пар элементов (2, 3) и (1, 4). Полученные разности фаз Δ1 и Δ2 представляют собой ФПХ, сформированные с использованием заявляемого способа. На фиг.2-5 приведены зависимости разности фаз сигналов на выходах элементов ортогональных пар от угла прихода сигнала и ФПХ в азимутальной и угломестной плоскостях, полученные предложенным способом при τ=2.5%.

На фиг.2 и 4 представлены зависимости разности фаз на двух частотах (кривые 1 и 2) от угла прихода сигнала, рассчитанные по формулам (5) в азимутальной и угломестной плоскостях соответственно. На фиг.3 и 5 приведены ФПХ, рассчитанные по формулам 3. Рабочий диапазон углов сканирования задавался равным [-53°, +53°]. Заданное значение предельного угла использовалось для выбора значения частотного сдвига τ. Поскольку расстояния между элементами ортогональных пар в горизонтальной и вертикальной плоскостях различны, причем минимальное расстояние соответствует горизонтальной (азимутальной) плоскости, ФПХ в этой плоскости, полученная по формуле (3), дополнительно умножалась на отношение расстояний d2/d1.

Как видно из рисунков, ширина ФПХ, построенных на частотах f1 и f2, существенно меньше заданной. Применение заявляемого способа формирования ФПХ позволяет расширить ФПХ таким образом, чтобы ширина ее рабочего участка оказалась равной заданной.

1. Способ формирования фазовой пеленгационной характеристики (ФПХ) в одной плоскости путем измерений фаз на выходах пары приемных элементов, отличающийся тем, что измеряются значения фаз ϕA1 (θ, φ), ϕA2 (θ, φ) и ϕB1 (θ, φ), ϕB2 (θ, φ) сигналов на выходах пары приемных элементов А и B в зависимости от пространственного направления (θ, φ) на двух частотах f1 и f2=f1(1+τ), где τ - коэффициент, задающий частотный сдвиг, эти фазы измеряются в диапазоне значений фаз [0°, 360°] и нормируются таким образом, чтобы нулевая фаза соответствовала середине расстояния d между элементами А и В, а значения фаз ϕA1 (θ, φ), ϕA2 (θ, φ) и ϕB1 (θ, φ), ϕB2 (θ, φ) находились в указанном выше диапазоне, вычисляются две разности фаз сигналов на выходах элементов А и В на частотах f1 и f21A1(θ, φ)-ϕB1(θ, φ),δ2A2(θ, φ)-ϕB2(θ, φ),вычисляется разность двух разностей фаз, определенных по формулам, приведенным выше, с использованием соотношенийΔ=δ21,если Δ>180°, то Δ=Δ-360°,если Δ<-180°, то Δ=Δ+360°,причем данные соотношения применяются многократно вплоть до приведения Δ к интервалу [-180°, 180°], а зависимость величины Δ от углового положения источника принимаемого сигнала (θ, φ) используется в качестве пеленгационной характеристики, при этом значение частоты f2=f1(1+df) выбирается таким образом, что, если заданный угловой диапазон [-Θ, +Θ] рабочего участка пеленгационной характеристики превышает рабочий угловой диапазон фазовой пеленгационной характеристики, определяемой на рабочей частоте f1, то частотный сдвиг df вычисляется по формулеdf=1/[(2d/λ)sinΘ],где d - расстояние между приемными элементами,λ - длина волны, соответствующая рабочей частоте f1,Θ - предельный угол рабочего участка пеленгационной характеристики.

2. Способ формирования фазовой пеленгационной характеристики (ФПХ), отличающийся тем, что при формировании фазовых пеленгационных характеристик в двух ортогональных плоскостях в системе из двух пар излучателей с расстояниями d1 и d2 между элементами пар с использованием одного коэффициента τ, задающего частотный сдвиг, ФПХ для одной пары элементов формируется по способу, описанному в п.1, а ФПХ для другой пары элементов также формируется по способу, описанному в п.1, и нормируется на отношение расстояний d1 и d2 таким образом, чтобы ширины рабочих участков ФПХ совпали в обеих плоскостях.