Разграничитель плавления волокна, волоконный лазер и оптическая линия передачи

Иллюстрации

Показать все

Изобретение относится к волоконно-оптическим линиям передачи. Разграничитель плавления волокна содержит оптическое волокно, которое включает в себя сердцевину и оболочку с каналами в продольном направлении. Показатель преломления сердцевины оптического волокна выше, чем показатель преломления участка оболочки, за исключением участков, содержащих каналы. Если диаметр поля моды на используемой длине волны оптического волокна есть MFD, а расстояние между центром сердцевины и местом, самым близким к центру сердцевины, канала, который находится ближе всего к сердцевине, является Rмин, то значение, 2 × Rмин/MFD не меньше чем 1,2 и не больше чем 2,1. Если ширина в диаметральном направлении области, где в оболочке присутствуют каналы, есть W, то W/MFD не меньше чем 0,3. Если диаметр оболочки оптического волокна есть Dволокна, то W ≤ 0,45 × Dволокна. Каждый конец оптического волокна сращен сплавлением с оптическим волокном, не имеющим каналов, а потери на сращивание сплавлением в расчете на одну точку не больше чем 0,50 дБ. Участок поверхности оптического волокна покрыт смоляным покрытием, за исключением участка сращивания сплавлением между оптическим волокном и оптическим волокном, не имеющим каналов, и его периферии. Участок сращивания сплавлением и его периферия покрыты невоспламеняющимся защитным покрытием. Технический результат - снижение потерь при сращивании разграничителя плавления с одномодовым волокном и повышение пропускной способности и выходной мощности лазера. 5 н. и 7 з.п.ф-лы, 2 табл., 20 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к разграничителю плавления волокна, волоконному лазеру и оптической линии передачи, и этот разграничитель может разграничивать плавление волокна в оптической линии передачи, волоконно-оптическом лазере и т.п., через которые распространяется свет большой мощности, и может предотвращать повреждение передающего оборудования, источника света и т.п.

Испрашивается приоритет согласно заявке №2008-216485 на патент Японии, поданной 26 августа 2008 года, содержание которой включено в эту заявку путем ссылки.

Уровень техники

В последние годы в области оптической связи по мере повышения пропускной способности возрастает интенсивность (мощность) света, который распространяется по оптическим волокнам. Кроме того, в волоконно-оптических лазерах в связи с тем, что выходная мощность волоконно-оптических лазеров повышается, свет большой мощности в диапазоне от нескольких сотен ватт до нескольких тысяч ватт распространяется по оптическим волокнам.

В оптических волокнах, по которым распространяется свет большой мощности, существует возможность возникновения плавления волокна вследствие перегрева, вызываемого частицами пыли и т.п., прилипающими к торцевым поверхностям их, или перегрева, вызываемого локальным изгибом оптического волокна, что приводит к повреждению не только оптических волокон, но также и устройств или установок, соединенных с оптическими волокнами (см., например, непатентные документы 1 и 2).

На фиг.1 и 2 соответственно показаны вид сбоку и сечение, иллюстрирующие одномодовое оптическое волокно, по которому проходит плавление волокна. На чертеже позицией 10 обозначено оптическое волокно, позицией 11 обозначена сердцевина и позицией 12 обозначена оболочка. Как показано на чертежах, в оптическом волокне 10, по которому проходит плавление волокна, периодически возникают пустоты 1 в центральной сердцевине 11. Поскольку пустоты препятствуют распространению света по оптическому волокну, прохождение плавления волокна создает неустранимую преграду для системы связи, волоконно-оптического лазера и т.п. После того как плавление волокна возникает, оно будет продолжать проходить по оптическому волокну, и волноводная структура оптического волокна будет повреждаться до тех пор, пока интенсивность света, распространяющегося по оптическому волокну, не упадет ниже порогового значения. Порог интенсивности оптического излучения изменяется в зависимости от структуры оптического волокна и т.п. В настоящем описании пороговое значение интенсивности оптического излучения для разграничения плавления волокна называется «пороговым значением плавления волокна».

Что касается способов разграничения плавления волокна на середине пути оптического волокна для защиты оптических линий передачи или установок, то известны следующие способы.

В патентном документе 1 описан способ разграничения плавления волокна, в котором плотность мощности в сердцевине снижают частичным увеличением диаметра поля моды части одномодового оптического волокна.

В патентном документе 2 описана волоконно-оптическая линия передачи, в которой градиентное оптическое волокно введено в середину волоконно-оптической линии передачи для образования участка с увеличенной сердцевиной и тем самым разграничения явления плавления волокна.

В патентном документе 3 описан способ разграничения явления плавления волокна путем введения в середину линии передачи оптического аттенюатора в виде фотонно-кристаллического волокна.

В непатентном документе 3 описано, что плавление волокна можно разграничивать, осуществляя травление оболочки оптического волокна до получения небольшого наружного диаметра оптического волокна, приблизительно равного удвоенному диаметру поля моды. Например, в случае, если диаметр поля моды 9,5 мкм, то когда наружный диаметр находится в пределах от 10,5 до 33 мкм, плавление волокна может быть разграничено. В дополнение к этому в непатентном документе 3 описано, что наружный диаметр протравленного участка оптического волокна, необходимого для разграничения плавления волокна, оказывает небольшое влияние на интенсивность излучения лазера.

В непатентном документе 4 рассмотрены относящиеся к плавлению волокна характеристики «микроструктурированного волокна», которое снабжено центральным участком, окруженным 30 каналами (имеющими диаметры около 1 мкм и расстояние между центрами около 2 мкм), и позволяет осуществлять одномодовое распространение с диаметром поля моды около 2 мкм на длине волны 1,06 мкм. Согласно непатентному документу 4 пороговое значение плавления волокна для «микроструктурированного волокна» превышает больше чем в 10 раз пороговое значение для обычного одномодового оптического волокна, имеющего приблизительно такой же диаметр поля моды.

Что касается способа сращивания сплавлением дырчатого оптического волокна, которое включает в себя в центральной части сердцевину с более высоким показателем преломления, чем показатель преломления оболочки, и каналы в оболочке, то известен следующий способ.

В непатентном документе 5 описан способ, в соответствии с которым прерывистый разряд или колеблющийся разряд прикладывают к оптическому волокну, в котором каналы расположены вокруг сердцевины обычного одномодового оптического волокна, для сплющивания каналов с образованием конусной формы, чтобы срастить сплавлением оптическое волокно с одномодовым оптическим волокном при средних потерях на сращивание 0,05 дБ.

Патентные документы

[Патентный документ 1] Патент Японии №4070111.

[Патентный документ 2] Патент Японии №4098195.

[Патентный документ 3] Заявка на патент Японии, первая публикация №2005-345592.

Непатентные документы

[Непатентный документ 1] R.Kashyap and K.J.Blow, “Observation of catastrophic self-propelled self-focusing in optical fibers”, Electronic Letters, January 7, 1998, vol.24, №1, pp.47-48.

[Непатентный документ 2] Shin-ichi Todoroki, “Origin of periodic void formation during fiber fuse”, August 22, 2005, vol.13, №17, pp.6381-6389.

[Непатентный документ 3] E.M.Dianov, I.A.Bufetov and A.A.Frolov, “Destruction of silica fiber cladding by fiber fuse effect”, OFC2004, 2004, TuB4.

[Непатентный документ 4] E.Dianov, A.Frolov and I.Bufetov, “Fiber fuse effect in microstructured fibers”, OFC2003, 2003, FH2.

[Непатентный документ 5] Suzuki Ryuji et al., “A study of fusion splicing techniques for holey fiber”, Suzuki Ryuji et al., Institute of Electronics, Information and Communication Engineers, 2004 Electronics Society Conference, C-3-119.

Раскрытие настоящего изобретения

Задачи, решаемые настоящим изобретением

Однако обычным способам присущи следующие проблемы.

В способе, описанном в патентном документе 1 (способе разграничения плавления волокна путем увеличения диаметра поля моды части одномодового оптического волокна), трудно снизить потери на сращивание между оптическим волокном, диаметр поля моды которого увеличен, и обычным одномодовым оптическим волокном. Чтобы снизить потери на сращивание между оптическим волокном, диаметр поля моды которого увеличен, и обычным одномодовым оптическим волокном, необходимо выполнять диффузию примеси в сердцевину одномодового оптического волокна с конусным распределением или изготавливать оптические волокна различных типов, имеющие различные диаметры поля моды, и сращивать их на нескольких этапах; это очень дорого.

В способе, описанном в патентном документе 2 (способе разграничения плавления волокна введением градиентного волокна), существует проблема значительных потерь на участке, где между градиентным волокном и одномодовым волокном световые пучки совмещаются. Чтобы снизить потери, необходимо увеличивать диаметр светового пучка, входящего из одномодового оптического волокна, путем образования участка градиентного волокна, имеющего длину 1/4 шага для снижения плотности мощности света, и потом для уменьшения диаметра светового пучка опять предусматривать участок градиентного волокна, имеющего длину 1/4 шага, и тем самым обеспечивать вхождение света в следующее одномодовое оптическое волокно; эта конфигурация является сложной и дорогой.

В способе, описанном в патентном документе 3 (способе разграничения плавления волокна путем введения оптического аттенюатора в виде фотонно-кристаллического волокна), поскольку волновод структурирован только каналами, имеется недостаток, заключающийся в том, что потери на сращивание на участке сращивания сплавлением возрастают. Кроме того, поскольку сам оптический аттенюатор вносит большие потери, потери в линии передачи также возрастают.

В способе, описанном в непатентном документе 3 (способе разграничения плавления волокна травлением оптического волокна по наружному диаметру до значения, приблизительно равного удвоенному диаметру волнового поля), трудно получать намеченный наружный диаметр вследствие проблем, таких как расплавление оптического волокна, вызываемое неточным временем обработки фтористоводородной кислотой (HF), что приводит к плохой технологичности. Кроме того, затраты возрастают, поскольку требуется постобработка. Более того, следствием локализованного небольшого наружного диаметра оптического волокна является слабая механическая прочность. К тому же, чтобы выполнять травление оболочки после удаления части смоляного покрытия оптического волокна, оболочку погружают в сильнодействующий химический раствор, такой как HF, с которым трудно работать.

Хотя в непатентном документе 4 дан один конкретный пример «микроструктурированного волокна», при этом порог плавления волокна выше, чем в обычном одномодовом оптическом волокне, но отсутствует подробное пояснение способа формирования каналов. Кроме того, не рассмотрено, может ли микроструктурированное волокно разграничивать плавление волокна, возникающее в одномодовом оптическом волокне в случае, когда микроструктурированное волокно сращено с одномодовым оптическим волокном. Более того, не решена проблема значительных потерь при сращивании с одномодовым оптическим волокном, обусловленных отсутствием сердцевины, имеющей высокий показатель преломления.

Настоящее изобретение сделано с учетом упомянутых выше обстоятельств, а задача изобретения заключается в создании разграничителя плавления волокна, который можно изготавливать с небольшими затратами и можно сращивать с одномодовым оптическим волокном при небольших потерях, и способа разграничения плавления волокна.

Средства решения проблем

Разграничитель плавления волокна, который используется для разграничения плавления волокна, согласно одному объекту настоящего изобретения содержит оптическое волокно, которое включает в себя сердцевину и оболочку, имеющую каналы, продолжающиеся в продольном направлении ее, в котором показатель преломления сердцевины оптического волокна выше, чем показатель преломления участка оболочки, за исключением участков каналов; когда предполагается, что диаметр поля моды на используемой длине волны оптического волокна есть MFD, а расстоянием в сечении, перпендикулярном к продольному направлению оптического волокна, между центром сердцевины и местом, самым близким к центру сердцевины, канала, который находится ближе всего к сердцевине, является Rмин, то значение, выражаемое 2 × Rмин/MFD, не меньше чем 1,2 и не больше чем 2,1; когда предполагается, что ширина в диаметральном направлении области, где каналы присутствуют в оболочке, есть W, то значение, выражаемое W/MFD, не меньше чем 0,3; и когда предполагается, что диаметр оболочки оптического волокна есть Dволокна, то удовлетворяется W ≤ 0,45 × Dволокна.

В разграничителе плавления волокна согласно одному объекту настоящего изобретения, когда предполагается, что расстоянием в сечении, перпендикулярном к продольному направлению оптического волокна, между центром сердцевины и местом, самым близким к центру сердцевины, канала, который находится ближе всего к сердцевине, является Rмин, расстоянием в сечении, перпендикулярном к продольному направлению оптического волокна, между центром сердцевины и местом, самым дальним от центра сердцевины, канала, который находится дальше всего от сердцевины, является Rмакс, а площадь сечения области между окружностью, имеющей радиус Rмакс вокруг центра сердцевины, и окружностью, имеющей радиус Rмин вокруг центра сердцевины, есть S, то площадь сечения участка, где каналы предусмотрены в области между окружностью, имеющей радиус Rмакс, и окружностью, имеющей радиус Rмин, не меньше чем 20% площади S сечения.

В разграничителе плавления волокна согласно одному объекту настоящего изобретения каждый конец оптического волокна может быть сращен сплавлением с одномодовым оптическим волокном без каналов, а потери на сращивание сплавлением в расчете на одну точку его не больше чем 0,50 дБ.

В разграничителе плавления волокна согласно одному объекту настоящего изобретения количество каналов оптического волокна может быть не меньше чем 3.

В разграничителе плавления волокна согласно одному объекту настоящего изобретения смоляное покрытие может покрывать участок поверхности оптического волокна, за исключением участка сращивания сплавлением между оптическим волокном и одномодовым оптическим волокном и периферии его; и невоспламеняющимся защитным слоем может быть покрыт участок сращивания сплавлением и периферия его из поверхности оптического волокна.

В разграничителе плавления волокна согласно одному объекту настоящего изобретения каждый конец оптического волокна может быть сращен сплавлением с одномодовым оптическим волокном прерывистым разрядом или колеблющимся разрядом.

В разграничителе плавления волокна согласно одному объекту изобретения длина оптического волокна может быть не меньше чем 1 мм.

Разграничитель плавления волокна, который используется для разграничения плавления волокна, согласно другому объекту настоящего изобретения содержит оптическое волокно, которое включает в себя сердцевину и оболочку, имеющую один слой каналов, продолжающихся в продольном направлении ее, в котором показатель преломления сердцевины оптического волокна выше, чем показатель преломления участка оболочки, за исключением участков каналов, когда предполагается, что диаметр поля моды на используемой длине волны оптического волокна есть MFD, а расстоянием в сечении, перпендикулярном к продольному направлению оптического волокна, между центром сердцевины и местом, самым близким к центру сердцевины, канала, который находится ближе всего к сердцевине, является Rмин, то значение, выражаемое 2×Rмин/MFD, не меньше чем 1,2 и не больше чем 2,1; когда предполагается, что ширина в диаметральном направлении области, где каналы присутствуют в оболочке, есть W, то значение, выражаемое W/MFD, не меньше чем 0,3; когда предполагается, что диаметр оболочки оптического волокна есть Dволокна, то удовлетворяется W ≤ 0,45 × Dволокна; и когда предполагается, что расстоянием в сечении, перпендикулярном к продольному направлению оптического волокна, между центром сердцевины и местом, самым близким к центру сердцевины, канала, который находится ближе всего к сердцевине, является Rмин, расстоянием в сечении, перпендикулярном к продольному направлению оптического волокна, между центром сердцевины и местом, самым дальним от центра сердцевины, канала, который находится дальше всего от сердцевины, является Rмакс, а площадь сечения области между окружностью, имеющей радиус Rмакс вокруг центра сердцевины, и окружностью, имеющей радиус Rмин вокруг центра сердцевины, есть S, то площадь сечения участка, где каналы предусмотрены в области между окружностью, имеющей радиус Rмакс, и окружностью, имеющей радиус Rмин, не меньше чем 20% площади S сечения.

Волоконный лазер согласно одному объекту настоящего изобретения содержит источник накачки света, легированное редкоземельным элементом оптическое волокно и разграничитель плавления волокна, имеющий оптическое волокно, которое включает в себя сердцевину и оболочку, имеющую каналы, продолжающиеся в продольном направлении ее, в котором показатель преломления сердцевины оптического волокна выше, чем показатель преломления участка оболочки, за исключением участков каналов, когда предполагается, что диаметр поля моды на используемой длине волны оптического волокна есть MFD, а расстоянием в сечении, перпендикулярном к продольному направлению оптического волокна, между центром сердцевины и местом, самым близким к центру сердцевины, канала, который находится ближе всего к сердцевине, является Rмин, то значение, выражаемое 2×Rмин/MFD, не меньше чем 1,2 и не больше чем 2,1; когда предполагается, что ширина в диаметральном направлении области, где каналы присутствуют в оболочке, есть W, то значение, выражаемое W/MFD, не меньше чем 0,3; и когда предполагается, что диаметр оболочки оптического волокна есть Dволокна, то W ≤ 0,45 × Dволокна удовлетворяется.

В волоконном лазере согласно одному объекту настоящего изобретения также может быть предусмотрен изолятор, а разграничитель плавления волокна может быть расположен на выходной стороне изолятора.

В оптической линии передачи согласно одному объекту настоящего изобретения используется оптическое волокно, при этом разграничитель плавления волокна настоящего изобретения введен в оптическую линию передачи.

Полезные результаты изобретения

В соответствии с разграничителем плавления волокна настоящего изобретения плавление волокна, которое возникает в оптическом волокне оптической линии передачи, волоконно-оптическом лазере и т.п., может быть разграничено, при этом предотвращается повреждение передающего оборудования, источника света и т.п. Разграничитель плавления волокна настоящего изобретения может быть изготовлен при небольших затратах и может быть сращен с одномодовым волокном при небольших потерях на сращивание, что позволяет содействовать повышению пропускной способности и выходной мощности лазера.

Краткое описание чертежей

Фиг.1 - вид сбоку, схематично иллюстрирующий пример состояния, в котором плавление волокна проходит по одномодовому оптическому волокну;

фиг.2 - сечение, схематично иллюстрирующее пример состояния, в котором плавление волокна проходит по одномодовому оптическому волокну;

фиг.3 - сечение, иллюстрирующее дырчатое оптическое волокно, которое имеет 4 канала в области, окружающей сердцевину, согласно первому осуществлению настоящего изобретения;

фиг.4 - вид сбоку, схематично иллюстрирующий пример состояния, в котором плавление волокна, возникшее в одномодовом оптическом волокне, проходит по обычному оптическому волокну;

фиг.5 - вид сбоку, схематично иллюстрирующий пример состояния, в котором плавление волокна, возникшее в одномодовом оптическом волокне, приостанавливается на месте сращивания между одномодовым оптическим волокном и дырчатым оптическим волокном настоящего изобретения;

фиг.6 - вид сбоку, схематично иллюстрирующий пример состояния, в котором плавление волокна, возникшее в одномодовом оптическом волокне, приостанавливается в середине дырчатого оптического волокна настоящего изобретения;

фиг.7 - сечение, иллюстрирующее дырчатое оптическое волокно, которое имеет 2 канала, согласно модифицированному примеру из первого осуществления настоящего изобретения;

фиг.8 - сечение, иллюстрирующее дырчатое оптическое волокно, которое имеет 3 канала, согласно модифицированному примеру из первого осуществления настоящего изобретения;

фиг.9 - сечение, иллюстрирующее дырчатое оптическое волокно, которое имеет 6 каналов, согласно модифицированному примеру из первого осуществления настоящего изобретения;

фиг.10 - сечение, иллюстрирующее дырчатое оптическое волокно, которое имеет 8 каналов, согласно модифицированному примеру из первого осуществления настоящего изобретения;

фиг.11 - сечение, иллюстрирующее дырчатое оптическое волокно, которое имеет 60 каналов, расположенных во множестве слоев в области, окружающей сердцевину, согласно второму осуществлению настоящего изобретения;

фиг.12 - сечение, иллюстрирующее дырчатое оптическое волокно, которое имеет 12 каналов, согласно модифицированному примеру из второго осуществления настоящего изобретения;

фиг.13 - вид, иллюстрирующий пример конфигурации измерительной системы для оценивания характеристик разграничения плавления волокна;

фиг.14 - график, иллюстрирующий зависимость между падающей мощностью и расстоянием проникновения плавления волокна в эксперименте 3;

фиг.15 - сечение, иллюстрирующее диаметр расплавленного участка одномодового оптического волокна;

фиг.16 - график, иллюстрирующий зависимость между падающей мощностью и диаметром расплавленного участка в эксперименте 3;

фиг.17 - сечение, схематично иллюстрирующее структуру волокна Q, которое использовалось в эксперименте 10-1;

фиг.18 - сечение, схематично иллюстрирующее структуру волокна R, которое использовалось в эксперименте 10-2;

фиг.19 - вид, иллюстрирующий пример конфигурации волоконно-оптического лазера с легированным Yb волокном, с использованием разграничителя плавления волокна настоящего изобретения; и

фиг.20 - вид, иллюстрирующий пример конфигурации волоконно-оптического лазера с легированным Er волокном, с использованием разграничителя плавления волокна настоящего изобретения.

Вариант осуществления настоящего изобретения

Ниже настоящее изобретение будет описано с обращением к сопровождающим чертежам, основанным на примерах осуществлений настоящего изобретения.

Первое осуществление

Как показано на фиг.3, разграничитель плавления волокна согласно первому осуществлению настоящего изобретения образован оптическим волокном (в дальнейшем называемым «дырчатым оптическим волокном») 20, которое включает в себя сердцевину 21, не имеющую каналов, и оболочку 22 со множеством каналов 23 (4 каналами в этом осуществлении), которые расположены так, что продолжаются в продольном направлении, и в котором показатель преломления сердцевины 21 выше, чем показатель преломления участка оболочки 22, за исключением участков каналов 23.

В дырчатом оптическом волокне 20, показанном на фиг.3, каналы 23 в оболочке 22 образованы в одном слое таким образом, что окружают сердцевину 21.

В этом осуществлении можно использовать дырчатое оптическое волокно 20 в качестве разграничителя плавления волокна при надлежащем задании соотношения между диаметром поля моды дырчатого оптического волокна 20 на используемой длине волны и расстоянием от центра волокна 20 до канала 23, соотношения между диаметром поля моды и размером канала 23, соотношения между диаметром оболочки 22 волокна 20 и размером канала 23 и т.п.

Сначала ниже будет описано соотношение между диаметром поля моды дырчатого оптического волокна 20 на используемой длине волны и расстоянием от центра волокна 20 до канала 23. В настоящем изобретении в качестве параметра для определения такого соотношения используется «2 × Rмин/MFD». MFD обозначает диаметр поля моды дырчатого оптического волокна 20 на используемой длине волны. Rмин обозначает расстояние между центром сердцевины 21 и внутренним краем канала 23, ближайшим к сердцевине 21.

В дырчатом оптическом волокне 20 согласно этому осуществлению значение 2 × Rмин/MFD находится в пределах от не меньше чем 1,2 до не больше чем 2,1.

Кроме того, «внутренний край канала 23» обозначает место в канале 23, самое близкое к центру сердцевины 21 при наблюдении в сечении, перпендикулярном к продольному направлению оптического волокна. В дополнение к этому «внутренний край канала 23, ближайший к сердцевине 21» обозначает один из внутренних краев каналов 23, который находится на кратчайшем расстоянии от центра сердцевины 21. Поэтому нет канала 23 на месте, расстояние до которого в радиальном направлении от центра сердцевины 21 меньше чем Rмин.

Задавая для дырчатого оптического волокна 20 значение 2 × Rмин/MFD в пределах от не меньше чем 1,2 до не больше чем 2,1 можно использовать дырчатое оптическое волокно 20 для разграничения плавления волокна.

Когда значение 2 × Rмин/MFD превышает верхний предел упомянутого выше диапазона, характеристика разграничения плавления волокна ухудшается. С точки зрения описанного выше предпочтительно, чтобы значение соотношения, выражаемого 2 × Rмин/MFD, было не больше чем 2,1, а более предпочтительно, не больше чем 2,0, еще более предпочтительно, не больше чем 1,9 и особенно предпочтительно, не больше чем 1,7.

В дополнение к этому, когда значение 2 × Rмин/MFD меньше, чем нижний предел упомянутого выше диапазона, канал оказывается включенным в диапазон разброса распределения электрического поля в режиме распространения или очень близким к нему. В результате потери на прохождение дырчатого оптического волокна могут возрасти или канал может быть искривлен при выполнении сращивания сплавлением, что существенно повлияет на волноводную структуру, и вследствие этого потери на сращивание могут возрасти. С точки зрения описанного выше предпочтительно, чтобы значение соотношения, выражаемого 2 × Rмин/MFD, было не меньше чем 1,2, а более предпочтительно, не меньше чем 1,3, еще более предпочтительно, не меньше чем 1,4 и особенно предпочтительно, не меньше чем 1,5.

Поскольку диаметр поля моды зависит от используемой длины волны, конфигурацию дырчатого оптического волокна, которое служит в качестве разграничителя плавления волокна, предпочтительно рассчитывать для каждой используемой длины волны (или используемого диапазона длин волн). Обычно оптические волокна используют в диапазонах длин волн: 1,55 мкм, 1,31 мкм, 1,06 мкм и т.п.

Например, разграничитель плавления волокна, рассчитанный для использования на длине волны 1,55 мкм, можно использовать в диапазоне 1,55 мкм или диапазоне длин волн вблизи него. Примерами диапазона 1,55 мкм или диапазона длин волн вблизи него являются диапазон С, диапазон S и диапазон L.

В дополнение к этому, чтобы получать более надежный эффект разграничения плавления волокна, обусловленный наличием каналов 23 в оболочке 22 дырчатого оптического волокна, диаметр, количество и компоновку каналов 23 можно корректировать.

Как показано на фиг.3, каналы 23 можно располагать так, чтобы множество каналов 23 находилось в контакте с окружностью 24, имеющей упомянутый выше радиус Rмин. В дополнение к этому множество каналов 23 может иметь каналы с одинаковым диаметром, и каналы могут быть расположены на одинаковом расстоянии от центра сердцевины 21.

Предпочтительно иметь два или большее количество каналов дырчатого оптического волокна. Более предпочтительно иметь три или большее количество каналов, поскольку при этом могут снижаться потери на сращивание при сращивании сплавлением.

Далее ниже будет описано соотношение между диаметром поля моды дырчатого оптического волокна 20 на используемой длине волны и размером канала 23. В настоящем изобретении в качестве параметра для определения такого соотношения используется «W/MFD». Здесь W является шириной в диаметральном направлении области (в дальнейшем она может называться «канальной областью»), в которой канал 23 присутствует в оболочке 22, и она определяется как W=Rмакс-Rмин.

Здесь Rмакс обозначает расстояние между центром сердцевины 21 и внешним краем канала 23, самым дальним от сердцевины 21. В дополнение к этому, как описано выше, Rмин обозначает расстояние между центром сердцевины 21 и внутренним краем канала 23, ближайшего к сердцевине 21.

Кроме того, «внешний край канала 23» в настоящем изобретении обозначает место в канале 23, самое дальнее от центра сердцевины 21 при наблюдении в сечении, перпендикулярном продольному направлению оптического волокна. В дополнение к этому «внешний край канала 23, самый дальний от сердцевины 21», обозначает один из внешних краев каналов 23, которые имеют наибольшее расстояние от центра сердцевины 21. Поэтому нет канала 23 на месте, расстояние до которого в радиальном направлении от центра сердцевины 21 превышает Rмакс.

Предпочтительно, чтобы в дырчатом оптическом волокне значение W/MFD было не меньше чем 0,3.

Как показано на фиг.3, когда каналы образованы в одном слое, ширина W канальной области является такой же, как диаметр канала 23. Хотя форма каналов 23 в сечении не обязательно должна быть точно круговой (идеально круговой), предпочтительно, чтобы их форма была круговой или по существу круговой (формой канала, выполненного с намерением получения окружности).

На фиг.3 каналы 23 расположены на равных интервалах по окружности с сердцевиной 21 в центре (то есть N каналов образуют N-сторонний регулярный многоугольник {когда N равно трем или большему числу} или расположены друг против друга со сдвигом на 180° {когда N=2}).

Далее, ниже будет описано соотношение между диаметром оболочки 22 дырчатого оптического волокна 20 и размером канала 23. В настоящем изобретении в качестве параметра для определения такого соотношения используется «W/Dволокна». Здесь Dволокна является диаметром оболочки 22 волокна 20. Предпочтительно, чтобы в дырчатом оптическом волокне 20 значение W/Dволокна было не больше чем 0,45. То есть W ≤ 0,45 × Dволокна является предпочтительным. Когда отношение площади каналов относительно площади сечения волокна является излишне большим, существует возможность, что прочность оптического волокна не будет сохраняться.

Как описано выше, поскольку 0,3 ≤ W/MFD и W ≤ 0,45 × Dволокна являются предпочтительными, более идеальный диапазон W выражается как 0,3 × MFD ≤ W ≤ 0,45 × Dволокна.

Кроме того, в предположении, что площадь сечения области между окружностью, имеющей радиус Rмакс вокруг центра сердцевины, и окружностью, имеющей радиус Rмин, равна S, предпочтительно, чтобы площадь сечения участка, который каналы занимают в области площади S сечения, составляла не меньше чем 20% площади S сечения.

Область площади S сечения соответствует «канальной области», описанной выше.

Наружный диаметр дырчатого оптического волокна 20 не является особенно ограниченным, но когда его сращивают с другим оптическим волокном путем сращивания сплавлением или механического сращивания (которые будут описаны позже), предпочтительно, чтобы наружный диаметр был таким же, как наружный диаметр другого оптического волокна. Поскольку обычное кварцевое оптическое волокно имеет диаметр оболочки (диаметр стеклянного участка) от 80 до 125 мкм (например, 80 мкм, 125 мкм), а диаметр оптического волокна, покрытого смолой, составляет от 250 до 400 мкм (например, 250 мкм, 400 мкм), диаметр дырчатого оптического волокна 20 может быть таким же.

Разграничитель плавления волокна настоящего изобретения включает в себя сердцевину 21, которая имеет более высокий показатель преломления, чем показатель преломления участка оболочки 22, за исключением участков каналов 23. В результате, даже в случае, если область, окружающая канал 23, расплавляется, вследствие чего канал 23 искривляется, когда оптическое волокно подвергают сращиванию сплавлением, или даже если согласующее показатель преломления вещество вводят в канал 23, волноводная структура может сохраняться. Поэтому, как описано в непатентном документе 5, можно значительно снизить потери на сращивание, когда дырчатое оптическое волокно 20 подвергают сращиванию сплавлением с одномодовым оптическим волокном.

Сердцевину 21 и оболочку 22 дырчатого оптического волокна 20 можно изготавливать, например, из кварцевого стекла. Материал, имеющий более высокий показатель преломления, чем оболочка 22 (более конкретно, чем участок оболочки 22, за исключением каналов 23), выбирают в качестве материала для сердцевины 21. Например, сердцевину 21 можно изготавливать из кварцевого стекла, легированного германием (в частности, GeO2), а оболочку 22 можно изготавливать из чистого кварцевого стекла. Кроме того, сердцевину 21 можно изготавливать из чистого кварцевого стекла, а оболочку 22 можно изготавливать из кварцевого стекла, легированного фтором (F).

Примеры примесей, используемых для повышения показателя преломления кварцевого стекла, включают в себя германий (Ge), а также алюминий (Al) и фосфор (Р). Кроме того, примеры примесей, используемых для снижения показателя преломления кварцевого стекла, включают в себя фтор (F) и бор (В).

Сердцевина 21 может также включать в себя редкоземельный элемент, такой как эрбий (Er), иттербий (Yb), неодим (Nd) или тербий (Tb).

Способ дифференциации показателей преломления сердцевины 21 и оболочки 22 не ограничен только добавлением примеси для повышения показателя преломления исключительно к сердцевине 21 или только добавлением примеси для снижения показателя преломления исключительно к оболочке 22. Сердцевину 21 можно легировать одной или несколькими примесями для повышения показателя преломления и примесью для снижения показателя преломления, чтобы получать более высокий показатель преломления для сердцевины 21, чем для оболочки 22. Кроме того, оболочку 22 можно легировать одной или несколькими примесями для повышения показателя преломления и примесью для снижения показателя преломления, чтобы получать более низкий показатель преломления для оболочки 22, чем для сердцевины 21.

Относительная разность Δ показателей преломления сердцевины и оболочки зависит от структуры оптического волокна (его размера, такого как наружный диаметр, и профиля показателя преломления), используемой длины волны и т.п. Обычно относительная разность показателей преломления находится в пределах от 0,3 до 0,5%. Имеются случаи, когда настоящее изобретение можно применять даже в случае, если относительная разность Δ показателей преломления находится вне этих пределов.

Чтобы использовать дырчатое оптическое волокно 20 в качестве разграничителя плавления волокна, каждый конец дырчатого оптического волокна сращивают с обычным одномодовым оптическим волокном (то есть волокном без каналов) и при этом дырчатое оптическое волокно помещают в середине оптического волокна оптической линии передачи или волоконно-оптического лазера. В результате, когда плавление волокна, проходящее по одномодовому оптическому волокну, входит в дырчатое оптическое волокно 20, плавление волокна может быть разграничено.

Механизм возникновения плавления волокна и механизм разграничения плавления волокна при использовании разграничителя плавления волокна настоящего изобретения будет описан ниже.

В оптическом волокне, по которому распространяется свет высокой интенсивности, температура оптического волокна повышается вследствие перегрева, вызываемого пылинками и т.п., прилипающими к его торцевой поверхности. Когда температура оптического волокна превышает 1100°С, связь стекла части оптического волокна разрывается, и падающий свет поглощается в нем. Поглощение падающего света приводит к повышению температуры стекла и поэтому разрывается связь стекла другой части. Эти процессы повторяются, так что температура стекла мгновенно возрастает, а сердцевина оптического волокна переходит в плазменное состояние. Это явление непрерывно распространяется к источнику падающего света и означает плавление волокна. Когда происходит плавление волокна, стекло переходит в газообразное состояние вследствие возрастания температуры стекла. По мере продвижения газообразного стекла в оптическом волокне образуются пустоты.

Чтобы разграничить плавление волокна, можно предложить такое снижение температуры оптического волокна, при котором прерывается замкнутый круг повышения температуры центрального участка оптического волокна и образования пустот. В настоящем изобретении каналы 23 в дырчатом оптическом волокне 20 образуют так, что они окружают сердцевину 21 (центральный участок), а размер или расположение каналов 23 задают соответствующим образом, используя упомянутые выше параметры, вследствие чего температура центрального участка оптического волокна может быть снижена. То есть, как описано выше, когда плавление волокна возникает, температура центрального участка оптического волокна повышается так, что стекло оптического волокна переходит в газообразное состояние из твердой фазы. Когда стекло переходит в