Непрерывный способ получения изоцианатов

Изоцианаты получают путем взаимодействия органического амина с фосгеном. Способ включает три стадии. Первую стадию проводят в динамическом смесителе. Вторую стадию проводят в одном реакторе. Третью стадию проводят в одном аппарате для разделения материалов. Давление в реакторе второй стадии должно быть больше или равно давлению в динамическом смесителе первой стадии. Давление в аппарате для разделения материалов третьей стадии должно быть ниже, чем давление в реакторе второй стадии. Изобретение обеспечивает оптимальные условия смешивания реагентов. 10 з.п. ф-лы, 2 пр.

Реферат

Настоящее изобретение относится к области производства изоцианатов, в частности изобретение относится к непрерывному способу получения изоцианатов путем взаимодействия органических аминов с фосгеном, в котором указанное взаимодействие проводят, по меньшей мере, в три стадии. Первую стадию реакции проводят в динамическом смесителе. Вторую стадию проводят, по меньшей мере, в одном реакторе. Третью стадию проводят, по меньшей мере, в одном аппарате для разделения материалов. Давление в реакторе на второй стадии больше или равно давлению в динамическом смесителе, а давление, по меньшей мере, в одном аппарате для разделения материалов меньше, чем давление в реакторе второй стадии.

Известно получение изоцианатов из аминов и фосгена. В зависимости от типа аминов взаимодействие проводят как в газовой, так и в жидкой фазе периодическим или непрерывным способом (W.Siefken, Liebigs Ann., 562, 75, 1949).

Непрерывное получение органических изоцианатов путем взаимодействия первичных органических аминов было описано многократно и его проводят в промышленном масштабе (см., например, Kunststoffhandbuch, том 7 (Polyurethane), 3 переработанное издание; Carl Hanser Verlag, Munich-Vienna, стр.6 и далее (1993). В частности, ароматические изоцианаты, такие как ТДИ (толуолдиизоцианат); МДИ (метилдифенилдиизоцианат), ПМДИ (полиметилендифенилен-диизоцианат) и смеси последних двух изоцианатов; и алифатические диизоцианаты, такие как ГМДИ (гексаметилендиизоцианат) и изофорон-диизоцианат (ИФДИ) получают в промышленном масштабе во всем мире.

Современные промышленные синтезы ароматических диизоцианатов, в частности ТДИ и ТДИ и алифатических диизоцианатов, в частности ГМДИ и ИФДИ, проводят почти повсеместно непрерывными способами. Непрерывный способ проведения указанного взаимодействия в нескольких реакционных емкостях для проведения непрерывного процесса можно найти, например, в немецкой заявке на патент DE-A-844896.

Непрерывный указанный способ обычно проводят в две стадии. На первой стадии фосгенирования амин подвергают взаимодействию с фосгеном с получением соответствующего карбамоилхлорида, хлористого водорода и гидрохлорида амина. Взаимодействие между амином и фосгеном протекает очень быстро и является сильно экзотермическим, и его проводят даже при очень низких температурах. Чтобы свести к минимуму образование побочного продукта и твердых отложений, амин и фосген, которые при необходимости растворяют по отдельности в органическом растворителе, следует быстро смешивать, вследствие чего первая стадия реакции фосгенирования обычно протекает в смесителе, который часто представляет собой сопло. На второй стадии фосгенирования карбамоилхлорид разлагают с образованием желаемого изоцианата и хлористого водорода, а гидрохлорид амина фосгенируют с образованием карбамоилхлорида. Температура второй стадии фосгенирования обычно выше, чем на первой стадии фосгенирования.

Взаимодействие амина и фосгена в жидкой фазе протекает очень быстро во всех традиционно используемых в промышленном производстве режимах температуры и давления, и поэтому необходимо обеспечить хорошее смешение реагентов для подавления вторичных реакций. В соответствии с этим, в литературе неоднократно сообщалось о проведении фосгенирования первичных аминов в реакторе-смесителе как первой стадии фосгенирования.

Смесители можно по существу разделить на динамические смесители (например, мешалки, турбины или ротор-статорные системы) и статические смесители (например, смесители Кеникса, смесители Schaschlik или вибрационные смесители вихревого типа SMV, а также струйные смесители, такие как смесительные сопла или Т-образные смесители) (см. Fortschr. Verf. Technik 23, 1985, 373; Ind. Eng. Chem. Res. 26, 1987, 1184).

Смесители, известные для использования в таких процессах, являются соплами, такими как сопла с кольцевой щелью (немецкая заявка на патент DE-A-1792660), мундштуки с кольцеобразным соплом (немецкая заявка на патент DE-A-3744001), реактивные сопла со смесительной камерой (европейская заявка на патент ЕР-А-0065727), веерные струйные сопла (немецкая заявка на патент DE-A-29 50 216), угловые сопла с распылительной камерой (заявка на патент ГДР DD-A-300168), сопла для перемешивания трех потоков (заявка на патент ГДР DD-A-132340), противоточные смесительные камеры (немецкий патент DE-PS 1146872), сопла Пито (французская заявка FR-A-69428) и смесительные сопла Вентури (немецкая заявка на патент DE-AS1175 666). Известно также использование встроенных смесителей в трубопровод для подачи реагентов (заявка на патент США US-A-3321283), центробежных или дозировочных насосов для смешивания реагентов (европейская заявка на патент ЕР-А-0291819), трубчатых реакторов (заявка на патент США US-A-3226410) смесителей или микроструктурных смесителей (европейская заявка на патент ЕР-А-0928785).

Заявка на патент ГДР DD-A-132340 описывает способ фосгенирования аминов под давлением и при высокой температуре, в присутствии гомогенного растворителя, для получения моно-, ди- и полиизоцианатов. В соответствии с этим способом смесь амина и монохлорбензола и смесь фосгена и монохлорбензола, разделенная на несколько отдельных потоков, вводят параллельно в реактор. Часть смеси фосгена и монохлорбензола подают к центру реактора, а смесь амина и монохлорбензола подают по окружности этого центрального потока. Смесь амина и монохлорбензола, в свою очередь, окружают потоком смеси фосгена и монохлорбензола.

К примеру, смесь полиамина и монохлорбензола подают под углом в реактор для фосгенирования при 150°С. Перед входом в реактор смесь переводят посредством соответствующего вихревого устройства в режим вращательного движения. Смесь фосгена и монохлорбензола, нагретую до температуры 150°С, подают в реактор в качестве сореагента, в и вокруг потока смеси полиамина и монохлорбензола. Относительная скорость течения потоков этих двух сореагентов составляет около 15 м/сек.

В европейской заявке на патент ЕР-А-0830894 описывается реактор-смеситель для фосгенирования первичных аминов, в котором вход для ввода одного материала выполнен по оси смесительной камеры, а вход для ввода (по меньшей мере, одного) другого материала выполнен в виде большого количества сопел, расположенных с вращательной симметрией относительно оси смесительной камеры. Каждое из сопел имеет перемещающийся в направлении оси сопла винт. Указанный винт способен очищать сопло от налипших твердых отложений.

Общеизвестны также многочисленные виды реакционных аппаратов, используемых на второй стадии фосгенирования, которые, при необходимости, можно использовать одновременно в качестве емкостей для разделения фаз. Способ получения изоцианатов из соответствующих аминов путем проведения реакции фосгенирования протекает в реакторах, оснащенных мешалкой (см., например, немецкую заявку на патент DE-OS 1468445), каскадах реакторов смешения (немецкий патент DE-PS 844896), реакционных колоннах, заполненных насадкой (см., например, международная заявка WO-A-99/54289) или реакционных колоннах без насадки (см., например, Ullmans Encyklopadie der Technischen Chemie, 4th edition (1977), volume 13, page 351 и далее). Кроме того, используют петлевые реакторы для создания системы рециркуляции, что обеспечивает достаточное время пребывания реакционной смеси в реакторе для полной конверсии реагентов в случае ограниченного реакционного пространства (или удерживаемого объема).

Процесс синтеза изоцианатов протекает обычно на первой стадии при очень низкой температуре, а на второй стадии при значительно более высоких температурах в аппарате для выдержки реакционной смеси. Этот процесс часто называют методом холодного фосгенирования и горячего фосгенирования, который описан, например, в журнале W. Siefken, Liebigs Annalen der Chemie, 562, (1949), стр.96. Во-первых, суспензию промежуточных соединений карбамоилхлорида и гидрохлорида амина получают при низкой температуре, в частности, в интервале между 0°С или комнатной температуре, но не выше 60°С, и полученную суспензию затем превращают в изоцианат при более высоких температурах, в частности, в диапазоне температуры от 100 до 200°С, в аппарате для выдерживания. Такие двухстадийные способы получения описаны в Kunststoffhandbuch, volume 7, Carl Hanser Verlag, Munich-Vienna, p.76 и далее (1993) и, например, в немецких заявках на патент DE-A-2058032, DE-A-2153 268 и DE-A-1233854.

Недостатками двухстадийного способа получения, проводимого при низкой температуре на первой стадии, и высокой температуре на второй стадии (метод холодного и горячего фосгенирования), являются низкие показатели скорости реакции и, следовательно, низкие показатели выхода продукта за один проход в единицу времени, обусловленные низкими температурами реакционного процесса, протекающего на первой стадии. Низкие температуры (из-за высокой растворимости фосгена) и продолжительное время реакции (в реакторах большой емкости) кроме того приводят к большому удерживаемому объему фосгена в реакторе, что является нежелательным по соображениям безопасности. Низкие температуры также представляют проблемы из-за чрезмерного осаждения карбамоилхлорида, образуемого в качестве промежуточного продукта, который быстро разлагается при повышенных температурах. Это связано с риском засорения аппарата залипшими твердыми отложениями. Кроме того, охлаждение реагентов и последующее нагревание реакционной смеси неблагоприятно с точки зрения потребления электроэнергии. Для достижения экономически выгодных выходов продукта за один проход в единицу времени необходимо, чтобы технологическая аппаратура работала при повышенной температуре на всех стадиях промышленных методов получения органических изоцианатов путем фосгенирования органических первичных аминов. Однако при высоких температурах растворимость фосгена в реакционной смеси снижается, и при этом фосген присутствует в избытке, необходимом для реакционного процесса, поскольку реакция обычно протекает в жидкой фазе, но для получения изоцианата с высоким выходом необходим большой избыток фосгена. В европейской заявке на патент ЕР-А-0716079 описывается влияние давления и температуры на взаимодействие и избыток фосгена. Снижение избытка фосгена при более высоких температурах обычно происходит за счет повышенного давления.

В немецкой заявке на патент DE-OS 1768439 описывается непрерывный способ получения органических изоцианатов, характеризуемый комбинацией высоких температур, превышающих 180°С, с высоким давлением в от 20 до 150 атм., вместе с высокой концентрацией фосгена в реакционной зоне. Вводимое количество фосгена превышает в 2,5-5,5 раз его стехиометрическое количество. Использование сверхвысокого давления и очень высокой температуры позволяет достигать приемлемые выходы продукта за один проход в единицу времени. Время пребывания реакционной смеси в зоне взаимодействия составляет от 5 до 60 секунд. Предпочтительным растворителем является хлорбензол. Недостатком этого способа является снижение количественного выхода и качества получаемого продукта в результате повышенного образования побочных продуктов, особенно мочевины, из-за высокой температуры.

В европейской заявке ЕР-А-0065727 описан способ использования сопла и трубчатого реактора. Согласно этому способу органические моноизоцианаты и полиизоцианаты непрерывно получают одностадийным взаимодействием путем непрерывной комбинации растворов первичных моноаминов или полиаминов в инертных органических растворителях с избыточным количеством фосгена, растворенного в инертном растворителе, при давлении в от 10 до 1000 бар, предпочтительно от 25 до 150 бар и температуре в от 120 до 300°С, предпочтительно от 150 до 250°С, в смесительной камере и, при необходимости, на выходе из реакционной зоны смешением реакционной смеси. Раствор фосгена, используемый в избытке, непрерывно подают в смесительную камеру, а аминный компонент, используемый в субстехиометрических соотношениях, вводят через гладкое реактивное сопло. Указанное реактивное сопло, которое играет важную роль в указанном способе, имеет внутренний диаметр в интервале от 0,1- 30 мм. Разность давления, по меньшей мере, 0,5 бар, предпочтительно от 1 до 200 бар, наиболее предпочтительно от 3 до 50 бар поддерживают в растворе амина, подаваемого через указанное сопло. Молярное соотношение фосгена к аминогруппам составляет в интервале от 2:1 до 30:1, предпочтительно от 3:1 до 18:1. После реакционной зоны может быть размещен трубчатый реактор, многотрубный реактор с неподвижным слоем катализатора или, например, каскад реакторов со смесителями. Среднее время пребывания реакционной смеси в смесителе и на выходе реакционной зоны варьируется от 5 секунд до 5 минут. Реакционную смесь, выходящую из зоны, расположенной после реакционной зоны, подвергают расширению в расширительном сосуде при нормальном давлении за одну или несколько стадий, в результате чего происходит падение температуры от 50 до 150°С. После этого разделяют газовую и жидкую фазы в расширительном сосуде. В качестве растворителя предпочтительно используют хлорбензол или о-дихлорбензол.

В заявке на патент Великобритании GB-A-827376 описывается непрерывный способ синтеза ароматических изоцианатов путем осуществления взаимодействия амина в свободной форме в растворителе или в виде соли, легко разлагаемой в амин, суспендированной в растворителе, с раствором фосгена в инертном растворителе, при давлении выше 3·105 Па. В соответствии с этим способом реагенты подают одновременно при смешивании в нижнюю часть вертикально расположенного трубчатого реактора. Реакционные продукты реакции быстро переносятся в верхнюю часть трубчатого реактора. Жидкая фаза поступает в емкость, из которой она выводится для отделения изоцианата. Этой емкостью может быть аппарат для разделения фаз, который работает при таком же давлении и связан через переливную трубу с выходом трубопровода жидкого потока, в котором имеется дроссельный затвор. Жидкость, отделенную в указанной емкости, подают в колонну, работающую при атмосферном давлении или избыточном давлении и повышенной температуре, остаточный фосген и хлористый водород выводят в газообразном виде сверху колонны. Избыточный фосген конденсируют (предпочтительно с охлаждением водой) из отделенной в указанном разделительном сосуде смеси хлористого водорода и фосгена, а поток хлористого водорода, отделенный аналогичным методом, подвергают расширению и выводят. Реагенты вводят в трубчатый реактор с помощью одного общего насоса или двух независимых насосов или вначале смешивают в смесительном сопле Вентури, предпочтительно с отдельными входами для подачи двух реагентов, и полученная смесь затем выводят из него и подают в трубчатый реактор. Температура в трубчатом реакторе составляет от 80 до 200°С, и давление составляет более 3·105 Па, но не больше, чем давление пара реакционной смеси, и предпочтительно от 15 до 20·105 Па. В заявке на патент США US-A-3226410 описывается непрерывный способ получения ароматических изоцианатов путем смешения потока ароматического амина в потоке фосгена в трубчатом реакторе с числом Рейнольдса более 2100 (предпочтительно от 5000 до 2000000) и при температуре от 60 до 90°С и, предпочтительно, от 80 до 85°С. Количество фосгена составляет, по меньшей мере, 1 моль, предпочтительно от 6 до 12 моль на моль амина. После предварительного нагревания, если необходимо, реакционный раствор затем подают во второй реактор, в частности, в емкость или колонну, температура которого составляет от 110 до 135°С и, предпочтительно, от 110 до 120°. Концентрация амина составляет от 2 до 25% масс. и предпочтительно от 5 до 10% масс., а концентрация фосгена составляет от 10 до 100% масс., предпочтительно от 10 до 60% масс. Давление, при котором подают поток фосгена в трубчатый реактор, составляет от 50 до 170 фунтов/дюйм2; давление потока амина должна быть выше, чтобы предотвратить обратное смешение. Жидкую фазу, которая содержит изоцианат, растворитель, относительно небольшое количество побочных продуктов, хлористый водород и фосген, растворенный в растворителе, отбирают из второго реактора отдельно от газовой фазы, которая содержит хлорид водорода, ацетон, фосген и следы изоцианата. Используемые растворители представляют собой хлорированные углеводороды, которые являются инертными и имеют температуру ниже, чем точка кипения изоцианата. Особое предпочтение отдают хлорбензолу.

За вторым реактором под давлением 45 фунтов/дюйм2 следуют поочередно емкость для выдерживания реакционной смеси и емкость с буфером, из которой материал переносят при непрерывном регулировании в колонну для удаления избыточного фосгена. Фосген, хлористый водород и растворитель отбирают сверху колонны и рециркулируют в емкость с фосгеном. Продукт в нижней части колонны, состоящий из изоцианата и растворителя, подают в зону для отделения растворителя путем его отгонки, предпочтительно за одну стадию. Отделенный от изоцианата растворитель используют для абсорбции остатка фосгена, присутствующего в потоке хлористого водорода. Фосген отводят из второго реактора и содержимое буферной емкости конденсируют в две стадии и рециркулируют в емкость с фосгеном. Смесь из неконденсированного фосгена и хлористого водорода подают в абсорбер для фосгена, в который вводят растворитель, полученный на стадии отделения растворителя.

Неабсорбированный газ, в основном хлористый водород, затем подвергают взаимодействию с водой в абсорбере с получением водного хлористоводородной кислоты.

Для предотвращения образования твердых отложений трубчатый реактор должен иметь такое конструктивное выполнение, как реактор с режимом идеального вытеснения без перегибов, выемок или других внутренних элементов, которые могут вызвать появления мертвых зон. Использование высоких чисел Рейнольдса и конструкции реактора в виде прямых трубок позволяет текущей жидкой среде непрерывно смывать твердые отложения со стенок реактора.

В немецкой заявке DE-A-2747524 описывается непрерывный способ получения ароматических изоцианатов, в котором реактор нагревают в достаточной мере, чтобы предотвратить поступление дополнительного, фосгена вызванного охлаждением, и, следовательно, осаждения твердых отложений промежуточного соединения карбамоилхлорида на стенках реактора. Описывается реактор с режимом идеального вытеснения, состоящий из двух коаксиальных трубок, в котором два реагента, амин и фосген в инертном органическом растворителе, подают по отдельности в виде двух встречных потоков и смешиваются на выходе внутренней трубы. Это позволяет, как указывается в этой публикации, исключить обратное смешение и свести к минимуму образование побочных продуктов. Паровую рубашку используют для регулирования температуры и предотвращения блокирования зоны смешения промежуточным карбамоилхлоридом. Кроме того, говорится, что требуемые температуры составляют от 90 до 140°С и указанные температуры составляют от 90 до 200°С. Однако начальная температура составляет от 60 до 90°С. Верхние пределы давления определяются исходя из практических соображений. 2 атм являются удобным давлением. Концентрация амина в инертном растворителе составляет от 2 до 20%, предпочтительно от 5 до 10%. Дихлорбензол является предпочтительным в качестве инертного растворителя.

Трубчатый реактор также является предпочтительным аппаратом для способа, описанного в международной заявке WO-A-96/16028, для получения изоцианатов с использованием изоцианата в качестве растворителя. Международная заявка WO-A-96/16028 описывает также непрерывный одностадийный способ получения, в котором первичный амин, который, при необходимости, растворен в инертном органическом растворителе, подвергают взаимодействию с фосгеном, 10 до 60% масс. которого растворяют в изоцианате на основе раствора, содержащего изоцианат/ фосген, при температурах от 60 до 180°С и давлении от 1 до 30 бар с получением соответствующего изоцианата. Используемое молярное соотношение фосгена к амину находится в диапазоне от 4:1 до 1:1, а используемый в качестве растворителя изоцианат не содержит твердых частиц и имеет показатель гидролизуемого хлора ниже 2%.

В немецкой заявке на патент DE-A-19817693 описан двухстадийный способ получения смеси дифенилметандиизоционатов (МДИ) и полифени-ленполиметиленполиизоцианатов (ПМДИ), которые имеют пониженное содержание хлорированных побочных продуктов и более низкий йодный цветовой показатель. В соответствии с этим способом подвергают взаимодействию соответствующие смеси дифенилметандиаминов (МДА) и по дифенилполиметилендиаминов (ПМДИ) с фосгеном в присутствии, по меньшей мере, одного органического растворителя при повышенной температуре, избыточный фосген и растворитель отгоняют после завершения фосгенирования и полученный реакционный продукт обрабатывают термически. Мольные соотношения фосгена к хлористому водороду в аппарате для выдерживания на второй стадии фосгенирования находятся одновременно от 10 до 30:1 в жидкой фазе и 1 до 10:1 в газовой фазе. На второй стадии фосгенирования карбамоилхлориды и гидрохлориды амина, образовавшиеся на первой стадии фосгенирования, т.е. в статическом смесителе, пропускают через аппарат для выдерживания, в котором гидрохлориды амина фосгенируют в соответствующие карбамоилхлориды, и карбамоилхлориды расщепляют с образованием соответствующих изоцианатов и хлористого водорода. Температура на первой стадии обычно составляет от 40 до 150°С, предпочтительно от 60 до 130°С и наиболее предпочтительно от 90 до 120°С. Используемые на первой стадии статические смесители предпочтительно представляют собой сопла. Кроме механических смесителей и каскадов реакторов с мешалкой, аппарат для выдерживания реакционной смеси, используемый на второй стадии, представляет собой в наиболее предпочтительном варианте колонну, в частности, рекционную колонну, имеющую предпочтительно <10 теоретических тарелок. Это особенно предпочтительно работать с использованием колонны с противотоком. Температура в нижней части колонны составляет предпочтительно от 80 до 120°С, и наиболее предпочтительно от 90 до 110°С. Давление в верхней части колонны составляет предпочтительно от 1,0 до 4,7 атм. и наиболее предпочтительно от 2,0 до 3,7 атм.

В патенте США US-A-3544611 также описывается способ получения органических изоцианатов под высоким давлением от 10 до 50 бар при использовании реакционной колонны. Первую реакционную стадию в получении изоцианата, то есть взаимодействие амина и фосгена с образованием промежуточных соединений карбамоилхлорида, осуществляют в петлевом реакторе (смесительном контуре). Вторая реакционная стадия, а именно разложение карбамоилхлорида до изоцианата, проводят в реакционной колонне на выходе смесительного контура, при этом смесь хлористого водорода и фосгена получают в верхней части колонны. Фосген конденсируют из этой смеси в две стадии. Полученный в результате фосген рециркулируют в верхнюю часть колонны. Фосген отделяют на выходе из жидкофазного потока, расположенного в секции колонны для очистки, и рециклируют в реакционную зону (смесительный контур).

Отделение остаточного фосгена из реакционной смеси, отобранной из нижней части реакционной колонны, проводят в другой колонне, в которой фосген отводят сверху колонны, конденсируют в два стадии аналогично первой колонне и рециркулируют в смесительный контур. Реакционный процесс с получением изоцианата завершают в реакционной колонне. В указанном документе также отмечается, что неожиданно было установлено, что более высокие выходы изоцианатов получают при проведении реакции при повышенном давлении, по меньшей мере, 10 атм.

Реакционная колонна также используют в немецкой заявке на патент DE-А-3736988, которая описывает непрерывный способ получения органических моноизоцианатов или полиизоцианатов в одностадийной реакции путем взаимодействия амина, растворенного в органическом растворителе, с фосгеном, растворенным в органическом растворителе в реакционной колонне при температуре ниже 150°С. Полученную реакционную смесь пропускают непрерывно через колонну снизу вверх. Реакционная колонна имеет, по меньшей мере, 10 секций, отделенных друг от друга ситчатыми тарелками. Концентрация амина в инертном растворителе составляет от 5 до 40% масс., предпочтительно от 7 до 20% масс. Предпочтительными растворителями являются хлорбензол или дихлорбензол либо их смеси. Фосген используют в виде раствора с содержанием от 30 до 65%масс. или, предпочтительно, от 40 до 65%масс. в инертном растворителе. Эквивалентное соотношение амина к фосгену составляет от 1:1,5 до 1:7, предпочтительно от 1:2 до 1:5. Температура в верхней части колонны составляет предпочтительно от 70 до 130°С, более предпочтительно от 90 до 125°С и не выше чем 150°С. Среднее время пребывания реагентов в реакционной колонне составляет не более 120 минут, и предпочтительно не более 60 минут. Абсолютное давление в колонне составляет от 1,2 до 3 бар и предпочтительно от 1,5 до 2,5 бар.

В качестве аппарата для выдерживания реакционной смеси в немецкой заявке на патент DE-А-3744001 предлагают использование реакционной колонны с ситчатыми тарелками, через которую материальный поток движется снизу вверх и которая имеет >10 ситчатых тарелок, предпочтительно от 20 до 50 ситчатых тарелок; время пребывания составляет не более чем 120 минут и предпочтительно максимально 60 минут, скорость жидкого потока составляет от 0,05 до 0,4 м/сек, предпочтительно от 0,1 до 0,4 м/сек, а газового потока от 2 до 20 м/сек, предпочтительно от 3, 5 до 10 м/сек. Горизонтально интегрированные ситчатые тарелки образуют от 10 до 50 секций. Температура в верхней части реакционной колонны составляет ниже 150°С, предпочтительно от 70 до 130°С и наиболее предпочтительно от 90 до 125°С. Абсолютное давление в верхней части колонны находится от 1,2 до 3 бар и предпочтительно от 1,5 до 2,5 бар. Сопло используют на первой стадии фосгенирования.

Приведенные выше способы позволяют получить продукт со значительно более высокими выходами за один проход в единицу времени по сравнению с общеизвестным способом холодного/горячего фосгенирования. Однако недостаток этих способов, как и метода холодного/горячего фосгенирования, заключается в том, что фосгенирование гидрохлорида амина и разложение карбамоилхлорида осуществляют в одном и том же реакторе, что ведет к удлинению времени пребывания реагентов и повышенному содержанию фосгена, удерживаемому в реакционной зоне, и активации вторичной реакции уже образовавшегося изоцианата с амином с получением мочевин.

В большинстве способов реакцию фосгена с амином проводят в петлевом реакторе или реакторе с рециркуляцией в зону реакции, в которые кроме потоков поступающего амина и фосгена, необязательно в растворителе, рециркулируют, по меньшей мере, часть реакционной смеси. Это разбавление реакционной среды путем рецикла полученной реакционной смеси в реакционную зону используют, с одной стороны, чтобы упростить обработку реакционной смеси, которая связана с действием растворителя получаемого изоцианата (DE-A-192641) и, главным образом, для регулирования температуры или улучшения отвода тепла для получения пониженных температур. Реакция между амином и фосгеном является сильно экзотермической. Если течение реакции и конструкция аппарата не являются благоприятными, то повышенные температуры приведут к образованию промежуточных продуктов, которые в случае толуолдиизоцианата (ТДИ) могут снизить его выход и привести к получению смолы. Мочевины являются основными побочными продуктами, образуемыми в ходе реакции.

Немецкая заявка на патент DE-A-26 24 285 описывает способ с использованием смесительного контура для непрерывного получения органических изоцианатов из органических аминов и фосгена в присутствии органических растворителей, в котором фосген смешивают с циркулирующим реакционным раствором. Полученную реакционную смесь и амины или раствор амина вводят в смесительную и реакционную зону таким образом, чтобы получить плотность энергии рассеяния в интервале от 5 до 1000 кДж/м3 рециркулированной реакционной смеси плюс введенного раствора амина. Реакцию осуществляют при температурах от 90 до 220°С, предпочтительно от 120 до 180°С и давлении в интервале от 1 до 10 бар, предпочтительно от 1 до 3 бар. Время пребывания составляет от 10 до 180 минут. Молярное соотношение фосгена к амину рассчитывают так, чтобы в реакционной смеси присутствовало от 1 до 10 моль и, предпочтительно, от 1,3 до 4 моля фосгена на аминогруппу. Выход составляет от 88 до 98% масс. в расчете на используемый амин.

Способ с использованием смесительного контура, описанный в немецкой заявке на патент DE-A-2624285, является дальнейшим развитием способа, описанного в европейской заявке на патент ЕР-А-0150435. ЕР-А-0150435 описывает непрерывный способ получения органических изоцианатов путем взаимодействия органических аминов с фосгеном в присутствии органических растворителей, в котором отделяют хлористый водород, а часть реакционной смеси рециркулируют в зону реакции, при этом содержание хлористого водорода в рециркулированной реакционной смеси после отделения хлористого водорода для добавления аминов равно или менее 0,5% масс., предпочтительно от 0,01 до 0,4% масс. в расчете на общую массу реакционной смеси, перед добавлением аминов, и молярное соотношение фосгена к аминогруппам в органических аминах составляет от 12 до 200:1. Реакцию проводят при температуре от 100 до 220°С, предпочтительно от 120 до 180°С и диапазоне давления от 5 до 100 бар и, предпочтительно, от 15 до 50 бар.

Аналогичным образом, немецкая заявка на патент DE-A-3403204 является дальнейшим развитием заявки DE-A-2624285. В этой заявке описан непрерывный способ получения органических изоцианатов, предпочтительно полиизоцианатов, путем проведения взаимодействия органических аминов, предпочтительно полиаминов, с фосгеном в присутствии органических растворителей, под давлением, например, от 5 до 100 бар, при повышенной температуре, например, от 100 до 220°С, в котором часть реакционной смеси циркулируют, предпочтительно в соответствии с правилом свободной циркуляции, причем содержание хлористого водорода в реакционной смеси перед добавлением аминов составляет менее 0,5% масс., в расчете на общую массу реакционной смеси, и молярное соотношение фосгена к аминогруппам в органических аминах составляет от 12 до 200:1.

Немецкая заявка на патент DE-A-3212510 описывает также непрерывный способ получения органических изоцианатов с использованием рециркуляционного реактора. Первичный органический амин, практически в дисперсном состоянии, приводят в контакт с избытком фосгена при манометрическом или избыточном давлении порядка 10 кг/см2, т.е. 10 бар и температуре от 60 до 100°С, в результате чего соответствующий органический карбамоилхлорид образуется из органического амина и промежуточного гидрохлорида амина, а хлористый водород образуется в качестве побочного продукта. Конверсия на этой первой стадии взаимодействия такова, что от 30 до 70% карбамоилхлорида превращается в изоцианат. Реакционную смесь затем выдерживают при манометрическом или избыточном давлении порядка 10 кг/см2 и температуре от 120 до 160°С, что обеспечивает конверсию гидрохлорида амина в карбамоилхлорид, который затем превращается в изоцианат. Реакция протекает в рециркуляционном реакторе (с линией рециркуляции) или в реакционном сосуде бакового типа. В первом случае фосген вместе с растворителем циркулирует в трубчатом реакторе по рециркуляционной линии, а амин смешивается в смесительном контуре. Время пребывания в реакторе составляет от 30 до 120 минут на первой стадии, и от 10 до 120 минут на второй стадии. В качестве растворителя используют ортодихлорбензол.

В заявке Великобритании GB-A-763535 и немецкой выложенной заявке DE-A-1811609 также описываются петлевые реакторы и реакторы с рециркуляционным потоком (контуры смешения в качестве реакционной системы). Органический изоцианат получают путем проведения реакции амина с фосгеном в одностадийном непрерывном реакционном процессе с рециркуляцией изоцианата, растворителя и непрореагировавшего фосгена.

Достаточное давление в способе, описанном в GB-A-763535, составляет от 5 до 20 фунтов на квадратный дюйм, реакционная температура составляет от 90 до 180°С, концентрация ТДА в растворителе составляет от 5 до 30%, стехиометрический избыток фосгена составляет, по меньшей мере, 25%, предпочтительно от 70 до 110%, и в качестве растворителей используют хлорированные ароматические углеводороды и, предпочтительно, орто- дихлорбензол. В немецкой заявке DE-A-1811609 органические амины, необязательно, в о-дихлорбензоле или другом растворителе, и избыточный фосген смешивают при высоком напряжении сдвига внутри циркулирующего потока реакционной смеси, что позволяет с успехом подобрать вследствие смешивания такие рабочие условия, которые отличаются от GB-A-763535. Давление реакционного процесса находится предпочтительно, по меньшей мере, от 1,8 до 14·105 Па и предпочтительно 4,2·105 Па или 3,5·105 Па. Предпочтительная реакционная температура приводится как температура, лежащая в диапазоне от 102 до 130°С, а для толуолдиамина в пределах от 90 до 120°С. Избыток фосгена составляет от 50 до 200% и предпочтительно 70%.

Рециркуляцию также используют в заявке Великобритании GB-A-1034285, которая описывает непрерывный способ получения органических изоцианатов путем проведения взаимодействия фосгена с первичным полиамином в присутствии инертного органического растворителя, в котором реагенты подают по отдельности в трубчатый реактор, где они входят в контактное взаимодействие, и затем смесь того же самого растворителя, реакционную смесь, и фосген подвергают рециркуляции через трубчатый реактор. В качестве реактора можно использовать контур двух цилиндрических резервуаров, между которыми циркулирует реакционная смесь, или кольцевой трубчатый реактор. Реакционная смесь может быть смешана с помощью мешалок. Температура в трубчатом реакторе составляет от 8 до 50°С. Давление является атмосферным или незначительно выше. Концентрация, определенная для первичного амина в растворителе, составляет от 2 до 20% масс. Количество фосгена, добавляемого к потоку с принудительной циркуляцией, составляет от 5 до 20 моль фосгена на моль аминогрупп, вводимых в растворе полиамина. В качестве инертного органического растворителя используют хлорбензол или о-дихлорбензол.

В японской заявке JP-A-57048954 описывается способ получения органических изоцианатов, в котором раствор первичного амина вводят только на входе в статический смеситель или пропеллерный смеситель, расположенный в рециклизованном реакторе. Раствор фосгена в органическом изоцианате циркулирует в рециклизованном реакторе.

В немецкой заявке на патент DE-A-100 27 779 предлагается способ получения изоцианатов путем проведения взаимодействия амина с фосгеном, в котором изоцианат используют в качестве растворителя и реакции проводят в реакционной колонне, при этом всю или часть конденсированной фазы в донной части реакционной колонны рециркулируют в ректификационную секцию реакционной колонны. Число теоретических разделительных тарелок в реакционной колонне составляет 5 до 60. Температура в колонне составляет от -20°С до 300°С и абсолютное давление составляет от 0,2 до 60 бар.

Недостатком указанных способов синтеза с использованием петлевого реактора или контура смешивания с точки зрения энергии является использование низких температур на первой стадии и высоких температур на второй стадии. Ввиду того что взаимодействие между органическим амином и фосгеном представляет собой сильно экзотермическую реакцию, необходимо сильное охлаждение на первой стадии для поддержания требуемой температуры реакционного процесса. Вторая реакция, а именно разложение карбамоилхлорида с превращением его в изоцианат, является реакцией с ярко выраженным эндотермическим эффектом, и поэтому реакционную смесь приходиться нагревать на второй стадии.

Особым недостатком указанных способов синтеза, однако, проводимых, главным образом, по одностадийной технологии, являются заметно более низкие химические выходы по сравнению с прямоточными способами, поскольку уже образовавшийся изоцианат взаимодействует с амином с выходом мочевины в смесительном контуре вследствие противоточного смешения. Для исключения этой вторичной реакции часто устанавливают низкую концентрацию для обеспечения максимально устойчи