Способ и установка (варианты) для досмотра объектов, содержащих жидкости

Иллюстрации

Показать все

Использование: для досмотра объектов, содержащих жидкости. Сущность: выполняют цифровое радиографическое (ЦР) сканирование для получения радиографического изображения досматриваемого объекта; определяют, по меньшей мере, одну границу зоны для компьютерного томографического сканирования (КТ-сканирования) на основе радиографического изображения; получают данные просвечивания досматриваемого объекта, содержащего жидкость, с использованием КТ-сканирования для двух уровней энергии излучения в определенной границе зон КТ-сканирования; выполняют КТ-реконструкцию по данным просвечивания для получения КТ-изображения, которое содержит физические характеристики досматриваемого объекта, содержащего жидкость; выделяют физические характеристики досматриваемого объекта, содержащего жидкость, на основе КТ-изображения и определяют опасность досматриваемого объекта, содержащего жидкость, на основе полученных физических характеристик в соответствующей области. Технический результат: обеспечение возможности высокой скорости выполнения контроля и обеспечение возможности получения количественной информации по объектам, содержащим жидкости, без нарушения внешней упаковки. 2 н. и 36 з.п. ф-лы, 26 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к области технологий радиационного контроля, и в частности к способам и установкам компьютерной томографии (КТ) для быстрого досмотра объектов, содержащих жидкости, с использованием двух уровней энергии излучения.

ПРЕДПОСЫЛКИ ДЛЯ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

После событий 11 сентября проблема досмотра в авиации США становится все более насущной. Кроме традиционного досмотра пакетов, сумок, чемоданов, контейнеров, также становится все более актуальным досмотр объектов, содержащих жидкости, провозимых пассажирами. Соответственно, крайне необходимы технические средства и способы быстрого досмотра таких объектов.

В настоящее время используются четыре вида способов контроля, используемых для досмотра объектов, содержащих жидкости, а именно: химический, электромагнитный, нейтронный и радиационный способы, которые отличаются следующими особенностями.

1. Химический способ подразделяется на идентификацию по запаху, определению ионной подвижности для обнаружения взрывчатых веществ и вещественный анализ. Способ идентификации по запаху часто не дает результатов, поскольку жидкие объекты могут быть запечатаны или плотно упакованы. Способ обнаружения взрывчатых веществ по ионной подвижности отличается высокой чувствительностью, однако его недостатками являются высокий уровень ложной тревоги и сильное влияние условий внешней среды. Вещественный анализ отличается высокой точностью, однако для выполнения анализа образца необходимо достаточное время, и поэтому этот способ не отвечает требованиям проведения быстрого досмотра на месте.

2. В электромагнитном способе используются активные измерения. В этом случае идентификация объектов, содержащих жидкости, осуществляется в электромагнитном поле в соответствии с их диэлектрическими постоянными. На эффективность применения электромагнитного способа сильное влияние оказывают металлические части багажа или толстые слои находящихся в них материалов. В результате, применение электромагнитного способа ограничено в случае сложных материалов упаковки.

3. При применении нейтронного способа контроля в досматриваемой жидкости остается остаточная радиация, наведенная в результате эффекта нейтронной активации. Кроме того, в этом случае из-за высокой проникающей способности нейтронов проблему представляет обеспечение защиты, и поэтому оборудование занимает много места, так что этот способ непригоден для использования в установках досмотра для гражданской авиации.

4. В настоящее время большая часть досмотровых установок в гражданской авиации относится к установкам радиационного контроля. В этих установках большей частью используется технология рентгеноскопии для получения двумерных изображений и технология КТ-сканирования для получения трехмерных изображений. Эти технологии, используемые в основном для досмотра багажа, не дают результатов для находящихся в багаже объектов, содержащих жидкости.

При использовании технологии двумерной рентгеноскопии получают двумерные изображения, на которых суммируется трехкоординатная информация об объектах, обнаруженных на пути потока рентгеновского излучения. На этих изображениях различия во внутренней структуре объекта передаются в форме оттенков серого цвета или псевдоцветовой гаммы, в результате чего оператору представляется достаточно наглядная картина объекта. Однако технологии рентгеноскопии с получением двумерных изображений недостает информации об объекте по одному измерению, поэтому при проверке объектов, содержащих жидкость, большое влияние на результаты контроля оказывают их формы и размеры.

Технология КТ-сканирования с получением трехмерных изображений представляет собой одно из КТ-приложений. КТ-технологии сначала применялись в диагностике, при этом под разными углами получали соответствующие срезы объекта. Затем с помощью компьютера из этих данных просвечивания под разными углами получали реконструированные (восстановленные) изображения объекта. Информация о различных коэффициентах ослабления на реконструированных изображениях отображалась в форме различных оттенков серого цвета, по которым можно составить представление о внутренней структуре объекта. По мере развития КТ-технологии были разработаны и внедрены промышленные КТ-установки для неразрушающего контроля и для досмотра багажа, задача которых по-прежнему заключалась в получении изображений срезов, на которых проявляются различия внутренней структуры объекта. Возможная опасность объекта оценивается оператором, который осуществляет анализ отображаемых структур, и поэтому быстрый досмотр в автоматическом режиме невозможен. Таким образом, трудно ожидать широкого распространения досмотровых установок, в которых используются КТ-технологии, по причине их высокой стоимости и больших размеров, являющихся результатом большого многообразия объектов, которые должны досматриваться этими установками.

Резюмируя, можно сказать, что химический способ, электромагнитный способ и способ контроля с помощью потока нейтронов не подходят для быстрого досмотра жидких объектов. При использовании технологии рентгеноскопии с получением двумерных изображений и трехмерной КТ-технологии можно получить изображения в оттенках серого цвета или в псевдоцветовой гамме, однако эти изображения недостаточны для использования при автоматическом контроле объектов, содержащих жидкости.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Для преодоления недостатков существующих технических решений в настоящем изобретении предлагается способ и устройство для радиационного контроля объектов, содержащих жидкости, которые обеспечивают высокую скорость выполнения контроля и позволяют получить количественную информацию по объектам, содержащим жидкости, подлежащим проверке, без нарушения внешней упаковки.

Первым объектом изобретения является способ радиационного контроля объектов, содержащих жидкости, с использованием КТ для двух уровней энергии излучения, который содержит следующие стадии: получение данных просвечивания досматриваемого объекта, содержащего жидкость, при КТ-сканировании для двух уровней излучения; КТ-реконструкция по данным просвечивания для получения КТ-изображений, которые содержат физические характеристики объекта, содержащего жидкость; выделение физических характеристик досматриваемого объекта, содержащего жидкость, на основе КТ-изображения; и определение возможной опасности досматриваемого объекта, содержащего жидкость, на основе физических характеристик.

В соответствии с одним из вариантов осуществления изобретения физические характеристики включают плотность и атомное число жидкости, содержащейся в объекте.

В соответствии с одним из вариантов осуществления изобретения КТ-сканирование для двух уровней энергии излучения осуществляется в режиме последовательного сканирования.

В соответствии с одним из вариантов осуществления изобретения КТ-сканирование для двух уровней энергии излучения осуществляется в режиме обычного спирального сканирования.

В соответствии с одним из вариантов осуществления изобретения КТ-сканирование для двух уровней энергии излучения осуществляется в режиме спирального сканирования с большим шагом.

В соответствии с одним из вариантов осуществления изобретения перед проведением последовательного КТ-сканирования задается набор зон сканирования.

В соответствии с одним из вариантов осуществления изобретения выполняется цифровое радиографическое (ЦР) сканирование для получения радиографического изображения досматриваемого объекта, и зоны для КТ-сканирования определяются на основе этого радиографического изображения перед последовательным КТ-сканированием.

В соответствии с одним из вариантов осуществления изобретения после получения радиографического изображения оператор указывает с помощью устройства ввода информации по меньшей мере один ряд такого изображения в качестве зоны КТ-сканирования.

В соответствии с одним из вариантов осуществления изобретения после получения радиографического изображения по меньшей мере один ряд такого изображения выбирается в автоматическом режиме в качестве зоны КТ-сканирования.

В соответствии с одним из вариантов осуществления изобретения стадия получения радиографического изображения содержит обеспечение потока излучения высокой энергии и потока излучения низкой энергии, которые пропускаются сквозь досматриваемый объект для формирования радиографического изображения для высокого уровня энергии излучения и рентгенографического изображения для низкого уровня излучения; и суммирование рентгенографического изображения для высокого уровня энергии излучения и рентгенографического изображения для низкого уровня энергии излучения для формирования радиографического изображения.

В соответствии с одним из вариантов осуществления изобретения стадия получения радиографического изображения содержит обеспечение потока излучения высокой энергии и потока излучения низкой энергии, которые пропускаются сквозь досматриваемый объект для формирования радиографического изображения для высокого уровня энергии излучения и рентгенографического изображения для низкого уровня излучения; и выбор радиографического изображения для высокого уровня энергии излучения или радиографического изображения для низкого уровня энергии излучения в качестве радиографического изображения.

В соответствии с одним из вариантов осуществления изобретения КТ-реконструкция по данным просвечивания для получения КТ-изображения, которое содержит физические характеристики досматриваемого объекта, содержащего жидкость, содержит следующие стадии: формирование данных просвечивания с использованием коэффициентов двух базовых материалов на основе данных просвечивания потоком излучения высокой энергии и потоком энергии низкой энергии; выполнение реконструкции по данным просвечивания с использованием коэффициентов двух базовых материалов для получения КТ-изображения, которое содержит коэффициенты двух базовых материалов, соответствующие досматриваемому объекту, содержащему жидкость; и формирование КТ-изображения, которое содержит физические характеристики досматриваемого объекта, содержащего жидкость, на основе КТ-изображения, содержащего коэффициенты базовых материалов.

В соответствии с одним из вариантов осуществления изобретения выделение физических характеристик досматриваемого объекта, содержащего жидкость, на основе КТ-изображения содержит следующие стадии: выделение пикселей, соответствующих объекту, содержащему жидкость, из КТ-изображения; вычисление средних значений плотности и атомного числа пикселей, соответствующих объекту, содержащему жидкость, в качестве плотности и атомного числа досматриваемого объекта, содержащего жидкость.

В соответствии с одним из вариантов осуществления изобретения оценка опасности досматриваемого объекта, содержащего жидкость, на основе полученных физических характеристик содержит следующие стадии: определение нахождения точки, определяемой плотностью и атомным числом, в заданной области двумерного пространства плотность - атомное число; формирование вывода о том, что объект, содержащий жидкость, является опасным, если указанная точка находится в заданной области.

В соответствии с одним из вариантов осуществления изобретения после КТ-сканирования для двух уровней энергии излучения для каждой из зон полученные КТ-изображения досматриваемого объекта, содержащего жидкость, поворачиваются для выравнивания с изображением, сформированным после первого КТ-сканирования для двух уровней энергии излучения.

В соответствии с одним из вариантов осуществления изобретения после КТ-сканирования каждой из зон с использованием двух уровней энергии излучения досматриваемый объект, содержащий жидкость, поворачивается в положение, в котором он находился до начала сканирования.

В соответствии с одним из вариантов осуществления изобретения несколько объектов, содержащих жидкости, помещают в барабан, разделенный на несколько отсеков.

В соответствии с одним из вариантов осуществления изобретения способ содержит дополнительно следующие стадии: автоматическое обнаружение наличия барабана, имеющего заданную форму; обнаружение определенной метки на КТ-изображении в случае наличия барабана; и поворот барабана в заданное положение с использованием определенной метки.

В соответствии с одним из вариантов осуществления изобретения способ содержит дополнительно отображение результата досмотра объекта, содержащего жидкость, на экране дисплея.

В соответствии с одним из вариантов осуществления изобретения способ содержит дополнительно вывод на печать полученного результата досмотра объектов, содержащих жидкости.

В соответствии с одним из вариантов осуществления изобретения способ содержит дополнительно "раскрашивание" КТ-изображений объектов, содержащих жидкости.

В соответствии с одним из вариантов осуществления изобретения КТ-сканирование для двух уровней энергии излучения выполняется для заданной зоны.

Другим объектом изобретения является установка для досмотра объектов, содержащих жидкость, с использованием КТ на двух уровнях энергии, которая содержит: источник излучения для обеспечения потока проникающего излучения; средство измерения и сбора данных, предназначенное для измерения интенсивности излучения, прошедшего по меньшей мере сквозь один подлежащий досмотру объект, содержащий жидкость, и сбора полученных данных; управляющее устройство для управления источником излучения и устройством измерения и сбора данных для осуществления КТ-сканирования на двух уровнях энергии излучения досматриваемого объекта, содержащего жидкость, с целью получения данных его просвечивания; средство осуществления реконструкции по полученным данным просвечивания и получения КТ-изображений, на которых отображаются физические характеристики жидкого объекта; и средство определения опасности досматриваемого объекта, содержащего жидкость, на основе положения физических характеристик в соответствующем пространстве измерений.

В соответствии с одним из вариантов осуществления изобретения КТ-сканирование для двух уровней энергии излучения выполняется для заданной зоны.

В соответствии с одним из вариантов осуществления изобретения устройство измерения и сбора данных обеспечивает измерение интенсивности излучения, прошедшего по меньшей мере сквозь один подлежащий досмотру объект, содержащий жидкость, для получения радиографического изображения; и, кроме того, установка содержит дополнительно средство для определения по меньшей мере одного ряда радиографического изображения; и КТ-сканирование для двух уровней энергии выполняется для заданного ряда.

В соответствии с одним из вариантов осуществления изобретения физические характеристики включают по меньшей мере плотность и атомное число жидкости, содержащейся в досматриваемом объекте.

В соответствии с одним из вариантов осуществления изобретения источник излучения испускает поток излучения, имеющего высокую энергию, и поток излучения, имеющего низкую энергию, которые пропускаются сквозь досматриваемый объект для формирования радиографического изображения для высокого уровня энергии излучения и радиографического изображения для низкого уровня энергии; и установка содержит дополнительно средство суммирования рентгенографического изображения для высокого уровня энергии излучения и рентгенографического изображения для низкого уровня энергии излучения для формирования рентгенографического изображения.

В соответствии с одним из вариантов осуществления изобретения источник излучения испускает поток излучения, имеющего высокую энергию, и поток излучения, имеющего низкую энергию, которые пропускаются сквозь досматриваемый объект для формирования радиографического изображения для высокого уровня энергии излучения и радиографического изображения для низкого уровня энергии; и установка содержит дополнительно средство выбора радиографического изображения для высокого уровня энергии излучения или радиографического изображения для низкого уровня энергии излучения в качестве радиографического изображения.

В соответствии с одним из вариантов осуществления изобретения средство для определения по меньшей мере одного ряда радиографического изображения содержит средство выбора оператором по меньшей мере одного ряда радиографического изображения с помощью устройства ввода информации.

В соответствии с одним из вариантов осуществления изобретения средство для определения по меньшей мере одного ряда радиографического изображения содержит средство обнаружения слоев жидкости в радиографическом изображении путем анализа его пикселей; и средство задания центральных рядов соответствующих слоев в качестве рядов, для которых должно быть выполнено КТ-сканирование для двух уровней энергии излучения.

В соответствии с одним из вариантов осуществления изобретения средство осуществления реконструкции по полученным данным просвечивания для получения КТ-изображений, на которых отображаются физические характеристики жидкого объекта, содержит средство суммирования изображения плотности, определяемого плотностью досматриваемого объекта, содержащего жидкость, и изображения атомного числа, определяемого атомным числом досматриваемого объекта, содержащего жидкость, для формирования КТ-изображения; и средство для извлечения из КТ-изображения пикселей, соответствующих объекту, содержащему жидкость; и средство вычисления средних значений плотности и атомного числа пикселей, соответствующих объекту, содержащему жидкость, в качестве плотности и атомного числа жидкости, содержащейся в досматриваемом объекте.

В соответствии с одним из вариантов осуществления изобретения средство определения опасности досматриваемого объекта, содержащего жидкость, на основе его физических характеристик, содержит средство определения нахождения точки, определяемой плотностью и атомным числом, в заданной области двумерного пространства плотность - атомное число, причем досматриваемый объект, содержащий жидкость считается опасным, если точка находится в указанной области.

В соответствии с одним из вариантов осуществления изобретения установка содержит дополнительно средство поворота, после КТ-сканирования для двух уровней энергии излучения для каждого из рядов, КТ-изображений досматриваемого объекта, содержащего жидкость, для выравнивания с изображением, сформированным после первого КТ-сканирования для двух уровней энергии излучения.

В соответствии с одним из вариантов осуществления изобретения установка содержит дополнительно средство для поворота, после КТ-сканирования с использованием двух уровней энергии излучения каждого из рядов, досматриваемого объекта, содержащего жидкость, в положение, в котором он находился до начала сканирования.

В соответствии с одним из вариантов осуществления изобретения установка содержит дополнительно барабан, разделенный на несколько отсеков для размещения нескольких объектов, содержащих жидкости.

В соответствии с одним из вариантов осуществления изобретения установка содержит дополнительно средство автоматического обнаружения наличия барабана, имеющего заданную форму; средство обнаружения определенной метки на КТ-изображении в случае наличия барабана; и средство поворота барабана в заданное положение с использованием определенной метки.

В соответствии с одним из вариантов осуществления изобретения установка содержит дополнительно средство отображения результата досмотра объекта, содержащего жидкость.

В соответствии с одним из вариантов осуществления изобретения установка содержит дополнительно средство вывода на печать полученного результата досмотра объектов, содержащих жидкости.

В соответствии с одним из вариантов осуществления изобретения установка содержит дополнительно средство "раскрашивания" КТ-изображений объектов, содержащих жидкости.

В соответствии с одним из вариантов осуществления изобретения установка содержит дополнительно несущий механизм для удерживания подлежащих досмотру объектов, содержащих жидкости, причем поверхность несущего механизма, на которой размещаются объекты, содержащие жидкости, разбивается на несколько зон, которые могут быть идентифицированы оператором.

Еще одним объектом изобретения является установка для досмотра объекта, содержащего жидкость, с использованием КТ для двух уровней энергии излучения, которая содержит: источник излучения для обеспечения потока проникающего излучения; средство измерения и сбора данных, предназначенное для измерения интенсивности излучения, прошедшего по меньшей мере сквозь один подлежащий досмотру объект, содержащий жидкость, и сбора полученных данных; управляющее устройство для управления источником излучения и устройством измерения и сбора данных для осуществления спирального КТ-сканирования досматриваемого объекта, содержащего жидкость, с целью получения набора КТ-изображений спирального сканирования, на которых отображается по меньшей мере одна физическая характеристика объекта, содержащего жидкость; средство анализа набора КТ-изображений спирального сканирования для получения части КТ-изображения спирального сканирования объекта, содержащего жидкость; и средство определения опасности досматриваемого объекта, содержащего жидкость, на основе положения физической характеристики, содержащейся в части КТ-изображения спирального сканирования, в соответствующем пространстве измерений.

Способ и установка, предлагаемые в изобретении, позволяют использовать радиографические изображения в качестве указаний для осуществления сканирования для двух уровней энергии излучения, и поэтому скорость досмотра может быть повышена без снижения точности. Кроме того, с помощью радиографического изображения можно определить, что в объекте имеется несколько слоев жидкости.

Способ и установка, предлагаемые в изобретении, позволяют определить, что жидкость, содержащаяся в объекте, является взрывчатым веществом, на основе попадания измеренных значений плотности и атомного числа в определенную область в двумерном пространстве.

Кроме того, процедура досмотра облегчается, поскольку оператор может задать любую зону для выполнения КТ-сканирования для двух уровней энергии излучения.

Далее, при досмотре нескольких объектов используется секционированный барабан, позволяющий легко определить, какой из объектов, содержащих жидкости, является опасным.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Особенности и достоинства изобретения можно лучше понять из нижеприведенного подробного описания, содержащего ссылки на прилагаемые чертежи, на которых показано:

фигура 1 - схема досмотровой установки в соответствии с одним из вариантов осуществления настоящего изобретения;

фигура 2 - блок-схема устройства 60 компьютерной обработки данных в досмотровой установке, представленной на фигуре 1;

фигура 3 - блок-схема управляющего устройства в соответствии с первым вариантом осуществления настоящего изобретения;

Фигуры 4А и 4В - схемы способа досмотра объектов, содержащих жидкости, в соответствии с настоящим изобретением;

фигура 5 - иллюстрация связи между получением ЦР-изображений и КТ-изображений;

фигура 6 - пример полученного ЦР-изображения;

фигура 7 - другой пример полученного ЦР-изображения;

Фигура 8 - блок-схема алгоритма выполнения досмотра объекта, содержащего жидкость, в соответствии с первым вариантом осуществления изобретения;

фигура 9 - блок схема алгоритма получения ЦР-изображения;

фигура 10 - расположение элементов данных, собранных при получении ЦР-изображений устройством 30 измерения и сбора данных;

Фигура 11 - блок-схема способа определения зоны КТ-сканирования путем обработки ЦР-изображения;

Фигура 12 - блок-схема алгоритма получения КТ-изображений;

фигура 13 - расположение элементов данных просвечивания при осуществлении способа получения КТ-изображений;

фигура 14 - блок-схема алгоритма измерения характеристик жидкости;

фигуры 15А и 15В - схемы КТ-изображений, реконструированных для случая, когда имеется несколько досматриваемых объектов, содержащих жидкости, в соответствии с вторым вариантом осуществления настоящего изобретения;

фигуры 16А-16K - иллюстрации процесса поворота реконструированных КТ-изображений и/или установки несущего механизма в нужное положение перед КТ-сканированием;

фигура 17 - блок-схема алгоритма выполнения операции досмотра в том случае, когда досматриваются несколько объектов;

фигура 18 - вид сверху несущего механизма в соответствии со вторым вариантом осуществления настоящего изобретения;

фигура 19 - вид сбоку секционированного барабана в соответствии с одним из вариантов осуществления изобретения;

фигура 20 - вид сверху секционированного барабана;

фигура 21 - вид снизу секционированного барабана;

фигура 22 - блок-схема алгоритма автоматического обнаружения секционированного барабана и метки при выполнении операции досмотра;

фигуры 23A-23D - иллюстрации процесса поворота барабана при выполнении операции досмотра;

фигура 24 - блок-схема алгоритма выполнения операции досмотра в соответствии с третьим вариантом осуществления изобретения;

фигура 25 - иллюстрация спирального КТ-сканирования объекта, содержащего жидкость;

фигуры 26А-26М - виды изображений, полученных при спиральном КТ-сканировании объекта, содержащего жидкость.

ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Предпочтительные варианты осуществления изобретения будут описаны ниже более подробно со ссылками на прилагаемые чертежи. Для обозначения одинаковых или сходных компонентов на разных фигурах используются одни и те же ссылочные номера. Для упрощения подробные описания известных используемых функций и конструкций не приводятся, чтобы основное внимание сосредоточить на предмете изобретения.

[ПЕРВЫЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ]

На фигуре 1 приведена схема основных частей досмотровой установки в соответствии с одним из вариантов осуществления изобретения.

Как показано на фигуре 1, предлагаемая в настоящем изобретении досмотровая установка содержит следующие основные части: источник 10 излучения для обеспечения потока рентгеновского излучения двух уровней энергии для осуществления досмотра, например, рентгеновский аппарат; несущий механизм 40, который удерживает подлежащий досмотру объект 20, содержащий жидкость, причем несущий механизм 40 может поворачиваться вокруг оси Z, а также может опускаться и подниматься для ввода объекта 20, содержащего жидкость, в досмотровую зону, в которой сквозь него может проходить проникающее излучение источника 10; устройство 30 измерения и сбора данных, представляющее собой интегральный модуль, в состав которого входит детектор и устройство сбора данных и который используется для приема излучения двух уровней энергии, прошедшего сквозь объект 20, содержащий жидкость, для формирования соответствующих аналоговых сигналов и преобразования их в цифровую форму, и выдачу информации сканирования объекта 20, содержащего жидкость, рентгеновским излучением высокого и низкого уровней энергии; управляющее устройство 50, которое управляет каждым компонентом установки, так чтобы они работали синхронно; и устройство 60 компьютерной обработки данных для обработки информации, собранной устройством сбора данных, и вывода результатов досмотра объекта.

Как можно видеть на фигуре 1, источник 10 излучения размещен с одной стороны несущего механизма 40, удерживающего подлежащий досмотру объект 20, содержащий жидкость, а устройство 30 измерения и сбора данных размещено с другой стороны несущего механизма 40. Устройство 30 измерения и сбора данных содержит детектор и устройство сбора данных для получения радиографической информации и данных просвечивания объекта 20, содержащего жидкость, под разными углами. В состав устройства сбора данных входит схема усиления и формирования сигналов, которая работает в режиме интегрирования тока или в режиме счета импульсов. Устройство 30 измерения и сбора данных соединено с устройством 60 компьютерной обработки данных с помощью кабеля, полученные данные передаются для записи в устройство 60 компьютерной обработки данных в соответствии с командами пуска.

Кроме того, досмотровая установка содержит также цилиндрический проход 20 для объекта, выполненный из металла и имеющий отверстия в нижней части боковой стенки, для того чтобы объект, содержащий жидкость, можно было просвечивать излучением и экранировать неиспользуемую часть излучения. Досматриваемый объект 20, содержащий жидкость, помещается в проходе для досматриваемых объектов.

На фигуре 2 представлена блок-схема устройства 60 компьютерной обработки данных в досмотровой установке, представленной на фигуре 1. Как показано на фигуре 2, данные, полученные устройством сбора данных, через интерфейс 68 и шину 64 передаются в память 61 для хранения. Информация конфигурации и программы устройства компьютерной обработки данных записываются в постоянном запоминающем устройстве 62 (ПЗУ). Для временного хранения различных данных, получаемых при выполнении программ процессором 66, используется оперативная память 63 (ОЗУ). Кроме того, компьютерные программы также записываются в память 61 для выполнения обработки данных. Внутренняя шина 64 обеспечивает соединение памяти 61, ОЗУ 63, ПЗУ 62, устройства 65 ввода информации, процессора 66, устройства 67 отображения информации и интерфейса 68 в единую систему.

После того как пользователь введет команды с помощью устройства 65 ввода информации, такого как, например, клавиатура и мышь, процессор 66 в соответствии выполняет последовательность команд заложенных в компьютере программ для осуществления заданного алгоритма обработки данных. После получения результатов обработки они отображаются на устройстве 67 отображения информации, например на жидкокристаллическом мониторе, или направляются на печать.

На фигуре 3 представлена блок-схема управляющего устройства в соответствии с первым вариантом осуществления изобретения. Как показано на фигуре 3, управляющее устройство 50 содержит блок 51 управления для управления источником 10 излучения, несущим механизмом 40 и устройством 30 измерения и сбора данных в соответствии с командами, поступающими из устройства 60 компьютерной обработки данных; блок 52 формирования пусковых сигналов, выдающий команды на включение источника 10 излучения, устройства 30 измерения и сбора данных и несущего механизма 40 для обеспечения их работы под управлением блока 51 управления; первый приводной двигатель 55 привода несущего механизма 40 для его подъема и опускания в соответствии с командой запуска, вырабатываемой блоком 52 формирования пусковых сигналов под управлением блока 51 управления; блок 53 измерения высоты, передающий информацию о высоте несущего механизма в блок 51 управления при перемещении по высоте несущего механизма; блок 54 измерения угла, передающий информацию об угле поворота несущего механизма 40 в блок 51 управления при повороте несущего механизма 40.

В соответствии с рассматриваемым вариантом осуществления изобретения устройство 53 измерения высоты и устройство 54 измерения угла представляют собой фотоэлектрические кодирующие диски и, соответственно, на них не действуют помехи.

В соответствии с рассматриваемым вариантом осуществления изобретения опасные объекты могут идентифицироваться путем измерения плотности и атомного числа жидкости в досматриваемом объекте и определения попадания измеренных значений плотности и атомного числа в заданную область значений опасных жидкостей. Плотность и атомное число безопасных жидкостей, таких как, например, напитки, препараты для ухода за кожей, косметика и т.п., существенно отличаются от плотности и атомного числа опасных жидкостей, таких как, например, горючие жидкости, жидкие взрывчатые вещества, высокоагрессивные жидкости и т.п. Например, плотность воды, которая относится к безопасным жидкостям, равна примерно 1 (ее характеристическая плотность равна 1,11), и атомное число равно примерно 7,51. А плотность спирта, который относится к опасным жидкостям, равна примерно 0,79 (его характеристическая плотность равна 0,89), и атомное число равно примерно 6,47. Поэтому можно различать безопасные и опасные жидкости по их плотности и атомному числу с использованием методики распознавания образов.

На фигурах 4А и 4В представлены схемы способа досмотра объектов, содержащих жидкости, в соответствии с одним из вариантов осуществления настоящего изобретения. В двумерном пространстве координат плотность - атомное число выделяются области, соответствующие опасным и безопасным жидкостям: если плотность и атомное число досматриваемого объекта, содержащего жидкость, попадают в первую область, то такой объект следует считать опасным, и если плотность и атомное число досматриваемого объекта, содержащего жидкость, попадают во вторую область, то такой объект следует считать безопасным. Области, соответствующие безопасным и опасным жидкостям, определяются путем измерения характеристик большого числа безопасных и опасных жидкостей, выделением области безопасных жидкостей, имеющих большую плотность, и области опасных жидкостей, имеющих меньшую плотность. Как показано на фигуре 4А, области безопасных и опасных жидкостей могут быть определены в двумерном пространстве координат плотность - атомное число путем измерения плотности и атомного числа различных жидкостей. Затем область безопасных жидкостей суживают для повышения чувствительности досмотровой установки, как показано на фигуре 4В. Таким образом, определив плотность и атомное число объекта, содержащего жидкость, можно определить его опасность на основании положения точки плотность - атомное число в вышеуказанном двумерном пространстве.

На фигуре 5 иллюстрируется взаимосвязь между получением ЦР-изображений и КТ-изображений. В соответствии с рассматриваемым вариантом осуществления изобретения сначала получают ЦР-изображения объекта, содержащего жидкость, для определения части объекта, занятой жидкостью, и затем получают КТ-изображения только для указанной части объекта, в результате чего повышается скорость досмотра объектов.

На фигурах 6 и 7 показаны примеры ЦР-изображений. Как показано на фигуре 6, после получения ЦР-изображений объекта, содержащего жидкость, можно определить часть объекта, занятую жидкостью, путем анализа пикселей, как описывается ниже. Как можно видеть на фигуре 6, досматриваемый объект содержит только один вид жидкости. Однако, как показано на фигуре 7, благодаря различным коэффициентам поглощения различных видов жидкостей, когда объект содержит два или более видов жидкостей, которые размещаются несколькими слоями, положения раздела слоев могут быть определены путем анализа пикселей ЦР-изображения. Затем могут быть получены КТ-изображения, срез за срезом для каждого слоя жидкости.

На фигуре 8 представлена блок-схема алгоритма выполнения досмотра объекта, содержащего жидкость, в соответствии с первым вариантом осуществления изобретения. Как следует из блок-схемы, изображенной на фигуре 8, предметы багажа пассажира, содержащие жидкость, должны пройти через досмотровую установку, например, когда пассажир проходит таможенный досмотр. Сначала на стадии S111 оператор помещает подлежащий досмотру объект, содержащий жидкость, на несущий механизм 40.

Затем на стадии S112 оператор нажимает пусковую кнопку для включения ЦР-сканирования для получения ЦР-изображения, как показано на фигурах 6 и 7.

Как уже указывалось, целью ЦР-сканирования является получение радиографических изображений досматриваемых объектов, содержащих жидкость, так что