Оптически адресуемый полутоновый пространственный модулятор света с накоплением электрического заряда

Иллюстрации

Показать все

Устройство включает электрооптический слой, коммутационную плату, источник света, размещенный в оптической связи с электрооптическим слоем, и контроллер, присоединенный к памяти. Коммутационная плата задает области пикселей в электрооптическом слое. Контроллер предназначен для того, чтобы в течение кадра последовательно и с перерывами подавать множество выбранных напряжений записи ячейки в область пикселя записывающего оптического затвора. При этом, после того как область пикселя достигнет оптически стационарного состояния для каждого из подаваемых напряжений записи ячейки, контроллер модулирует источник света в соответствии с моментами времени, в которые подаются выбранные напряжения записи ячейки. Технический результат заключается в обеспечении монотонности полутоновой характеристики света. 3 н. и 33 з.п. ф-лы, 14 ил.

Реферат

Область техники

[0001] Настоящее изобретение относится к пространственным модуляторам света и, в частности, к способу модуляции света посредством оптически адресуемого пространственного модулятора света с накоплением фотогенерированного электрического заряда, обеспечивающего по существу монотонную полутоновую характеристику.

Уровень техники

[0002] Пространственная модуляция световых лучей связана с изменением свойств светового луча, таких как, например, интенсивность или поляризации световой волны. Известным примером пространственного модулятора света [SLM, spatial light modulator] является жидкокристаллический дисплей с активной матрицей (AMLCD, active matrix liquid crystal display), работающий в системе проецирования изображений, который преобразует данные изображения из электронной среды в видимое изображение на дисплее. В электронном дисплее AMLCD электрическая схема, которая интегрирована в дисплей, в каждом кадре производит наложение на слой жидкокристаллического материала двумерного массива напряжений, которые индуцируют двумерный массив модификаций оптических свойств жидкокристаллического материала и таким образом пространственно модулируют свет, проходящий насквозь или отражающийся от жидкого кристалла. Управление полутонами в таких дисплеях обеспечивается модуляцией напряжений на отдельных пикселях обычно путём аналоговой модуляции или двоичной цифровой модуляции.

[0003] В первых жидкокристаллических микродисплеях обычно использовались способы аналоговой модуляции, но они плохо подходят для дисплеев с большим объёмом информации. Это связано с тем, что малый размер пикселя и сопутствующая этому трудность хранения точных аналоговых напряжений часто приводят к недостаточной эффективности устройства и неоднородности отображения пикселей. Поэтому в индустрии изготовления микродисплеев все больше используются способы цифровой модуляции.

[0004] Способы цифровой модуляции обычно сводятся или к модуляции ширины импульса (PWM, pulse width modulation), или к модуляции коэффициента заполнения (DFM, duty factor modulation). Схемы PWM подают в жидкокристаллический микродисплей импульс напряжения, который имеет фиксированную амплитуду и переменную во времени ширину (то есть продолжительность). Переменная ширина типично составляет от нуля до продолжительности всего кадра, что соответствует уровням серого от нуля до максимального. В идеале модуляция DFM характеризуется такой же результирующей интегрированной продолжительностью импульсов, что и модуляция PWM, но в ней для достижения того же эффекта используется один или несколько импульсов фиксированной масштабированной продолжительности. Например, импульсы, соответствующие битам от самого старшего до самого младшего, каждый с двоичным весом, могут быть последовательно поданы один за другим с начала периода кадра до конца периода кадра. Для шестиразрядных данных со значением 101010 будут поданы три отдельных импульса различной продолжительности. Как известно специалистам в данной области техники, жидкокристаллические устройства реагируют на среднеквадратичное [RMS, root-mean square] значение поданного напряжения, усредненное за время отклика жидкого кристалла. Схемы PWM могут давать превосходные полутоновые результаты и по существу монотонную модуляционную характеристику, поскольку во всех случаях большие значения яркости непосредственно соответствуют более высоким значениям продолжительности одиночного импульса, что, в свою очередь, всегда дает более высокие среднеквадратичные значения поданного напряжения. Кроме того, схемы PWM минимизируют эффекты, связанные с длительностью переднего и заднего фронтов в жидком кристалле. Однако они очень сложны для реализации в реальных дисплеях из-за временного положения самого младшего бита в периоде кадра. Например, при 10-разрядных данных младший бит может быть помещен в 512 различных временных позициях в пределах периода кадра. Дисплейная система должна быть в состоянии обработать это временное разрешение. Альтернативные способы модуляции PWM могут снизить сложность пиксельной схемы за счет чрезвычайно высоких требований к скорости передачи данных. Однако на практике схемы PWM вообще слишком сложны или дороги для использования в жидкокристаллических микродисплеях и не получили широкого распространения.

[0005] Наиболее широко используемой формой цифровой модуляции в жидкокристаллических микродисплеях являются схемы DFM. При модуляции DFM, как и при модуляции PWM, на микродисплей подаются импульсы напряжения фиксированной амплитуды. Однако при модуляции DFM имеется один импульс напряжения для каждой "единицы" в пакете данных, в зависимости от конкретного отображаемого уровня серого. При модуляции DFM полные суммарные продолжительности импульсов, разделенные на полное время кадра, определяют коэффициент заполнения для напряжения и, таким образом, его эквивалентное среднеквадратичное значение. Проблема этой схемы для случая оптически адресуемого жидкокристаллического пространственного модулятора света заключается в том, что она не учитывает конечное время роста и спада напряжения для жидкокристаллического материала (в частности, тот факт, что они часто отличаются друг от друга). Не учитывается также различие времени, в которое световые импульсы для различных битов в пределах битовых плоскостей для каждого кадра, идущие из записывающего оптического затвора, достигают устройства фотогенерации считывающего оптического затвора (так что они воздействуют на устройство считывания в различные периоды времени). Так, относительное положение двоичных импульсов с весом в записывающем оптическом затворе может привести к немонотонной оптической реакции считывающего оптического затвора. (Оптическая реакция для 100 может оказаться меньше чем для 011.) Иначе говоря, фактическая оптическая реакция может отличаться от теоретического коэффициента заполнения, вычисленного только по импульсам напряжения. Эта погрешность зависит от количества передних и задних фронтов и, таким образом, количества импульсов, и эта погрешность резко меняется как функция от желаемого уровня шкалы яркости. Результатом является то, что схемы DFM в общем случае дают немонотонные результаты для некоторого количества полутонов. Это является серьезной проблемой для рынка. Было разработано множество схем в попытке исправить такую немонотонность, но ни одна из них не дала полностью удовлетворительных результатов, при этом большинство из них требует существенного увеличения стоимости, сложности или уменьшения скорости передачи данных.

[0006] Оптически адресуемый пространственный модулятор света (OASLM) может работать либо в режиме пропускания, либо в режиме отражения. На фиг.1 показана схема известного в настоящее время отражательного модулятора OASLM 10, который содержит слой 12 электрооптического материала (например, жидкого кристалла) и фоточувствительный слой 14, обычно выполненный из полупроводникового материала. В этом примере полупроводниковые материалы выбраны из различных материалов, поглощающих свет в видимой области длин волн (400-700 нм), таких как, например, аморфный кремний, аморфный карбид кремния, монокристаллический Bi12SiO20, кремний, GaAs, ZnS и CdS. Жидкокристаллический слой 12 и фоточувствительный слой 14 расположены между оптически прозрачными электродами 16 и 18, удерживаемыми на соответствующих подложках 20 и 22. Видимый выходной свет (считывающий свет) отражается от диэлектрического зеркала 24. В режиме пропускания как записывающий свет, так и считывающий свет проходят через подложку 20, а диэлектрического зеркала 24 нет, поэтому фоточувствительный слой 14 должен поглотить записывающий свет и пропустить считывающий свет.

[0007] Для проекционных схем адресация модуляторов OASLM происходит с использованием оптического сигнала или изображения. На фиг.2 показана схема известной в настоящее время проекционной системы 30, в которой входные изображения формируются, например, в виде люминесцентного рисунка на экране электронно-лучевой трубки 32, а затем переносятся на фоточувствительный слой модулятора OASLM 10 с помощью оптических компонентов, которые включают оптоволоконные пластины, оптические линзы или и то, и другое. Более конкретно, электронно-лучевая трубка 32 работает как источник входного изображения, создавая входное изображение, которое передаётся через линзу 34 на фоточувствительный слой модулятора OASLM 10. Фоточувствительный процесс, происходящий в модуляторе OASLM 10, приводит к пространственным изменениям характеристик отражения света (или пропускания света в режиме передачи) в слое электрооптического материала (например, жидком кристалле) модулятора OASLM 10. Компонент считывающего света с S-поляризацией, испускаемый дуговой лампой 38, проходит через конденсор 40 и отражается поляризационным расщепителем 36 луча, падая на модулятор OASLM 10, где подвергается пространственной модуляции в режиме реального времени, отражается назад через поляризационный расщепитель 36 луча и, наконец, проецируется на экран проекционной линзой 42. (Компонент с S-поляризацией считывающего света проходит через конденсор 40, проходит прямо через поляризационный расщепитель 36 луча и теряется.) В этом случае оптический сигнал, идущий из электронно-лучевой трубки 32 в модулятор OASLM 10, имеет по существу аналоговый характер. Когда происходит адресация области пикселя электронно-лучевой трубки, ток луча электронно-лучевой трубки регулируют для управления яркостью пикселя. Люминофор пикселя возбуждается электронным лучом с интенсивностью, соответствующей току луча электронно-лучевой трубки, и испускает свет. Инерция люминофора в каждом пикселе после времени возбуждения определяет продолжительность свечения пикселя. Соответственно, изображение, созданное электронно-лучевой трубкой, или записывающий свет, падает на модулятор OASLM 10 так, чтобы изменилось выходное состояние модулятора OASLM 10 в виде изменения отражения (или пропускания) света. Из-за природы растровой развертки, с помощью которой формируется изображение электронно-лучевой трубки, сигнал напряжения, который подаётся на прозрачные электроды 16 и 18, меняет полярность много тысяч раз в секунду.

[0008] Формированию изображения посредством электронно-лучевой трубки присуще много недостатков, включая высокую степень нелинейности амплитуды и геометрии, большие занимаемый объём и площадь и работу при высоком напряжении.

Сущность изобретения

[0009] Согласно одному примеру осуществления настоящего изобретения предложен способ оптической записи в считывающий оптический затвор. В этом способе в течение кадра выполняют следующие операции. Выбранное напряжение записи ячейки подают в область пикселя записывающего оптического затвора; после того, как область пикселя переходит в оптически стационарное состояние, эту область пикселя освещают модулированным импульсом из источника света, чтобы из области пикселя был испущен записывающий световой импульс; и записывающий световой импульс направляют в ограниченную область электрооптического слоя считывающего оптического затвора. В течение одного и того же кадра вышеуказанные операции подачи, освещения и направления последовательно повторяют для множества выбранных напряжений записи ячейки и модулированных импульсов источника света.

[0010] Согласно другому примеру осуществления настоящего изобретения предложен записывающий оптический затвор, который содержит электрооптический слой, коммутационную плату, определяющую области пикселей на электрооптическом слое, источник света, установленный в оптической связи с электрооптическим слоем, и контроллер, соединенный с памятью. Контроллер способен в течение кадра последовательно и с перерывами подавать множество выбранных напряжений записи ячейки в область пикселя записывающего оптического затвора, а после того как область пикселя переходит в оптически стационарное состояние для каждого из поданных напряжений записи ячейки, модулировать источник света в соответствии с временем, в которое подают выбранные напряжения записи ячейки.

[0011] Согласно ещё одному примеру осуществления настоящего изобретения предложена компьютерная программа, реализованная в виде устройства памяти. Компьютерная программа содержит считываемые компьютером команды, предназначенные для выполнения операций, которые направлены на испускание оптического записывающего луча, и эти операции в пределах кадра включают: подачу выбранного напряжения записи ячейки в область пикселя записывающего оптического затвора после того, как область пикселя переходит в оптически стационарное состояние, освещение области пикселя импульсом из модулируемого источника света так, чтобы из области пикселя был испущен записывающий световой импульс; направление записывающего светового импульса в ограниченную область электрооптического слоя считывающего оптического затвора; и последовательное повторение подачи, освещения и направления для множества выбранных напряжений записи ячейки и импульсов модулируемого источника света.

[0012] Эти и другие аспекты настоящего изобретения подробно описаны ниже.

Краткое описание чертежей

[0013] На фиг.1 схематично показан известный оптически адресуемый пространственный модулятор света, который содержит электрооптический слой и фоточувствительный полупроводниковый слой.

[0014] На фиг.2 схематично показана известная проекционная система, состоящая из электронно-лучевой трубки, оптически связанной с оптически адресуемым пространственным модулятором света.

[0015] На фиг.3 показан ряд временных диаграмм, демонстрирующих модуляционные характеристики пространственного модулятора света, работающего в режиме накопления заряда и адресуемого посредством оптических импульсов различной амплитуды и различной ширины, каждый из которых освещает различные места пространственного модулятора света со считывающим оптическим затвором.

[0016] Фиг.4 аналогична фиг.3, но здесь два адресующих импульса интегрируются в одном и том же месте пространственного модулятора света.

[0017] На фиг.5 показана упрощенная блок-схема системы оптически адресуемого пространственного модулятора света, в которой цифровая модуляция выполняется так, чтобы выходящий свет характеризовался по существу монотонной полутоновой характеристикой.

[0018] На фиг.6 показан ряд диаграмм, демонстрирующий результаты локального интегрирования напряжения в жидком кристалле в ответ на световые импульсы записи с шаблонами (10000), (00001) и (10001), идущие из устройства типа "жидкий кристалл на кремнии" (LCoS, Liquid Crystal On Silicon).

[0019] На фиг.7 показан пример, в котором биты данных выводятся равномерно за время кадра для снижения требований к ширине полосы для микродисплейного устройства LCoS.

[0020] На фиг.8 показан ряд временных диаграмм, иллюстрирующих полутоновую модуляцию микродисплея LCoS, освещаемого пространственно разделёнными световыми импульсами с различной шириной импульса.

[0021] На фиг.9 показана логическая схема цифровой пиксельной схемы коммутационной платы, состоящая из защёлки для записи данных и защёлки для считывания данных.

[0022] На фиг.10 показан график, иллюстрирующий локальные напряжения фоторецептора, создаваемые длительностями импульса освещения с двоичным весом в устройстве LCoS для случая, когда пакет полутоновых данных представляет собой последовательность (1111111111).

[0023] На фиг.11 показана итоговая временная диаграмма, иллюстрирующая формы волны модуляции для одного пикселя устройства LCoS и соответствующее положение пикселя в пространственном модуляторе света.

[0024] На фиг.12 показан график измеренной функции передачи полутонов или электрооптическая кривая (ЕО), иллюстрирующая немонотонные скачки между старшим битом и битом "старший бит - 1".

[0025] На фиг.13 показана кривая ЕО, модифицированная по сравнению с кривой на фиг.12 так, чтобы подогнать данные к желательной форме характеристики.

[0026] На фиг.14 показана последовательность операций способа согласно приведённому для примера варианту осуществления настоящего изобретения.

Подробное описание

[0027] В вариантах осуществления настоящего изобретения используется цифровая модуляция электрооптических элементов в пространственном модуляторе света записывающего оптического затвора с частотой, соответствующей произведению частоты кадров OASLM считывающего оптического затвора, количества битов полутонов для каждого изображения OASLM считывающего оптического затвора и количества модуляторов; OASLM считывающего оптического затвора, к которым адресуется пространственный модулятор света записывающего оптического затвора. Кроме того, сигнал прямоугольного напряжения чередующейся полярности подают на слой фоторецептора и многослойную жидкокристаллическую структуру модулятора OASLM считывающего оптического затвора с частотой - приблизительно 100 раз в секунду - выходного сигнала считывания. Отношение ёмкости на единичную площадь для фоторецептора и жидкого кристалла определяет пропорцию сигнала напряжения, возникающего на каждом слое считывающего оптического затвора. Начальное напряжение на жидком кристалле для состояния ВЫКЛЮЧЕНО (обычно уровень чёрного в модуляторе OASLM) устанавливают достаточно низким. Каждое изменение полярности сигнала напряжения в считывающем оптическом затворе соответствует новому периоду кадра OASLM. В зависимости от конкретных используемых материалов фоторецептор может работать с использованием наведённого светом распределения заряда или наведённой светом омической проводимости (например, в сульфиде кадмия CdS).

[0028] Варианты осуществления настоящего изобретения представляют собой альтернативный подход по сравнению с известными техническими решениями по созданию пространственной модуляции света с помощью оптически адресуемых пространственных модуляторов света (OASLM) или световых затворов. В модуляторе OASLM локальные изменения оптических свойств жидкокристаллического материала в устройстве вывода, то есть считывающем оптическом затворе, вызваны вводом оптического сигнала из записывающего оптического затвора. Современные источники изображения, такие как массивы светодиодов, массивы жидкокристаллических устройств (включая "жидкий кристалл на кремнии" [LCoS, liquid-crystal-on-silicon]), устройства на поликремнии и другие тонкопленочные транзисторные устройства, не имеют большинства недостатков, отмеченных выше при описании источника записи на основе электроннолучевой трубки (фиг.2). Они работают при низких напряжениях, занимают мало места и демонстрируют высокую геометрическую линейность. Однако они всё ещё имеют характеристики, которые препятствуют их использованию в качестве источника аналогового изображения в конфигурации, аналогичной показанной на фиг.2. Например, массив светодиодов может иметь ограничения по яркости, размеру массива, разрешающей способности или требовать наличия подвижных частей. Жидкий кристалл на кремнии (LCoS), возможно, лучше всего подходит для небольшого цифрового устройства, которое для создания полутоновой характеристики может работать в режиме широтно-импульсной модуляции. Однако отметим, что реализация на базе материала LCoS, подробно описанная ниже, является лишь представленным для примера вариантом осуществления настоящего изобретения, и изобретение не ограничивается только этим вариантом.

[0029] В течение кадра OASLM локализованный падающий свет подходящей длины волны производит на фоточувствительном слое разделение заряда, которое создаёт локальное увеличение напряжения на жидком кристалле. Благодаря влиянию локального разделения заряда в фоторецепторе на напряжение на нём и жидком кристалле двумерный массив записывающего света для каждой полутоновой плоскости данных преобразуется в двумерный массив инкрементов напряжения на жидком кристалле, которое накапливается за каждый период кадра OASLM. Когда полярность сигнала напряжения OASLM меняется, напряжение на жидком кристалле сбрасывается, и начинается новый период интегрирования света. Одним из способов сброса напряжения на жидком кристалле между изменениями полярности является установка сигнала напряжения OASLM в нуль и освещение фоторецептора записывающим световым лучом для разряда как напряжения на фоторецепторе, так и напряжения на жидком кристалле.

[0030] Схема цифровой модуляции, используемая здесь, обеспечивает освещение фоторецептора рядом импульсных световых изображений, идущих из записывающего оптического затвора, причём продолжительности или интенсивности импульсных световых изображений и их положения в периоде кадра комбинируют должным образом, как описано здесь, для создания монотонных напряжений на жидком кристалле. Записывающий свет генерируется светодиодом (LED, light emitted diode), другим источником света с управляемой амплитудой или переключаемым источником света. Если источник записывающего света включают и выключают, то временем записывающих световых импульсов управляют так, что они испускаются только тогда, когда соответствующий записывающий оптический затвор находится в стационарном оптическом состоянии. Если источник записывающего света имеет управляемую амплитуду, но никогда не выключается, то амплитудой записывающего света управляют так, чтобы произвести по существу эквивалентный результат. Оба способа создают последовательность импульсных световых изображений, одно для каждого полутона в каждом кадре. Схема имеет низкую стоимость и эффективна в отношении ширины полосы. Поэтому она хорошо подходит для использования с пространственными модуляторами света.

[0031] Метод полутоновой адресации влечет за собой работу модулятора OASLM в режиме накопления заряда для каждого кадра с использованием последовательности подаваемых импульсов напряжения для битового полутонового изображения, так что сумма продолжительностей для каждого кадра не превышает максимального времени накопления фоторецептора, которое зависит от параметров структуры. Для достижения надлежащей модуляции шкалы яркости с использованием одного записывающего оптического затвора, который должен последовательно производить запись каждой полутоновой битовой плоскости, необходимо разделить эти процессы записи во времени на время, достаточное для того, чтобы жидкий кристалл записывающего оптического затвора смог достичь стационарного состояния (заданное приложенным напряжением записи) до того, как он получит записывающий световой импульс из источника света.

[0032] Эта цель достигается в одном из вариантов осуществления настоящего изобретения путём назначения равных периодов для каждого бита от самого старшего бита (MSB, most significant bit) до самого младшего бита (least significant bit) для каждого пакета полутоновых данных. Например, в случае 10 полутоновых битов продолжительность каждого кадра полутоновых битов может быть 1 мс для периода кадра 10 мс. Затем входные импульсные световые изображения сдвигают относительно переднего фронта сигнала, подаваемого на модулятор OASLM считывающего оптического затвора, и множество входных импульсных световых изображений сдвигают во времени относительно друг друга. Каждый записывающий световой импульс может быть отрегулирован с разностью в продолжительности в пределах периода 1 мс для полутоновой битовой плоскости, или отрегулирован на различную интенсивность, или отрегулирован как по продолжительности, так и по интенсивности с формированием требуемого эффекта полутонов, как раскрыто в данном документе.

[0033] Система с использованием модуляторов OASLM, предложенная в данном варианте осуществления настоящего изобретения, включает три считывающих оптических затвора, один для каждого из трёх цветов (красный, зелёный и синий) считывающего света. Фоторецептор в каждом считывающем оптическом затворе определяет двумерный массив долей полного напряжения считывающего оптического затвора модулятора OASLM, создаваемого на множестве пикселей в жидкокристаллическом материале считывающего оптического затвора. Этот массив уровней напряжения, возникающих в жидком кристалле, получается в результате временного интегрирования фототока, генерируемого в ответ на каждую полутоновую битовую плоскость освещения, которая, в варианте осуществления настоящего изобретения, задаётся микродисплеем типа "жидкий кристалл на кремнии" (LCoS), освещаемом последовательностью полутоновых импульсов из источника записывающего света (например, ультрафиолетового светодиода или другого источника подходящей длины волны вне ультрафиолетового диапазона).

[0034] Последовательность импульсных световых изображений, управляющих количеством света, падающего на считывающий оптический затвор, достигает желаемого диапазона модуляции (то есть полутоновой, или яркостной, модуляции) для считывающего оптического затвора, когда интенсивность и продолжительность записывающих световых импульсов отрегулированы так, как раскрыто в настоящем описании. В случае системы OASLM импульсные световые изображения или записывающий свет распространяются из микродисплея LCoS (то есть записывающего оптического затвора), который модулирует выходной сигнал ультрафиолетового светодиода или другого источника света соответствующей длины волны.

[0035] Таким образом, задача управления параметрами передачи считывающих оптических затворов OASLM сводится к проблеме модуляции света, выходящего из записывающего оптического затвора. Те же соображения, рассмотренные выше по поводу применимости аналогового, цифрового PWM или цифрового DFM способов модуляции, применимы также к модуляторам OASLM. Однако проблема модуляции выходного сигнала записывающего оптического затвора имеет дополнительные сложности. В частности, источником ультрафиолетового света также нужно управлять, и при разработке схемы модуляции следует учитывать параметры интегрирования модуляторов OASLM. Рассматриваемые варианты осуществления настоящего изобретения достигают этой цели без значительного повышения стоимости или усложнения системы, а кроме того, используют с выгодой некоторые уникальные параметры модуляторов OASLM.

[0036] Принципы работы схемы полутоновой модуляции с использованием структуры OASLM, работающей в режиме накопления фотогенерированного электрического заряда, иллюстрируются на фиг.3 и 4. На фиг.3 показано, что световые импульсы 50 и 52 различной продолжительности и различной амплитуды/интенсивности в результате приводят к ступенчатому увеличению напряжения 54 и 56 в различных местах жидкокристаллического материала. Из-за различных начальных времён t1 и t2 и различных времён роста и спада сигнала в жидком кристалле падение световых импульсов 50 и 52 приводит к различным оптическим откликам 58 и 60 жидкого кристалла соответственно. Для наглядности показана относительно быстрая реакция жидкого кристалла. Для реализации вариантов осуществления настоящего изобретения нет необходимости, чтобы реакция считывающего оптического затвора на жидком кристалле была быстрой. Сигнал 68 напряжения, поданный на модулятор OASLM считывающего оптического затвора, работающий в области накопления заряда, обеспечивает ступенчатое увеличение 70 напряжения и оптическую реакцию 72 жидкого кристалла.

[0037] На фиг.3 на различные пиксели а и b считывающего оптического затвора поступают два входных световых импульса, соответствующие "единицам" различных битов полутонов, которые достигают различных мест в модуляторе OASLM в моменты времени, сдвинутые относительно переднего фронта 74 поданного сигнала 68 напряжения. Как показано, световые импульсы 50 и 52 имеют различную продолжительность и различную интенсивность; на практике или продолжительность, или интенсивность, или как продолжительность, так и интенсивность одного из импульсов может быть отрегулирована относительно других импульсов для обеспечения соответствующего веса бита.

[0038] На фиг.4 иллюстрируется комбинация световых импульсов 50 и 52, которые приходят в различные моменты и соответствуют "единицам" для различных битов в пакете полутоновых данных для одного и того же пикселя. Комбинация световых импульсов 50 и 52 обусловливает полутоновую реакцию 82, которая является результатом различного накопления заряда в модуляторе OASLM. На это накопление влияет как приход этих импульсов в различные моменты времени, так и общее количество фотонов записывающего света в каждом полутоновом импульсе, который достигает каждой пиксельной области считывающего оптического затвора. В частности, вклад 84, связанный со вторым световым импульсом 52, в полной полутоновой реакции 82 аналогичен вкладу 86, связанному с первым импульсом 50, в полной полутоновой реакции 82. Хотя более поздний импульс 52 имеет меньшую амплитуду, чем более ранний импульс 50, импульс 52 шире, чем импульс 50, в результате чего результирующее влияние на напряжение 54 на жидком кристалле и реакция 82 жидкого кристалла отличаются незначительно. Это ясно указывает, что модуляция может быть осуществлена изменением амплитуды, ширины импульса или, как показано на фиг.4, комбинацией изменения обоих параметров импульса.

[0039] Хотя для создания полутоновой реакции может непосредственно использоваться разность результирующей реакции для световых импульсов, приходящих в разное время, световые импульсы, приходящие в разное время, могут также иметь различные энергетические параметры (являющиеся результатом различных значений интенсивности, ширины или и того, и другого). Таким образом, световые импульсы, имеющие различные энергетические параметры и приходящие в разное время в течение периода накопления, могут иметь равные соответствующие полутоновые реакции. Кроме того, большая полутоновая реакция может быть достигнута для второго (позднего), более высокоэнергетического светового импульса по сравнению с реакцией от первого (раннего), более низкоэнергетического светового импульса. Свойство модулятора OASLM накапливать фотогенерированный электрический заряд позволяет значительно уменьшить диапазон амплитуд или длительностей импульсных световых изображений. Например, для 10-разрядных пиксельных данных, которые представлены в четных временных интервалах за период кадра и в которых каждый световой импульс изображения представляет битовую плоскость данных, амплитуда изображения или продолжительность могут варьироваться приблизительно в диапазоне 40:1 для битового весового диапазона от наиболее старшего бита до наиболее младшего бита, составляющего 512:1.

[0040] В большей части современных цифровых схем модуляции диапазон временных периодов между самым старшим битом и самым младшим битом косвенно определяет требования к ширине полосы данных системы. Для обычных систем с 10 битовой разрешающей способностью разность временных периодов от старшего к младшему битам составляет 512:1. Такую ширину полосы данных, которая связана с этой разностью диапазонов, может быть трудно обеспечить. Накопление заряда или интегрирование фотогенерированного заряда совместно с использованием импульсных световых изображений может значительно снизить ширину полосы данных. Это связано с тем, что способность создавать импульсные световые изображения эффективно уменьшает время, необходимое для создания изменения напряжения для каждого полутонового импульсного изображения по сравнению с фактическим временем, затрачиваемым для записи битовой плоскости. Когда изображения на записывающем оптическом затворе подаются в виде импульсов, электрические заряды формируются, и напряжение на жидком кристалле модулятора OASLM меняется (или интегрируется) до нового значения, которое пропорционально уровню освещения и ширине импульса. С другой стороны, когда нет никакого локализованного импульсного света, напряжение на фоторецепторе остаётся постоянным.

[0041] На фиг,5 показана упрощенная блок-схема системы 100 модулятора OASLM, в которой цифровую модуляцию выполняют так, чтобы свет на выходе характеризовался по существу монотонной полутоновой зависимостью. В частности, на фиг.5 показан вариант осуществления настоящего изобретения, в котором используется режим передачи OASLM, так что источник записывающего света и фоторецептор работают в ультрафиолетовом диапазоне длин волн, чтобы избежать интерференции со считывающим светом. В соответствующем диапазоне длин волн может применяться режим отражения OASLM с использованием тех же принципов, которые проиллюстрированы на фиг.5 и подробно обсуждаются ниже. Система 100 модулятора OASLM имеет оптический тракт 102 записи и оптический тракт 104 считывания. Оптический тракт 102 записи состоит из участка, вдоль которого распространяется луч, задающий изображение. Ультрафиолетовый светодиод 105 представляет собой импульсный источник ультрафиолетового записывающего света. Импульсный ультрафиолетовый свет, выходящий из ультрафиолетового светодиода 105, проходит через туннельный интегратор 106, группу 108 объективов переноса и поляризационный светоделитель 110 для обеспечения однородного прямоугольного освещения, которое соответствует формату изображения в микродисплейном устройстве 112 LCoS. Часть света с S-поляризацией проходит через поляризационный расщепитель луча 110. Часть света с s-поляризацией отражается поляризационным расщепителем луча 110 в устройство 112 LCoS. Сигналы управления светом подаются в ультрафиолетовый светодиод 105 с помощью контроллера 114.

[0042] Устройство 112 в ответ на данные изображения, поступающие в него из контроллера 114, выдаёт изображения в виде ультрафиолетового записывающего света для выбранного цветового компонента из основных цветов (RGB, красный-зелёный-синий). Модулированный свет, отраженный назад от устройства 112 LCoS, поступает обратно в поляризационный расщепитель луча. Часть отраженного модулированного света с S-поляризацией проходит через поляризационный расщепитель луча, преобразуется линзой 140 формирования изображения и отражается от наклонного дихроического зеркала 142, падая на модулятор 144 OASLM. Модулятор 144 OASLM предпочтительно соответствует модулятору, показанному на фиг.1-3, 4А и 4В в заявке PCT/US 2005/018305. Модулированный свет, падающий на фоторецепторный слой модулятора 144 OASLM, приводит к созданию напряжения на жидкокристаллическом слое. Это напряжение вызывает ориентацию поля директоров, которая соответствует интегрированной интенсивности соответствующего падающего ультрафиолетового записывающего света. Контроллер 114 подаёт сигнал напряжения в модулятор 144, обеспечивая создание на жидком кристалле напряжения, должным образом синхронизированного с падением ультрафиолетового записывающего света.

[0043] Оптический тракт 104 считывания содержит дуговую лампу 146, которая испускает хаотически поляризованный белый свет. Белый свет проходит через поляризационный преобразователь 148, выполненный как интегральная часть узла из массива фасеточных линз [линз типа "мушиный глаз"] 150 и 152, а затем через фокусирующую линзу 154 и линейный поляризатор 156, в результате чего образуется линейно поляризованный свет в виде однородного прямоугольного света, который соответствует формату изображения на считывающем оптическом затворе 144 OASLM. Наклонное дихроическое зеркало 142 отделяет от белого света выбранный компонент основного цвета и направляет его через полевые линзы (не показаны) в модулятор OASLM 144 считывающего оптического затвора. В зависимости от изображения, определяемого ультрафиолетовым записывающим световым лучом, цветовой компонент или проходит через анализатор 158, или поглощается в этом анализаторе, расположенном вблизи модулятора 144 OASLM считывающего оптического затвора, обеспечивая модуляцию интенсивности соответствующего контента цветового изображения. Модулированный световой луч, проходящий через модулятор 144 OASLM считывающего оптического затвора, направляется через проекционную линзу 160 для генерации цветного изображения для проецирования на экран дисплея (не показан).

[0044] Контроллер 114 координирует цифровую модуляцию устройства 112 LCoS в соответствии с данными плоскости изображения, временем испускания импульсного света из ультрафиолетовых диодов 105 и аналоговым управлением модуляцией считывающего модулятора 144 OASLM считывающего оптического затвора, обеспечивая создание видимого аналогового мо