Система (варианты) и способ детектирования акустических сигналов, приходящих из скважины
Иллюстрации
Показать всеГруппа изобретений относится к детектированию акустических сигналов, генерируемых в скважинной системе. Система для детектирования акустических сигналов содержит нагнетательную колонну труб для нагнетания нагретой текучей среды, которая генерирует акустический сигнал, акустический детектор и анализатор акустического сигнала. Акустический детектор детектирует акустический сигнал, а анализатор акустического сигнала интерпретирует детектированный акустический сигнал. При этом нагнетательная колонна содержит первое осцилляторное устройство, обеспечивающее подачу в осциллирующем режиме потока текучей среды в ствол скважины, а указанный акустический сигнал создается осцилляциями давления в текучей среде. Предложенная группа изобретений обеспечивает получение информации о состоянии системы. 2 н. и 13 з.п. ф-лы, 10 ил.
Реферат
Область техники
Изобретение относится к детектированию акустических сигналов, генерируемых в скважинной системе.
Уровень техники
Рабочие (воздействующие) текучие среды могут инжектироваться в подземную формацию, чтобы облегчить добычу из формации флюидных ресурсов. Например, нагретые рабочие текучие среды (в частности, теплопереносящие текучие среды), такие как пар, могут использоваться, чтобы понизить вязкость флюидных ресурсов формации, в результате чего облегчается приток ресурсов в скважину с их последующим подъемом на поверхность. В качестве другого примера, рабочие текучие среды могут нагнетаться (инжектироваться) в одну или более нагнетающих скважин, чтобы способствовать притоку флюидных ресурсов к другим скважинам. Способ и система для детектирования акустических сигналов, генерируемых в скважинной системе, содержащая: нагнетательную колонну труб для нагнетания текучей среды, которая нагнетает указанную среду в часть скважины, находящуюся в пласте, и генерирует акустический сигнал; акустический детектор, детектирующий акустический сигнал, и анализатор акустического сигнала, который интерпретирует детектированный акустический сигнал, описана, например, в WO 99/02819 А1, кл. E21B 37/06, 21.01.1999. Аналогичные способ и система, дополнительно обеспечивающие нагрев нагнетаемой текучей среды, описаны, например, в SU 1144448 А1, кл. E21B 42/24, 15.02.1994.
Раскрытие изобретения
Изобретение обеспечивает создание системы для детектирования акустических сигналов, генерируемых в скважинной системе, содержащей:
нагнетательную колонну труб для нагнетания нагретой текучей среды, которая нагнетает указанную среду в часть скважины, находящуюся в пласте, и генерирует акустический сигнал;
акустический детектор, детектирующий акустический сигнал, и
анализатор акустического сигнала, который интерпретирует детектированный акустический сигнал.
Система по изобретению характеризуется тем, что нагнетательная колонна содержит осцилляторное устройство, обеспечивающее подачу в осциллирующем режиме потока текучей среды в ствол скважины, при этом указанный акустический сигнал создается осцилляциями давления в текучей среде.
Изобретение охватывает также способ детектирования акустических сигналов, генерируемых в скважинной системе, включающий следующие операции:
детектируют акустический сигнал, генерируемый в связи с нагнетанием нагретой рабочей текучей среды в часть скважины, находящуюся в пласте, и
интерпретируют детектированный акустический сигнал.
Способ по изобретению характеризуется тем, что акустический сигнал создают осцилляциями давления в текучей среде при подаче в осциллирующем режиме потока текучей среды в ствол скважины.
В некоторых вариантах изобретения колонна труб для нагнетания нагретой текучей среды нагнетает (закачивает) нагретую рабочую текучую среду в часть скважины, находящуюся в подземной зоне (в пласте), и генерирует акустический сигнал. Акустический детектор детектирует акустический сигнал, а анализатор акустического сигнала интерпретирует детектированный акустический сигнал.
В некоторых вариантах детектируют акустический сигнал, сгенерированный в связи с нагнетанием нагретой рабочей текучей среды в часть скважины, находящуюся в пласте, и интерпретируют детектированный акустический сигнал.
Согласно некоторым вариантам акустический сигнал, связанный с нагнетанием нагретой рабочей текучей среды в часть скважины, находящуюся в пласте, генерируется нагнетательной колонной. Акустический детектор детектирует этот сигнал, а анализатор акустического сигнала интерпретирует детектированный акустический сигнал.
Варианты изобретения могут характеризоваться одним или более из приводимых далее признаков. Анализатор акустического сигнала интерпретирует детектированный акустический сигнал, чтобы извлечь информацию, по меньшей мере, об одном из следующих объектов: нагнетательной колонне труб для нагнетания нагретой текучей среды, скважине или пласте. Извлекаемая информация включает информацию, относящуюся, по меньшей мере, к одному из следующих видов: описанию подземной формации, целостности (неповрежденности) скважины или функционированию нагнетательной колонны. Информация, относящаяся к описанию подземной формации, включает информацию, относящуюся, по меньшей мере, к положению границы текучей среды или к движению указанной границы. Информация, относящаяся к целостности скважины, включает информацию, относящуюся, по меньшей мере, к одному из следующих событий: утечке в компоненте скважины, утечке в оборудовании, установленном в скважине, наличию препятствия для потока в скважине и наличию препятствия для потока в оборудовании, установленном в скважине. Информация, относящаяся к функционированию нагнетательной колонны, включает информацию, относящуюся, по меньшей мере, к одному из следующих параметров: отношению воздух/топливо, температуре горения, эффективности горения и составу текучей среды.
Система дополнительно содержит контроллер, сконфигурированный с возможностью модифицировать, по меньшей мере, один аспект функционирования нагнетательной колонны на основе информации, предоставленной анализатором акустического сигнала. Нагнетательная колонна содержит, по меньшей мере, осцилляторное устройство для текучей среды, свисток или гудок. Акустический детектор содержит датчики, установленные в различных точках. При этом он содержит, по меньшей мере, один датчик, установленный в скважине, на поверхности земли или в другой скважине. Акустический детектор содержит, по меньшей мере, один датчик, установленный непосредственно на поверхности, по меньшей мере, одного компонента нагнетательной колонны. Нагнетательная колонна содержит парогенератор, установленный в скважине.
Нагретую рабочую текучую среду нагнетают в скважину с целью генерирования детектируемых акустических сигналов в течение множества временных периодов. Интерпретирование детектированного акустического сигнала включает идентифицирование одного из следующих свойств детектированного акустического сигнала: амплитуды, фазы или частоты. Функционирование скважинного оборудования модифицируют, по меньшей мере, частично на основе результатов интерпретирования детектированного акустического сигнала. Интерпретирование детектированного акустического сигнала включает идентифицирование переднего фронта акустического сигнала, генерируемого указанным осцилляторным устройством. Детектирование акустического сигнала включает детектирование акустического сигнала, генерируемого, по меньшей мере, одним из следующих устройств: парогенератором, осцилляторным устройством, свистком или гудком. Детектирование акустического сигнала включает детектирование первичного и вторичного акустических сигналов. Детектирование акустического сигнала включает детектирование, по меньшей мере, отраженного акустического сигнала или пропущенного акустического сигнала. Акустический сигнал включает первый акустический сигнал, при этом также детектируют и интерпретируют второй акустический сигнал. Движение границы текучей среды в пласте идентифицируют, по меньшей мере частично, на основе результатов интерпретирования первого и второго акустических сигналов. При этом идентифицирование движения границы текучей среды включает идентифицирование движения фронта потока пара. Свойства первого акустического сигнала сравнивают со свойствами второго акустического сигнала и идентифицируют различия между первым акустическим сигналом и вторым акустическим сигналом. Первый акустический сигнал детектируют в течение первого временного периода, а второй акустический сигнал детектируют в течение второго временного периода, наступающего позже первого временного периода. Первый и второй акустические сигналы детектируют в течение одного и того же временного периода. Первый акустический сигнал включает первый набор частот, а второй акустический сигнал включает второй набор частот, не содержащихся в первом наборе частот. Первый акустический сигнал детектируют в первой точке, а второй акустический сигнал детектируют во второй точке.
Нагнетательная колонна содержит осцилляторное устройство, внутренняя поверхность которого образует его внутренний объем, вход во внутренний объем и выход из внутреннего объема, при этом в процессе приема, через указанный вход сжимаемой рабочей текучей среды во внутренний объем и варьирования во времени расхода сжимаемой рабочей текучей среды, выходящей из внутреннего объема через указанный выход, указанная внутренняя поверхность находится в статическом состоянии. Нагнетательная колонна содержит дополнительное осцилляторное устройство и клапан для осуществления селективной подачи нагретой рабочей текучей среды, по меньшей мере, к указанному осцилляторному устройству или к дополнительному осцилляторному устройству. Осцилляторное устройство содержит первый паровой свисток, сконфигурированный с возможностью генерировать акустический сигнал, включающий первый интервал частот, а дополнительное осцилляторное устройство содержит второй паровой свисток, сконфигурированный с возможностью генерировать акустический сигнал, включающий второй интервал частот. Система по изобретению дополнительно содержит байпасный трубопровод и клапан для осуществления селективной подачи нагретой рабочей текучей среды, по меньшей мере, к одному из следующих объектов: осцилляторному устройству, дополнительному осцилляторному устройству или байпасному трубопроводу.
Краткое описание чертежей
Осуществление вариантов изобретения иллюстрируется прилагаемыми чертежами и нижеследующим подробным описанием. Из этого описания, а также из чертежей и прилагаемой формулы станут понятны и другие признаки изобретения.
На фиг.1A-1D схематично, в частичном разрезе представлены примеры скважинных систем.
На фиг.2 схематично иллюстрируется распространение акустических сигналов в скважинной системе.
На фиг.3А-3С иллюстрируются варианты выполнения компонентов скважинной системы, причем на фиг.3А на виде сбоку показан узел парового свистка; на фиг.3В этот узел представлен в разрезе плоскостью 3В-3В (см. фиг.3А); на фиг.3С представлен в продольном разрезе вариант втулки парового осцилляторного устройства.
На фиг.4А и 4В представлены блок-схемы, иллюстрирующие варианты способа детектирования акустических сигналов, генерируемых в скважинной системе.
Осуществление изобретения
Изобретение относится к получению информации о функционировании скважинной системы и свойствах подземной формации посредством детектирования и анализирования (интерпретирования) акустических сигналов, сгенерированных компонентами скважинной системы, содержащей, например, ствол скважины, пробуренный к подземной формации, и/или установленное в нем оборудование (например, заканчивающую колонну, один или более инструментов, связанных с этой колонной, обсадную колонну, пакеры, управляющие системы и/или другие компоненты). В некоторых случаях, например в процессе функционирования, компонент скважинной системы генерирует акустические сигналы. Эти сигналы, генерируемые компонентом скважинной системы, могут детектироваться одним или более датчиками. В некоторых случаях акустические сигналы могут детектироваться после их взаимодействия с одной или более средами взаимодействия в составе скважинной системы или подземной формации. Анализ детектированных акустических сигналов может обеспечить информацию о данных средах и/или о компоненте скважинной системы, генерирующем акустические сигналы. В некоторых вариантах акустические сигналы могут распространяться, отражаться, ослабляться, смещаться по фазе, фильтроваться и/или изменяться под воздействием всех или части сред взаимодействия иным образом, зависящим, например, от акустического импеданса этих сред. Анализ распространения, отражения, ослабления, фазового сдвига, фильтрации и/или других эффектов может дать информацию о среде взаимодействия. Примеры сред взаимодействия включают текучие и нетекучие среды (соответствующие стволу скважины и компонентам скважинной системы, рабочим текучим средам, подземной формации, окружающей ствол скважины, и содержащимся в ней ресурсам, средам над поверхностью земли и/или поверхностным компонентам системы).
Акустические сигналы могут соответствовать механическим вибрациям, распространяющимся в текучей среде или в среде любого иного типа. Акустические сигналы могут включать, например, звуковые волны, сейсмические волны, первичные, вторичные, третичные волны и т.д. Например, первичная волна может включать акустический сигнал, распространяющийся непосредственно от источника к детектору, тогда как вторичная волна может включать отраженный акустический сигнал, попадающий от источника на детектор непрямым путем. Акустические сигналы могут включать продольные волны (например, волны сжатия) и/или поперечные волны (например, сдвиговые волны). Акустические сигналы могут лежать в широком частотном диапазоне. Например, они могут иметь частоты в интервалах 1-100 Гц, 0,1-1,0 кГц, 1-100 кГц и/или в других частотных интервалах. В ряде вариантов акустические сигналы могут включать одну или более частот, лежащих ниже, в пределах и/или выше диапазона звуковых частот. В некоторых вариантах акустические сигналы лежат в интервале от 1 Гц до 100 кГц.
Акустические сигналы могут генерироваться осцилляторным устройством или осцилляторной системой и/или парогенератором, установленным в стволе скважины. Парогенератор может содержать топку, которая при своем функционировании генерирует акустические сигналы. В качестве другого примера, осцилляторное устройство может создавать осцилляции в сжимаемой рабочей текучей среде в стволе скважины, чтобы генерировать акустические сигналы, способствующие повышению добычи из пласта. По меньшей мере, часть акустических сигналов, генерируемых осцилляторным устройством и/или парогенератором, может детектироваться одним или более датчиками. В некоторых случаях до того, как они достигнут одного или более датчиков, акустические сигналы могут вступать во взаимодействие со средой взаимодействия, такой как компонент скважинной системы и/или область подземной формации, окружающей ствол скважины. Воздействие среды взаимодействия на акустический сигнал может зависеть от акустического импеданса или от его вариаций в среде взаимодействия. Анализ детектированных акустических сигналов может дать информацию о парогенераторе, осцилляторном устройстве, среде взаимодействия и/или других объектах.
В некоторых случаях акустический сигнал может быть детектирован, например, поверхностными акустическими датчиками, акустическими датчиками, установленными внутри и/или вокруг ствола скважины, акустическими датчиками в другом стволе скважины и/или акустическими датчиками, расположенными в других местах. Акустический датчик, такой как гидрофон, геофон или датчик другого типа, может содержать преобразователь для преобразования акустических сигналов в электромагнитные сигналы. В некоторых случаях акустический датчик устанавливается непосредственно на компонент скважинной системы, генерирующий звук, или вблизи этого компонента. Анализ детектированных акустических сигналов может включать Фурье-анализ частотных компонентов акустических сигналов. Например, анализ детектированных акустических сигналов может включать Фурье-преобразование данных во временной области с целью идентифицировать данные о фазе и/или амплитуде на различных частотах. Анализ детектированных акустических сигналов может включать также идентифицирование переднего фронта акустического сигнала, например переходного сигнала, а также идентифицирование функции отклика среды взаимодействия. Идентифицирование функции отклика может, в свою очередь, включать анализ акустического сигнала на множестве частот и/или интенсивностей. Анализ детектированных акустических сигналов может дать информацию о ресурсах и/или формациях в интересующей подземной зоне.
Акустические данные могут включать единственный акустический сигнал или множество акустических сигналов, принятых в различные временные периоды и/или во множестве различных точек. При этом акустические данные могут быть одномерными (1-D) и/или многомерными, например двумерными (2-D), трехмерными (3-D), четырехмерными (4-D) и т.д. Размерность массива акустических данных может соответствовать любому релевантному параметру. Например, она может соответствовать пространственному параметру (такому как положение или волновое число), временному параметру (такому как время или частота во временной области) или параметру другого типа (например, фазе или амплитуде). Данные типа 1-D могут включать амплитуду отраженного (или пропущенного) сигнала как функцию времени и/или пройденного расстояния. Данные типа 2-D могут включать серию массивов данных типа 1-D, пространственно распределенных вдоль заданной трассы, например, с целью получить данные для сечения подземной зоны. Альтернативно данные типа 2-D могут включать серию массивов данных типа 1-D, распределенных во времени в пределах интересующего периода. Данные типа 3-D могут включать серию массивов данных типа 1-D, пространственно распределенных по некоторой площади, например, с целью получить объемные данные о подземной зоне. Данные типа 4-D могут включать временные ряды массивов данных типа 3-D.
В некоторых случаях анализ акустических сигналов включает интерпретирование акустических сигналов, которое может обеспечивать получение информации, относящейся к расположению границ между средами с различными акустическими импедансами, например границ текучей среды, в частности границ между такими веществами, как нефть, вода, газ, пар. Граница текучей среды может включать фронт потока пара, причем анализ акустического сигнала может дать информацию, связанную с положением, распределением и/или миграцией фронта потока пара. В некоторых случаях анализ детектированных акустических сигналов может включать их коррелирование с сейсмическими данными, данными акустического каротажа и/или другими данными каротажа. В некоторых случаях при анализе могут использоваться входные акустические сигналы, детектированные в течение двух или более различных временных интервалов, и/или детектированные волны, соответствующие частотным интервалам первого осцилляторного устройства и, по меньшей мере, второго осцилляторного устройства. В некоторых случаях анализ акустических сигналов включает интерпретирование акустических сигналов с целью получить информацию о функциональных аспектах одного или более компонентов скважинной системы. В некоторых случаях получаемая информация может включать информацию о функциональном состоянии топки, например об отношении воздух/топливо, температуре горения, эффективности сжигания топлива, и/или другие данные. В некоторых случаях анализ детектированных акустических сигналов может включать коррелирование детектированных данных с данными управления, например с данными, относящимися к идеальному и/или неидеальному функциональному состоянию топки.
Промежуток времени между моментом генерирования акустического сигнала акустическим источником и моментом детектирования последовательности отраженных акустических сигналов акустическим детектором дает в некоторых вариантах оценки глубины соответствующих границ и/или формаций, от которых были отражены соответствующие волны. Амплитуды отраженных акустических сигналов могут быть функцией плотности и пористости соответствующих границ, от которых отразились указанные волны, а также формаций, через которые они прошли. Фазовый угол и частотное содержание отраженных акустических сигналов может зависеть от флюидов формации, подземных ресурсов и/или других характеристик формации.
В некоторых вариантах акустические данные могут быть использованы для мониторинга миграции текучих сред, например движения фронта потока пара и/или миграции ресурсов (например, нефти) под воздействием инжектированного пара. В других вариантах акустические данные могут быть использованы для мониторинга и/или зондирования целостности скважинной системы. Например, акустические данные могут обеспечить информацию о наличии в скважинном оборудовании трещин и/или утечек. В некоторых вариантах акустические данные могут быть использованы для мониторинга функционирования парогенератора.
На фиг.1А представлена схема, иллюстрирующая скважинную систему 100а. Представленный вариант скважинной системы 100а содержит ствол 102 скважины, пробуренной к подземной формации, расположенной под поверхностью 110 земли. Ствол 102 скважины обсажен обсадной колонной 108, которая может быть зацементирована в стволе 102 скважины. В некоторых случаях ствол 102 скважины может быть открытым стволом, при отсутствии обсадной колонны 108. Представленный ствол 102 скважины содержит вертикальную секцию и горизонтальную секцию. Однако ствол скважины может быть вертикальным, без каких-либо горизонтальных секций. Альтернативно ствол скважины может представлять собой любую комбинацию горизонтальных, вертикальных, изогнутых и/или наклонных секций. В многоствольных, например двуствольных, скважинах или скважинах для реализации метода гравитационного дренирования при закачке пара (steam assisted gravity drainage, SAGD) ствол скважины может состоять из нескольких параллельных секций. Пакеры 152 изолируют осевые секции ствола скважины, например, путем формирования уплотнения, перекрывающего канал для потока между этими секциями.
У подземной формации имеется множество зон (пластов) 112а, 112b, 112с. Эти пласты могут включать слоистые структуры, причем конкретный пласт может включать несколько слоев и/или часть одного слоя. Пласты могут содержать скальные породы, минералы и ресурсы, обладающие различными свойствами. Например, пласты могут включать пористые скальные породы, скальные обломки, пар, нефть, газ, уголь, воду, песок и/или другие материалы. В некоторых случаях акустические данные используются для идентификации свойства пласта.
Скважинная система 100а содержит рабочую колонну 106, сконфигурированную для установки в стволе 102 скважины. Рабочая колонна 106, которая заканчивается выше уровня поверхности 110, в устье 104 скважины, образует трубопровод, сконфигурированный с возможностью переноса материала в ствол 102 скважины и/или из него. Например, по рабочей колонне 106 можно подавать текучую среду (например, пар или теплопереносящую текучую среду иного типа) к определенной части ствола 102 скважины. Рабочая колонна 106 может быть связана с источником текучей среды. Примерами источников текучей среды являются парогенератор, котел, машина внутреннего сгорания или иной агрегат внутреннего сгорания, трубопровод, например, для подачи природного газа и/или резервуар для топлива (находящегося под давлением).
В представленном примере рабочая колонна 106 может представлять собой нагнетательную колонну для нагнетания (инжекции) нагретой рабочей текучей среды в ствол 102 скважины. В рабочей колонне 106 устанавливаются и/или к ней крепятся различные инструменты и оборудование. Скважинная система 100а содержит также паровые осцилляторные системы 118а и 118b для осуществления осцилляции в потоке текучей среды, поступающей в ствол 102 скважины. Нагнетательная колонна может содержать любое количество паровых осцилляторных систем 118; однако в некоторых случаях она вообще не содержит таких систем. Показанная рабочая колонна 106 содержит парогенератор 116, связанный по потоку с паровой осцилляторной системой 118а. Парогенератор 116 представляет собой источник текучей среды, который может быть установлен в любом месте скважинной системы 100а. Например, парогенератор 116 может быть установлен в любом месте внутри ствола 102 скважины или выше уровня поверхности 110, снаружи ствола 102. Показанный в качестве примера скважинный парогенератор 116 имеет входы для приема текучей среды с поверхности 110. При этом парогенератор 116 нагревает поступающую текучую среду, чтобы генерировать пар и/или получить нагретую теплопереносящую текучую среду другого типа. В некоторых вариантах тепло образуется в результате одного или более процессов горения (например, сжигания топлива и кислорода), химического процесса другого типа, электронагрева и/или других процессов. В ряде случаев для генерирования акустических сигналов нагнетательная колонна может содержать один или более гудков. Например, для генерирования, передачи и/или поддерживания акустических сигналов гудок может быть выполнен с сужающейся внутренней полостью.
Обсадная колонна может быть снабжена перфорационными отверстиями 114 в области любой подземной зоны (пласта). Через перфорационные отверстия 114 изображенной обсадной колонны 108 пар может быть инжектирован в пласты 112а и/или 112b. В некоторых случаях пар инжектируют в эти пласты через данные отверстия 114 с осциллирующим расходом. Кроме того, через перфорационные отверстия 114 из продуктивного пласта могут поступать различные ресурсы (например, нефть, газ и/или другие флюиды), а также другие материалы (например, песок и/или вода). Обсадная колонна 108 и/или рабочая колонна 106 могут содержать также различные системы и оборудование (не изображены). Например, обсадная колонна и/или рабочая колонна могут содержать устройства для контроля притока, противопесчаные фильтры, хвостовики, снабженные прорезями, подвески хвостовиков и/или другие компоненты.
Скважинная система 100а имеет также управляющую систему, которая содержит контроллер 120, сигнальные линии 124 и датчики 122а, 122b, 122с, 122d, 122е, 122f, 122g, 122h (совместно именуемые датчиками 122). Показанные датчики 122 детектируют акустические сигналы. Примерами датчиков 122 могут служить, в частности, геофоны, гидрофоны и измерительные преобразователи давления, устанавливаемые на поверхности 110, в стволе 102 скважины или в другом стволе (например, расположенном смежно со стволом 102). В некоторых вариантах управляющая система содержит дополнительные датчики, которые детектируют другие физические параметры, отличные от акустических сигналов. Например, управляющая система может содержать также датчики, которые детектируют температуру, давление, расход, ток, напряжение и/или какие-либо иные параметры. В некоторых случаях управляющая система содержит также монитор 126, на котором могут отображаться данные, относящиеся к скважинной системе 100а. Монитор 126 может представлять собой жидкокристаллический дисплей, электронно-лучевую трубку или любое другое устройство для отображения графической информации. Управляющая система содержит одну или более сигнальных линий 124, которые обеспечивают возможность связи между компонентами скважинной системы 100а. Например, по сигнальным линиям 124 датчики могут передавать данные контроллеру 120, а контроллер 120 может посылать сигналы управления парогенератору 116 и/или паровой осцилляторной системе 118. В ряде вариантов датчики 122 связываются с контроллером 120, используя выделенные сигнальные линии. В других вариантах датчики 122 осуществляют связь посредством сигнальных линий совместного пользования. В некоторых случаях сигнальные линии содержат металлические проводники, волоконные световоды и/или другие подходящие элементы. В отдельных вариантах некоторые или все сигнальные линии 124 могут отсутствовать. Например, датчики 122 могут передавать данные на поверхность 110, используя электромагнитную связь, которая не требует протягивания в скважину сигнальных линий. В качестве канала электромагнитной связи может быть использована низкочастотная электромагнитная телеметрия.
Датчики 122 могут находиться в различных точках скважинной системы 100а. В представленном примере датчик 122а установлен над поверхностью 110 земли, вблизи устья 104 скважины, датчик 122b - над поверхностью 110 земли, на расстоянии от устья 104 скважины, датчик 122с - ниже поверхности 110 земли, на расстоянии от устья 104 скважины, датчик 122d - в стволе 102 скважины, с небольшим смещением в радиальном направлении относительно обсадной колонны 108, а в продольном направлении между поверхностью 110 земли и паровой осцилляторной системой 118, датчик 122е - в стволе 102 скважины, с небольшим смещением в радиальном направлении относительно рабочей колонны 106, а в продольном направлении между поверхностью 110 земли и паровой осцилляторной системой 118; датчик 122f - вблизи парогенератора 116, датчик 122g - вблизи паровой осцилляторной системы 118а; датчик 122h - в стволе 102 скважины, с небольшим смещением в радиальном направлении относительно обсадной колонны 108, а в продольном направлении за паровой осцилляторной системой 118а; датчик 122i - вблизи паровой осцилляторной системы 118b. Датчики могут быть установлены также в дополнительных и/или альтернативных точках, не показанных на фиг.1А.
Один или более датчиков 122 могут быть интегрированы в конструкцию одного или более компонентов скважинной системы. Например, датчик 122f может быть интегрирован в конструкцию парогенератора 116. Альтернативно датчик 122f может быть выполнен как отдельное устройство, чувствительное к акустическим сигналам и установленное вблизи парогенератора 116. В качестве другого примера, датчик 122g может быть установлен не вблизи паровой осцилляторной системы 118а, а интегрирован в конструкцию этой системы. В некоторых случаях скважинная система 100а является многоствольной, причем один или более датчиков могут быть установлены не в стволе 102 скважины, а в другом ее стволе (как это показано на фиг.1C). Например, датчиком, интегрированным в конструкцию компонента скважинной системы, установленного в другом стволе, может быть датчик 122с, показанный на фиг.1А. В других вариантах датчик 122с может быть установлен ниже поверхности 110 с применением какой-либо иной технологии. Датчик, установленный вблизи нагнетательной колонны, может использоваться для детектирования опорного акустического сигнала (базовой линии) от акустического источника. Например, датчик 122g может использоваться для детектирования опорного акустического сигнала от паровой осцилляторной системы 118а. Этот опорный акустический сигнал может сравниваться с акустическим сигналом, детектируемым другим датчиком 122, расположенным на большем расстоянии от паровой осцилляторной системы 118а (например, датчиком 122b).
На фиг.1В более подробно представлена часть скважинной системы 100b. Как показано на фиг.1В, паровая осцилляторная система 118 подает пар 154а и/или другие теплопереносящие текучие среды в ствол 102 скважины ниже пакера 152. Пакер 152 изолирует продольные секции ствола 102 скважины одну от другой и перекрывает путь пару 154а по стволу 102 скважины в направлении поверхности 110. Пар 154а проникает в пласт 112 через перфорационные отверстия 114, расположенные ниже пакера 152. Пар 154b, который проник в подземную формацию из ствола 102 скважины, способен понизить вязкость флюидных ресурсов 156 и/или каким-либо иным образом стимулировать добычу из пласта. Когда пар растекается по пласту 112, фронт 158 потока пара перемещается по этому пласту. В некоторых случаях акустические данные можно использовать для мониторинга движения фронта 158 потока пара. Например, фронт потока пара может соответствовать границе между паром 154b и флюидными ресурсами 156. Соответственно, фронт потока пара может представлять место скачка акустического импеданса, который может детектироваться путем обработки акустических сигналов, отраженных фронтом 158 потока пара и/или пропущенных им. Для управления работой компонентов скважинной системы 100b она содержит средства 140 управления. Эти средства могут поддерживать связь с компонентами скважинной системы 100b, включая управляющие клапаны 150а, 150b и 150с. Например, средства 140 управления могут осуществлять связь с управляющими клапанами 150а, 150b, 150с по управляющим линиям 144а, 144b, 144с соответственно. Управляющие линии 144а, 144b, 144с могут представлять собой электрические, гидравлические, волоконнооптические и/или другие управляющие линии.
Управляющие клапаны 150а, 150b, 150с могут быть реализованы как регулирующие клапаны, контролирующие расход текучей среды в трубопроводе. Эти управляющие клапаны могут применяться для управления работой одного или более компонентов скважинной системы. Например, рабочая колонна 106 может подавать к парогенератору 116 окислитель, в частности воздух и/или кислород, с расходом, контролируемым посредством управляющего клапана 150а. Трубопровод 146 может подавать к парогенератору 116 топливо, такое, например, как жидкое горючее, природный газ, пропан, с расходом, контролируемым управляющим клапаном 150b, а трубопровод 148 может подавать к парогенератору 116 теплопереносящую текучую среду, такую, например, как вода, пар и/или синтетическая текучая среда, с расходом, контролируемым посредством управляющего клапана 150с. Средства 140 управления могут посылать управляющим клапанам 150а, 150b, 150с сигналы на основе данных, полученных от контроллера 120.
В одном из вариантов функционирования системы парогенератор 116 генерирует пар, используя материалы, полученные им из рабочей колонны 106 и трубопроводов 146 и 148. У парогенератора 116 имеется топка 182, в которой может сжигаться топливовоздушная смесь. Режим работы топки 182 может контролироваться и/или изменяться в зависимости от акустических сигналов, детектируемых датчиком, например датчиком 122f. Сам парогенератор 116 при своем функционировании также генерирует акустические сигналы. Например, в парогенераторе 116, который генерирует тепло в результате горения, процесс горения может генерировать акустические сигналы, которые можно использовать, чтобы характеризовать этот процесс. Акустические сигналы детектируются одним или более датчиками 122f, 122g, 122h и/или другими датчиками. Детектированные акустические данные передаются контроллеру 120, который анализирует акустические данные, возможно, в сочетании с данными от других датчиков. Например, контроллер 120 может использовать информацию от одного или более датчиков температуры, одного или более датчиков давления, одного или более расходомеров и/или других датчиков или измерительных устройств. В некоторых случаях датчики температуры могут измерять температуру горения, температуру нагретой текучей среды, генерируемой парогенератором 116, температуру в стволе скважины вокруг парогенератора 116, температуры воздуха, окислителя и/или теплопереносящей текучей среды и/или другие температуры. Датчики давления могут измерять давление в топке парогенератора 116, давление в стволе скважины вблизи парогенератора 116, давления воздуха, окислителя и/или теплопереносящей текучей среды и/или другие давления. Расходомеры могут измерять расходы потоков воздуха, окислителя и/или теплопереносящей текучей среды, поступающих в парогенератор 116, расход нагретой текучей среды, выходящей из парогенератора 116, и/или другие расходы. В некоторых случаях акустический сигнал, генерируемый парогенератором 116 и детектируемый датчиками 122, дает информацию о рабочем состоянии парогенератора 116, например, о том, является это состояние идеальным или нет.
В некоторых условиях работы парогенератора 116 возникает нестабильность в сжигании топлива и окислителя. Например, подача теплопереносящей текучей среды в парогенератор 116 со слишком большим расходом может в большей или меньшей степени подавлять горение топлива и окислителя. Это может привести к нестабильности, т.е. процесс горения перестает быть стабильным, ровным и сильным. В другом примере схожую нестабильность может вызвать выбор слишком высокого отношения топливо/окислитель (т.е. использование богатой горючей смеси). Нестабильность горения обычно приводит к возникновению непостоянного акустического сигнала, например к треску. Примеры неидеальных функциональных состояний топки, которые можно идентифицировать и/или диагностировать на основе акустических данных, включают сжигание бедной смеси (например, смеси, у которой отношение окислитель/топливо выше этого отношения в стехиометрической смеси окислителя и топлива), сжигание богатой смеси (например, смеси, у которой отношение окислитель/топливо ниже этог