Композиция для получения растительного организма с улучшенным содержанием сахара и ее применение

Иллюстрации

Показать все

Изобретение относится к биотехнологии, к композиции, набору и способу для получения растительного организма с повышенным содержанием сахара. Изобретение включает введение в растительный организм вещества, регулирующего окислительно-восстановительное состояние клетки, причем указанное вещество выбрано из группы, состоящей из глутатиона, полинуклеотида, кодирующего γ-глутамилцистеинсинтетазу, или полинуклеотида, кодирующего глутатионсвязывающую фруктозо-1,6-дифосфатальдолазу пластидного типа. Изобретение позволяет увеличить содержание сахара, крахмала и глюкозы в культивируемом растении. 4 н. и 3 з.п. ф-лы, 10 ил., 12 пр.

Реферат

Область техники

Настоящее изобретение относится к композиции, включающей вещество, регулирующее окислительно-восстановительное состояние клетки и используемое для получения растительного организма с повышенным содержанием сахара. Также настоящее изобретение относится к применению такой композиции.

Уровень техники

Растения, например, такие как фрукты, овощи и злаки, как правило, содержат сахар. Количество сахара в растении представлено содержанием сахара. Содержание сахара влияет на коммерческую ценность растения в зависимости от вида растения. Поэтому в последнее время ведутся технические разработки возможности увеличения содержания сахара в растении.

Например, томаты с высоким содержанием сахара получают, главным образом, путем культивирования в грунте. Затем были предложены способы получения томатов с высоким содержанием сахара путем гидропонного культивирования (см. источник 1 Патентной литературы).

Известно, что вещество, регулирующее окислительно-восстановительное состояние клетки, например глутатион, может выполнять функцию агента, контролирующего дифференцировку клетки или органа (см. источник 2 Патентной литературы). Кроме того, известно, что глутатион может выполнять функцию вспомогательного агента, контролирующего рост растения (см. источник 3 Патентной литературы).

Перечень ссылок

Источник патентной литературы 1:

Публикация заявки на получение патента Японии, Tokukaihei, No. 10-271924 (дата публикации 13 октября 1998)

Источник патентной литературы 2:

Международная публикация WO 01/080638 (дата публикации 1 ноября 2001)

Источник патентной литературы 3:

Публикация заявки на получение патента Японии, Tokukai No. 2004-352679 (дата публикации 16 декабря 2004)

Сущность изобретения

Недостатком традиционных способов повышения содержания сахара в растениях является сложность реализации. Лишь небольшое число специалистов могут получать томаты с высоким содержанием сахара путем культивирования в почве. Более того, для получения томатов с высоким содержанием сахара с помощью гидропоники необходимы специальные методики и специальное производственное оборудование для управления культивированием.

Настоящее изобретение было выполнено с учетом этих обстоятельств, и задачей настоящего изобретения являлось обеспечение композиции для простого получения растений с повышенным содержанием сахара и обеспечение способа ее применения.

Для решения указанной задачи авторы настоящего изобретения провели тщательные исследования. В результате было обнаружено, что содержание сахара в растительном организме повышается в том случае, если растение культивировали в культуральной среде (которая содержала почву и улучшающий почву агент), в которую добавляли вещество, регулирующее окислительно-восстановительное состояние клетки, или в том случае, если растительный организм опрыскивали или непосредственно покрывали этим веществом. Настоящее изобретение составлено на основании указанных совершенно новых обнаруженных данных и включает следующие объекты изобретения.

Композиция согласно настоящему изобретению представляет собой композицию для получения растительного организма с повышенным содержанием сахара, указанная композиция содержит вещество (за исключением перекиси водорода), регулирующее окислительно-восстановительное состояние клетки.

Композиция согласно настоящему изобретению предпочтительно составлена таким образом, что указанное вещество представляет собой глутатион, полинуклеотид, кодирующий γ-глутамилцистеинсинтетазу или полинуклеотид, кодирующий глутатион-связывающую фруктозо-1,6-дифосфатальдолазу пластидного типа.

Композиция согласно настоящему изобретению предпочтительно составлена таким образом, что указанное вещество представляет собой окисленный глутатион.

Набор согласно настоящему изобретению является набором для получения растительного организма с повышенным содержанием сахара, включающий вещество (за исключением перекиси водорода), регулирующее окислительно-восстановительное состояние клетки.

Способ получения согласно настоящему изобретению представляет собой способ получения растительного организма с повышенным содержанием сахара, включающий стадию культивирования растительного организма с использованием вещества (за исключением перекиси водорода), регулирующего окислительно-восстановительное состояние клетки.

Также настоящее изобретение включает растительный организм, полученный по способу получения согласно настоящему изобретению.

Дополнительные задачи, характеристики и преимущества настоящего изобретения станут ясны из подробного описания, представленного ниже. Для более полного понимания преимуществ изобретения далее представлено подробное описание, которое следует рассматривать совместно с сопроводительными чертежами.

Краткое описание чертежей

Фиг.1 иллюстрирует результаты определения содержания сахара в плоде Lycopersicum esculentum, полученном в примере 2.

Фиг.2 иллюстрирует результаты анализа ANOVA, полученные на основании результата определения сахара, представленного на фиг.1.

Фиг.3 иллюстрирует результаты определения взаимосвязи между содержанием сахара и количеством дней со дня обработки GSSG или GSH.

Фиг.4 иллюстрирует результаты определения крахмала и глюкозы 35S-GSH1.

Фиг.5 иллюстрирует результаты определения содержания сахара в плоде Prunus avium, полученном в примере 8.

Фиг.6 иллюстрирует результаты определения содержания сахара в плоде Citrus unshiu, полученном в примере 9.

Фиг.7 иллюстрирует результаты определения содержания сахара в плоде Fragaria ananassa, полученном в примере 10.

Фиг.8 иллюстрирует результаты определения содержания сахара в плоде Zea mays L. var. saccharata Sturt, полученном в примере 11.

Фиг.9 - это изображение, иллюстрирующее генетическое дерево семейства генов SEQ ID NO:15-36.

Фиг.10 иллюстрирует результаты определения глюкозы, сахарозы и крахмала в растении 35S-FBA1.

Описание вариантов реализации изобретения

<1.Композиция согласно настоящему изобретению для получения растительного организма с улучшенным содержанием сахара>

Композиция согласно настоящему изобретению для получения растительного организма с улучшенным содержанием сахара (здесь и далее в настоящем изобретении обозначается как «композиция согласно настоящему изобретению») в качестве обязательного компонента содержит вещество, регулирующее окислительно-восстановительное состояние клетки.

Применение композиции согласно настоящему изобретению позволяет упростить получение растительного организма с улучшенным содержанием сахара. Например, растительный организм можно получить в питательной среде, которая включает композицию согласно настоящему изобретению. Кроме того, в том случае, если вещество, регулирующее окислительно-восстановительное состояние клетки, представляет собой полинуклеотид, как описано ниже, все, что нужно сделать - это ввести полинуклеотид в растение посредством общепринятой методики трансформации и затем вырастить растение. Это позволяет получить растение с улучшенным содержанием сахара чрезвычайно простым путем по сравнению с традиционными методиками, такими, как описанное выше культивирование в почве. Это объясняется тем, что в данном случае не требуются навыки, специальные методики, специальное производственное оборудование и т.п.

В настоящем изобретении вещество, регулирующее окислительно-восстановительное состояние клетки, используют для получения растения с повышенным содержанием сахара. Такое применение вещества является новым и существенно отличается от традиционного применения данного вещества. В частности, тот факт, что можно получить растение с повышенным содержанием сахара, является неожиданным и не следует из опыта традиционного использования. Таким образом, настоящее изобретение создано на основании совершенно новых фактов, обнаруженных авторами настоящего изобретения.

В описании настоящего изобретения «растительный организм с повышенным содержанием сахара» представляет собой растительный организм, обладающий повышенным содержанием сахара, по сравнению с растительным организмом дикого вида. Другими словами, «растительный организм с повышенным содержанием сахара» имеет более высокое содержание сахара, чем дикий вид. Это означает, что композиция согласно настоящему изобретению представляет собой композицию, используемую для получения растительного организма с более высоким содержанием сахара, по сравнению с диким видом. Например, при культивировании растительного организма с применением композиции согласно настоящему изобретению можно повысить содержание сахара в растительном организме по сравнению с культивированием растительного организма без использования композиции согласно настоящему изобретению. Содержание сахара можно определять общепринятым способом. Также содержание сахара можно определять, используя общепринятый рефрактометр со шкалой Брикса (Brix), как описано в примерах.

В настоящем описании изобретения «вещество, регулирующее окислительно-восстановительное состояние клетки» представляет собой вещество, которое регулирует процесс окисления/восстановления вещества, которое отвечает за окисление-восстановление клетки. Вещество, регулирующее окислительно-восстановительное состояние клетки, включает вещества, которые меняют свое значение, например, частота появления форм активного кислорода, абсолютное количество глутатиона, соотношение между восстановленным глутатионом и окисленным глутатионом, абсолютное количество восстановленного никотинамид-аденин-динуклеотид-фосфата (NAD(P)H), соотношение NADPH/NADP+, соотношение между окисленным цитохромом с и восстановленным цитохромом с и соотношение между процессами окисления и восстановления компонентов электронтранспортной цепи, таких как пластохинон и убихинон. Вещество, отвечающее за окисление-восстановление клетки, известно из уровня техники, однако не ограничивается только уже известными в данной области веществами. Веществом, которое меняет значение, может быть, например, вещество, которое влияет на синтез глутатиона или количество глутатиона, вещество, которое способствует или подавляет синтез активных форм кислорода, и вещество, которое способствует или подавляет превращение некоторых соединений либо в их окисленную, либо в восстановленную форму.

Данное вещество, регулирующее окислительно-восстановительное состояние клетки, включенное в композицию согласно настоящему изобретению, не ограничивается указанными выше примерами. Однако предпочтительно, чтобы это вещество влияло на синтез глутатиона или количество глутатиона. Такое вещество позволяет получать растение с повышенным содержанием сахара.

В описании настоящего изобретения «вещество, влияющее на синтез глутатиона или количество глутатиона» представляет собой вещество, которое изменяет количество глутатиона в клетке, и предпочтительно данное вещество увеличивает количество глутатиона, например, собственно глутатиона, фермента, необходимого для синтеза глутатиона и полинуклеотида, кодирующего этот фермент.

Вещество, регулирующее окислительно-восстановительное состояние клетки может подразделяться на 1) вещество, которое может поглощаться растением при непосредственном контакте с растением, и 2) вещество, которое встраивают в геном растения. Очевидно, что эти вещества можно использовать по отдельности или в сочетании.

Веществом, которое влияет на синтез глутатиона или количество глутатиона и может поглощаться растением при непосредственном контакте с растением может быть, например, глутатион, конъюгат глутатиона, активный кислород (например, перекись водорода), активный азот, полиамин, окисленный титан, жасмоновая кислота, салициловая кислота, цистеин, цистин, ионы тяжелых металлов кадмия или железа. Полиамин может давать перекись водорода. Окисленный титан генерирует активный кислород на свету. Цистеин и цистин - предшественники глутатиона. Предпочтительно повышенное применение ионов тяжелых металлов кадмия и железа. Среди всех представленных выше соединений наиболее предпочтительным является глутатион. Глутатион включает восстановленный глутатион (здесь и далее обозначен "GSH") и окисленный глутатион (здесь и далее обозначен "GSSG"). Согласно настоящему изобретению GSSG является предпочтительной формой глутатиона для включения в композицию. Как описано ниже в примерах, при прменении GSSG можно получать растение с повышенным содержанием сахара. Кроме этого, при применении GSSG можно увеличить количество плодов и их размер.

Веществом, которое влияет на синтез глутатиона или на количество глутатиона и встраивается в геном растения, предпочтительно может быть, например, γ-глутамилцистеинсинтетаза, полинуклеотид, кодирующий γ-глутамилцистеинсинтетазу (здесь и далее обозначен "GSH1 ген"), глутатионсвязывающая фруктозо-1,6-дифосфатальдолаза пластидного типа, или полинуклеотид, кодирующий глутатион-связывающую фруктозо-1,6-дифосфатальдолазу пластидного типа (здесь и далее обозначен "FBA ген").

Частные примеры гена GSH1 не ограничиваются конкретными вариантами и включают, например, такие гены, как Zinnia elegans (идентификационный номер в Genbank: АВ158510), Oryza sativa (идентификационный номер в Genbank: AJ508915), и Nicotiana tabacum L. (идентификационный номер в Genbank: DQ444219). Указанные гены данных растений могут быть соответствующим образом использованы в настоящем изобретении. У каждого продукта трансляции указанных генов на N-концевом участке есть сигнальный пептид, направляющий транспорт белка в хлоропласт, как у Arabidopsis thaliana.

В настоящем изобретении в качестве гена GSH1 предпочтительно используют следующие примеры а)-г):

(а) полинуклеотид, кодирующий полипептид, имеющий аминокислотную последовательность SEQ ID NO:1 или 3;

(б) полинуклеотид, кодирующий полипептид, обладающий γ-глутамилцистеинсинтетазной активностью и имеющий аминокислотную последовательность с делецией, заменой или встраиванием одной или нескольких аминокислот в аминокислотную последовательность SEQ ID NO:1 или 3;

(в) полинуклеотид с нуклеотидной последовательностью SEQ ID NO:2 или 4 и

(г) полинуклеотид, который при жестких условиях подвергается гибридизации с полинуклеотидом, имеющим последовательность оснований, комплементарную любому из полинуклеотидов, представленных в примерах а)-в).

Заметим, что последовательность SEQ ID NO:2 представляет собой пример последовательности оснований, кодирующей полипетид, имеющий аминокислотную последовательность SEQ ID NO:1. Также заметим, что последовательность SEQ ID NO:4 является примером последовательности оснований, кодирующей полипептид, имеющий аминокислотную последовательность SEQ ID NO:3.

Ген FBA не ограничивается частным образом, но предпочтительно может быть одним из примеров д)-з):

(д) полинуклеотид, кодирующий белок, имеющий аминокислотную последовательность любую из следующих: SEQ ID NO:5, 6 и 15-36;

(е) полинуклеотид, кодирующий белок, обладающий активностью глутатион-связывающей фруктозо-1,6-дифосфатальдолазы пластидного типа и имеющий аминокислотную последовательность с делецией, заменой или встраиванием одной или нескольких аминокислот в любую из аминокислотных последовательностей: SEQ ID NO:5, 6 и 15-36;

(ж) полинуклеотид, имеющий последовательность оснований SEQ ID NO: 7 и 37-56 и

(з) полинуклеотид, который при жестких условиях подвергается гибридизации с полинуклеотидом, имеющим последовательность оснований, комплементарную любому из полинуклеотидов, представленных в примерах е)-ж).

Последовательность SEQ ID NO:8 показывает последовательность кДНК, кодирующую белок, который имеет аминокислотную последовательность SEQ ID NO:5. В последовательности оснований SEQ ID NO:8 последовательность в положениях от 145 до 147 представляет собой старт-кодон и последовательность в положениях от 1318 до 1320 представляет собой стоп-кодон. Другими словами, в гене FBA1 Arabidopsis thaliana в качестве открытой рамки считывания имеется последовательность оснований в положениях от 145 до 1320 последовательности оснований SEQ ID NO:8.

Последовательность SEQ ID NO:9 показывает пример последовательности оснований, кодирующей белок, имеющий аминокислотную последовательность SEQ ID NO:6. В последовательности SEQ ID NO:9 последовательность в положениях от 104 до 1300 - это участок, кодирующий белок, имеющий аминокислотную последовательность SEQ ID NO:6. Заметим, что пептид, составленный из аминокислот между метионином в положении 1 и аланином в положении 48 последовательности SEQ ID NO:6, представляет собой хлоропластный транзитный пептид.

Последовательность оснований SEQ ID NO:7 представляет собой последовательность, которая служит открытой рамкой считывания в гене FBA1 Arabidopsis thaliana. Последовательность оснований гена FBA1 Arabidopsis thaliana гомологична, например, гену (dbj|BAB55475.1) в геноме Oryza sativa.

Последовательности SEQ ID NO:37 - 56 являются примерами последовательностей ДНК, кодирующих аминокислотные последовательности SEQ ID NO:15 - 34 соответственно.

В качестве ссылки, фиг.9 иллюстрирует дендрограмму аминокислотной последовательности SEQ ID NO:15-36.

Специалисту в данной области будет ясно, что в том случае, если вышеуказанные аминокислотные последовательности или ДНК-последовательности включают участок, соответствующий сигналу транспорта белка в хлоропласт, то данный участок может быть замещен сигналом транспорта другого белка в хлоропласт.

В настоящей заявке формулировка «делеция, замена или встраивание одной или нескольких аминокислот» означает делецию, замену или вставку такого количества аминокислот (предпочтительно 10 или менее, более предпочтительно 7 или менее, более предпочтительно 5 или менее), которое можно удалить, заменить или вставить посредством известного способа получения мутантного пептида, например, методом индукции сайт-специфического мутагенеза. Такой мутантный белок не ограничивается белком, который искусственно подвергают мутации с помощью известного способа получения мутантного полипептида, он также может быть выделенным и очищенным природным белком.

В данной области техники известно, что некоторые аминокислоты в аминокислотной последовательности белка можно легко изменить без оказания существенного влияния на структуру или функцию белка. Также в данной области техники известно, что, наряду с искусственно измененным белком, у белка есть природный мутант, не имеющий существенных изменений структуры или функции.

Предпочтительно, чтобы у мутантов были консервативные или неконсервативные замены, делеции или встраивания аминокислот(ы). В этом отношении более предпочтительны молчащие замены, встраивания и делеции, особенно предпочтительны консервативные замены. Согласно настоящему изобретению такие мутации не меняют активность полипептида.

Считается, что типичными примерами консервативных замен являются замена одной аминокислоты на другую из числа алифатических аминокислот Ala (аланин), Val (валин), Leu (лейцин) и Ile (изолейцин); замена гидроксильных групп Ser (серин) и Thr (треонин); замена кислотных групп Asp (аспартат) и Glu (глютамин); замена аминогрупп Asn (аспарагин) и Gln (глютамин); замена основных групп Lys (лизин) и Arg (аргинин); и замена аромагрупп Phe (фенилаланин) и Туr (тирозин).

В настоящем описании изобретения под «жесткими условиями» понимаются такие условия, при которых последовательность подвергается гибридизации с другой последовательностью только в том случае, если последовательности идентичны по меньшей мере на 90%, предпочтительнее, по меньшей мере на 95%, наиболее предпочтительно на 97%. В частности, «жесткие условия» включают, например, инкубацию в течение ночи при 42°С в растворе для гибридизации (50% формамид, 5×SSC (15 мМ тринатриевого цитрата и 150 мМ NaCl), 50 мМ фосфата натрия (рН 7.6), 5 × раствор Денхардта, 10% декстран сульфата и 20 мкг/мл денатурированной фрагментированной ДНК спермы лосося) и промывание на фильтре в 0.1×SSC при приблизительно 65°С. Гибридизацию можно поводить с помощью известного метода, например, описанного в Molecular cloning, A Laboratory Manual, 3rd Ed., Sambrook et al., Cold Spring Harbor Laboratory (2001). Обычно, чем выше температура и меньше концентрация солей, тем жестче становятся условия (труднее происходит гибридизация). Более жесткие условия позволяют получить полинуклеотид с более высокой степенью гомологии.

В том случае, если композиция согласно настоящему изобретению включает полинуклеотид из числа указанных выше полинуклеотидов, то такая композиция согласно настоящему изобретению может включать вектор экспрессии с этим нуклеотидом. Вектор экспрессии можно сконструировать с помощью известного способа, который не ограничивается каким либо конкретным способом.

В качестве основы для вектора экспрессии можно использовать различные известные векторы. Например, в качестве подходящего вектора в соответствии со способом введения или типом растительной клетки, в которую вводится вектор, могут быть использованы и выбраны в качестве подходящих плазмида, фаг, космида и т.п. В частности, можно использовать, например, вектор pBR322, вектор pBR325, вектор pUC19, вектор pUC119, вектор pBluescript, вектор pBluescriptSK, вектор pBI и т.п. В частности, в тех случаях, когда композицию согласно настоящему изобретению применяют для введения вектора, содержащего полинуклеотид, в растительный организм с помощью способа Agrobacterium, предпочтительно использовать бинарный вектор pBI. В частности, например, бинарным вектором pBI могут быть pBIG, pBIN 19, pBI101, pBI121, pBI221 или т.п.

В векторе экспрессии промотор не ограничивается каким либо конкретным промотором, при условии, что в растительном организме он принимает участие в экспрессии гена, может быть использован соответствующий известный промотор. Промоторами могут быть, например, промотор вируса 35S мозаики цветной капусты (CaMV35S), промотор актина, промотор нопалин синтетазы, промотор гена PR1a табака, промотор гена малой субъединицы рибулозо-1,5-дифосфаткарбоксилазы/оксидазы томата и т.п. Из числа указанных промоторов предпочтительно можно использовать промотор вируса 35S мозаики цветной капусты или промотор актина. При введении в растительную клетку вектор экспрессии с любым из промоторов может стабильно экспрессировать введенный ген.

Важным условием является введение промотора в вектор таким образом, чтобы можно было их соединить, обеспечив экспрессию гена, кодирующего фактор транскрипции. Структура промотора не ограничивается какой либо конкретной структурой в отличие от вектора экспрессии.

Кроме того, в дополнение к промотору и полинуклеотиду, вектор экспрессии может включать фрагмент ДНК. Фрагмент ДНК не ограничивается конкретным фрагментом и может представлять собой терминатор, маркер селекции, энхансер, последовательность оснований для увеличения эффективности трансляции и т.п. Кроме того, вектор экспрессии может включать фрагмент Т-ДНК. Фрагмент Т-ДНК может увеличивать эффективность введения гена, в частности, если вектор экспрессии вводится в растительный организм с помощью Agrobacterium.

Терминатор не ограничивается конкретным вариантом терминатора, при условии, что он выполняет функцию сайта терминации транскрипции, и указанным терминатором может быть известный терминатор. В частности, например, предпочтительно использовать сайт терминации транскрипции гена нопалин-синтетазы (Nos терминатор), вируса 35S мозаики цветной капусты (CaMV35S терминатор) и т.п. Из их числа предпочтительнее использовать терминатор Nos. Благодаря встраиванию терминатора в соответствующий сайт вектора экспрессии после введения этого вектора экспрессии в растительный организм можно избежать таких явлений, как синтез излишне длинного транскрипта, а также снижения числа копий плазмиды при использовании сильного промотора.

Маркером селекции может быть, например, ген резистентности к лекарственному средству. Например, ген резистентности к лекарственному средству может быть геном резистентности к гидромицину, блеомицину, канамицину, гентамицину, хлорамфениколу и т.п. С помощью гена резистентности к лекарственному средству можно легко вывести трансформированное растение, культивируя растительные организмы на культуральной среде, включающей упомянутый выше антибиотик, и затем отбирая растительный организм, способный расти на данной культуральной среде.

Полинуклеотидом для повышения эффективности трансляции может быть, например, последовательность омега, полученная из вируса табачной мозаики. Встраивая последовательность омега в нетранслируемый участок (5'UTR) промотора, можно повышать эффективность трансляции гена, кодирующего фактор транскрипции. Как описано выше, для различных целей в вектор экспрессии можно встраивать различные фрагменты ДНК.

В частности, вектор экспрессии конструируют с помощью, например, способа, при котором промотор, полинуклеотид и фрагмент ДНК, при необходимости, встраивают в соответствующим образом выбранный базовый вектор в строго определенном порядке. Полинуклеотид и промотор (и терминатор и т.п., при необходимости) могут быть связаны с образованием кассеты экспрессии, которую можно ввести в базовый вектор. При конструировании кассеты экспрессии можно обеспечить, чтобы каждый фрагмент ДНК включал сайт расщепления в качестве липкого конца, комплементарного липкому концу другого фрагмента ДНК, и эти липкие концы взаимодействуют посредством фермента, катализирующего лигирование. Это позволяет регулировать порядок фрагментов ДНК. В том случае, если в кассету экспрессии включен терминатор, тогда промотор, полинуклеотид, кодирующий N-ацетилглюкозаминтрансферазу, и данный терминатор встраивают в указанном порядке выше по ходу транскрипции. Реагенты, используемые для конструирования вектора экспрессии, например ферменты рестрикции, лигирования и т.п., частным образом не ограничены определенными типами и соответственно могут быть выбраны и использованы коммерчески доступные реагенты.

Вектор экспрессии можно мультиплицировать с помощью известного способа, и способ мультипликации (способ получения) вектора экспрессии частным образом неограничен. Обычно вектор экспрессии мультиплицируют в клетке Escherichia coli в качестве клетки-хозяина. В таком случае соответствующий тип Е. coli выбирается на основании типа вектора экспрессии.

Можно использовать представленные выше вещества по отдельности, а также использовать два или более типов веществ в комбинации.

В том случае, если композиция согласно настоящему изобретению в качестве вещества, регулирующего окислительно-восстановительное состояние клетки, включает вещество, которое может поглощаться растением при непосредственном контакте, тогда количество вещества частным образом не ограничивается, но предпочтительно составляет 0.01 мМ - 20 мМ, белее предпочтительно 0.1 мМ - 2 мМ. Если количество вещества находится в этих пределах, можно эффективно повысить содержание сахара в получаемом растении. Следует отметить, что концентрацию вещества можно изменить в соответствии с требуемым содержанием сахара, типом растения, к которому вносят вещество, и т.п.

Композиция согласно настоящему изобретению может включать другой компонент в таком количестве, при котором он не мешает действию композиции согласно настоящему изобретению. Например, если композиция согласно настоящему изобретению в качестве вещества, регулирующего окислительно-восстановительное состояние клетки, включает вещество, которое может поглощаться растением при непосредственном контакте, композицию можно растворять в воде, известном жидком носителе и т.п. для того, чтобы получить ее в жидкой форме, эмульсии, геле и т.п. Такими жидкими носителями могут быть, но не ограничиваются ими, например, ароматический углеводород, например ксилол; спирт, например этанол и этиленгликоль; кетон, например ацетон; простой эфир, например диоксан и тетрагидрофуран; диметилформамид, диметилсульфоксид, ацетонитрил и т.п.

Альтернативно, вещество, регулирующее окислительно-восстановительное состояние клетки, может иметь основу в виде твердого носителя, и таким образом, получают композицию в форме твердого агента, порошкообразного агента и т.п. Такими компонентами твердых носителей могут быть, без ограничения, неорганические вещества, например тальк, глина, вермикулит, диатомит, каолин, карбонат кальция, гидрохлорид кальция, белая глина и силикагель, и органические вещества, например мука и крахмал. Кроме того, композицию согласно настоящему изобретению можно сочетать с другим вспомогательным агентом соответственно. Таким вспомогательным агентом может быть, например, поверхностно-активный анионный агент, например алкилсульфат, алкилсульфонат, алкиларилсульфонат, диалкилсульфосукцинат; поверхносто-активный катионный агент, например соль высшего алифатического амина; неионный поверхностно-активный агент, например алкиловый эфир полиоксиэтиленгликоля, ациловый эфир полиоксиэтиленгликоля, полиспиртовый ациловый эфир полиоксэтиленгликоля и производные целлюлозы; загуститель, например желатин, казеин и гуммиарабик; утяжелитель, связывающий агент и т.п.

Применение композиции согласно настоящему изобретению частным образом не ограничено. Например, в случае, если композиция согласно настоящему изобретению в качестве вещества, регулирующего окислительно-восстановительное состояние клетки, включает вещество, которое может поглощаться растением при непосредственном контакте, и при условии, что композиция является жидким агентом, указанную композицию можно добавить в питательную среду или ту среду, которая используется для культивирования растения, или может быть распылена, разбрызгана, или нанесена на растительный организм целиком или на его часть, например вегетативную точку роста, почки, листья и стебель. Отметим, что «питательная среда», используемая для культивирования растительного организма в настоящем описании изобретения включает почву и улучшающий почву агент.

В случае, если композиция согласно настоящему изобретению является твердым агентом или подобным ему агентом, указанную композицию можно добавлять в питательную среду, которую используют для культивирования растения. Альтернативно, при гидропонном культивировании композицию можно добавлять в воду и постепенно растворять в ней. Композицию можно применять в твердой форме или подобном виде для растворения в воде и в растворенном на момент использования виде. Кроме того, композицию согласно настоящему изобретению можно вносить растению в виде смеси с известным удобрением и агентом, например фитогормоном.

Композиция согласно настоящему изобретению частым образом не ограничена временем ее внесения растению. Например, можно применять композицию, начиная с момента посева. В частности, в случае, если композицию вносят такому растению, как, например, Lycopersicum esculentum, которое плодоносит спустя приблизительно от двух месяцев до полугода после посева, то композицию можно вносить в день высева и предпочтительно через постоянные промежутки времени в течение 30 дней после посева, более предпочтительно в течение 60 дней после посева, наиболее предпочтительно с момента посева до сбора урожая. В этом случае периодичность внесения композиции частным образом не ограничивается, но предпочтительно составляет от одного до четырех раз в неделю, более предпочтительно дважды или трижды в неделю. Вносимое количество композиции частным образом не ограничивается. Можно установить подходящее вносимое количество композиции в соответствии с типом растения. В случае Lycopersicum esculentum и т.п., например, вещество, регулирующее окислительно-восстановительное состояние клетки, вносят единовременно в количестве предпочтительно 0.001 мМ или более и 0.1 мМ или менее, более предпочтительно 0.01 мМ или более и 0.05 мМ или менее на каждое растение. В случае, если композицию добавляют в питательную среду, как описано выше, композицию вносят растению, начиная с момента посева в питательную среду или с момента, когда рассаду растения или т.п. пересаживают на питательную среду.

Композицию согласно настоящему изобретению можно вносить растению после посева и после того, как растение выросло до некоторой степени, например после получения всходов. Например, если композицию вносят злаковым, например Zea mays L. var. saccharata Sturt, композицию можно вносить после того, как получены всходы растения. В этом случае композицию согласно настоящему изобретению можно заранее добавить в питательную среду, в которую будут пересаживать рассаду, или можно периодически добавлять в питательную среду после пересадки в нее рассады. В том случае, если композицию вносят после пересадки рассады, периодичность ее внесения конкретно не ограничивается. Однако предпочтительно вносить композицию от одного до четырех раз в неделю, более предпочтительно дважды или трижды в неделю после пересадки рассады до сбора урожая. Вносимое количество композиции частным образом не ограничено. Можно подобрать вносимое количество композиции в зависимости от вида растения. В случае Zea mays L. var. saccharata Sturt и т.п., например, предпочтительно вносить вещество, регулирующее окислительно-восстановительное состояние клетки, единовременно в количестве 0.001 мМ или более и 0.1 мМ или менее, более предпочтительно 0.01 мМ или более и 0.05 мМ или менее на каждое растение.

Также можно определить момент внесения композиции с учетом времени цветения растения. Например, можно вносить композицию до момента расцветания бутона, после опадания лепестков, начиная с периода пока не распустился бутон и до момента плодоношения, или начиная с момента цветения до момента плодоношения, или с момента опадания лепестков до плодоношения. В том случае, если композицию вносят Vitis labrusca, как описано ниже в примерах, то композицию можно вносить к антотоксии. В этом примере композицию смешивают с фитогормоном (гиберрелин), это необходимо для получения бессемянных плодов Vitis labrusca, и вносят в момент подачи фитогормона.

Также можно определить момент времени внесения композиции на основании обратного отсчета дней от момента сбора урожая. Например, композицию можно вносить за 10 или 20 дней до сбора урожая.

В том случае, если композицию согласно настоящему изобретению применяют в процессе культивирования растения, как описано выше, то композицию можно смешать с удобрением и/или агентом, например фитогормоном, как описано выше. В таком случае, момент внесения композиции и удобрения и т.п. не ограничены конкретными значениями, и смесь можно вносить в период, описанный выше, или в момент времени, предпочтительный для внесения удобрения и т.п.

Если композиция согласно настоящему изобретению в качестве вещества, повышающего содержание глутатиона в клетке, включает вещество, вводимое в геном растения, например полинуклеотид, описанный выше, то можно применять данную композицию таким образом, чтобы введение полинуклеотида в геном растения осуществлялось посредством известного способа трансформации. Например, композиция может включать полинуклеотид, и ее можно вводить в растительный организм с помощью известного растительного вектора экспрессии или же композиция может включать вектор, который содержит полинуклеотид.

Состав полинкулеотида в композиции согласно настоящему изобретению частным образом не ограничен. Полинуклеотид можно растворить в буфере и т.п., что обычно используется для сохранения полинуклеотидов.

Введение вектора в растительную клетку осуществляется по известным в данной области техники способам трансформации (например, с помощью метода агробактериальной трансформации (Agrobacterium), метода «генной пушки», с помощью метода с использованием полиэтиленгликоля и метода электропорации). Например, при использовании метода Agrobacterium сконструированный вектор экспрессии вводят в соответствующую бактерию рода Agrobacterium (например, Agrobacterium tumefaciens) и асептически выращенный листовой диск инфицируют этим штаммом по соответствующему способу (Hirofumi UCHIMIYA, Manuals for plant genetic manipulation, 1990, 27-31 pp, Kodansha Scientific Ltd., Tokyo) и т.п., для получения трансформированного растения. В случае применения метода «генной пушки» можно использовать 1) растительный организм, орган растения или растительную ткань без специальной подготовки; 2) вырезанный ф