Солнцезащитные композиции, содержащие каротиноиды

Иллюстрации

Показать все

Группа изобретений относится к медицине, косметологии, и может быть использована для лечения или профилактики воздействия облучения человека или животного. Для этого вводят фотозащитную композицию, в том числе в виде косметического препарата, содержащую каротиноидное соединение диадиноксантин или его фармацевтически приемлемое пролекарство или соль. Предлагается также способ извлечения диадиноксантина из водорослей, а также способ получения из продукта фотозащитного или фотозащищенного продукта, включающий нанесение или пропитывание указанного продукта фотозащитной композицией, содержащей дидиноксантин. Композиция является эффективной при защите от светового излучения с длиной волны от 350 до 500 нм. 7 н. и 14 з.п.ф-лы, 4 табл., 3 пр., 4 ил.

Реферат

Данное изобретение относится к композициям, содержащим получаемые из водорослей соединения - диадиноксантин, диатоксантин, фукоксантин и родственные соединения. Предпочтительно данные композиции являются фармацевтическими или косметическими композициями, в частности композициями с фотозащитными свойствами, такими как солнцезащитные свойства для предотвращения повреждения вследствие воздействия на покровы и поверхность тела, такие как кожа и волосы, лучей солнечного спектра в УФ и видимой области.

Солнечный свет состоит из непрерывного спектра электромагнитного излучения, которое делится на три главные области по длине волны: ультрафиолетовую (УФ), видимую и инфракрасную. УФ излучение включает длины волн от 200 до 400 нм, тогда как интервал видимого света находится в пределах от 400 до 700 нм. Ультрафиолетовый спектр дополнительно делят на три области, каждая из которых обладает особыми биологическими эффектами: УФА (320-400 нм), УФВ (280-320 нм) и УФС (200-280 нм).

Повреждающее действие солнечного света на кожу хорошо отражено документально, и многочисленные вредные эффекты включают ожоги, преждевременное старение и образование морщин на коже (дерматохелиоз), развитие предзлокачественных повреждений (солнечные кератозы) и различные злокачественные опухоли.

В то время как достижение поверхности земли лучами УФС эффективно блокируется стратосферным озоновым слоем, как УФА, так и УФВ излучение достигают поверхность земли в степени, достаточной для создания биологических последствий для кожи и глаз. Из УФ излучения, которое достигает поверхности земли, 90-99% представляет УФА и 1-10% представляет УФВ. Повреждающее действие УФВ широко отражено в документах. Кратковременное действие этого высоко интенсивного излучения включает покраснение и ожоги. При длительном периоде значителен риск рака кожи, так как УФ излучение в диапазоне от 245 нм до 290 нм максимально поглощается ДНК и способно непосредственно вызывать образование мутагенных фотопродуктов или повреждений ДНК у соседних пиримидинов в виде димеров.

УФА лучи непосредственно не поглощаются ДНК, но могут оказывать косвенное опасное воздействие путем образования радикальных форм кислорода, которые могут реагировать с клеточными белками и ДНК. Лучи УФА имеют более низкую интенсивность и вызывают длительное повреждение, такое как преждевременное образование морщин и фотостарение, и, как полагают, являются канцерогенными. Рак кожи является наиболее распространенным видом рака, в США каждый год выявляется 800000 случаев. Большинство случаев рака кожи представлено или базальноклеточным, или сквамозным видом и имеют тенденцию расти и распространяться медленно. Злокачественная меланома является наиболее серьезной формой рака кожи и в настоящее время число её случаев увеличивается на 4% в год.

Точная длина волны в солнечном спектре, которая вызывает меланому, неизвестна, но ограниченные данные, которые доступны, позволяют предположить, что спектр УФР является наиболее важным, в частности, УФВ, но возможно также и УФА и видимый свет в синей области. При росте осведомленности о том, что повреждение УФА повышает риск возникновения меланомы и других опухолей, стала очевидной необходимость защиты от широкого спектра излучения. Классическим средством определения эффективности защиты от солнечного света является показатель солнцезащитного фактора (СЗФ; SРF), который определяют как длительное воздействие УФВ излучения, которому может подвергаться кожа до получения ожога по сравнению с необработанной кожей. Несколько исследований говорят о потенциально опасном неверном чувстве безопасности, которое дает фактор СЗА в отношении повреждения, вызываемого УФА и видимым синим светом.

В виду удобства их использования солнцезащитные вещества приняты в качестве главного компонента защиты от солнечных лучей. Солнцезащитные вещества работают путем поглощения, отражения или рассеивания солнечных лучей, и тем самым или защищая кожу от солнечных лучей, или трансформируя энергию света в безопасную форму энергии. Защищающие от солнца средства можно грубо разделить на химические и физические фильтры. Физические защищающие от солнца средства являются неорганическими микрочастицами, которые действуют как фотопротекторы от широкого спектра излучения путем отражения или рассеивания солнечных лучей. Широко используемые физические барьеры включают оксид цинка и диоксид титана. Они, как известно, обеспечивают хорошую фотозащиту, но менее привлекательны косметически: они не впитываются кожей и имеют тенденцию оставаться в виде белого слоя на поверхности кожи.

Химические солнцезащитные вещества всасываются кожей и оказывают свое солнцезащитное действие путем поглощения лучей, испускаемых солнцем, и новым испусканием этой световой энергии в виде энергии колебаний (тепла). Обычные химические солнцезащитные вещества включают ПАБК (PABA; парааминобензойная кислота) и её производные, циннаматы, салицилаты, антранилаты, производные камфоры, бензимидазол, триазоны, октокрилен, уроканиновая кислота, бисимидазилат и анизотриазин.

Безопасность для потребителя является главной заботой в отношении солнцезащитных соединений. Доступным исследованием установлено, что некоторые солнцезащитные соединения являются потенциально фотоаллергенными; например ПАБК, которые, как известно, вызывают фотоаллергенные реакции у 1-2% населения (Kimbrough, 1997, J. Chem. Ed., 74(1), p51-53). Несмотря на то что обычно физические солнцезащитные вещества считаются хорошими фотопротекторами, безопасность физической защиты от солнца также обсуждалась, так как при исследованиях in vitro на фибробластах человека показано образование гидроксильных радикалов при сочетании воздействия солнца и диоксида титана, которое приводило к разрыву цепи ДНК (Dunforda et al, 1997, FEBS Lett., 418, p87-90). Кроме того, все из этих химических веществ подвергаются фотодеградации на неизвестные соединения и долгосрочные воздействия в отношении безопасности не были изучены.

Существует, в частности, потребность в хороших средствах для оценки защиты от УФА, так как в настоящее время такого стандарта не существует. Несмотря на повышающееся осознание важности защиты от широкого спектра излучения, исследования показывают, что коммерчески доступные солнцезащитные средства, для которых заявлено, что они дают хорошую защиту от УФА, недостаточно защищают от УФА лучей (Haywood et al., 2003, J. Invest. Derm., 121(4), p.862). В частности при УФА облучении с большей длиной волны (370-400 нм) доступные солнечные фильтры обеспечивают плохую защиту, а от лучей с длиной волны примерно 400 нм дают особенно плохую защиту или не дают защиты.

Большинство коммерчески доступных защищающих от УФ и солнцезащитных соединений в кремах для кожи являются синтетическими, и поиск природных соединений с равной или большей эффективностью становится более значимым из-за предпочтения потребителем природных продуктов.

Свойства поглощения УФ разными организмами и природными экстрактами было изучено среди высших растений, кораллов, цианобактерий и фитопланктона, но поточное производство природных солнцезащитных соединений все ещё ограничено. Сохраняется потребность в поглощающих солнечные лучи или солнцезащитных средствах природного происхождения, которые являются эффективными фильтрами от солнечного излучения в УФ и видимом интервале солнечного спектра.

Неожиданно было установлено, что каротиноиды отдельного семейства в ксантофильной группе, которые являются эффективными УФ фильтрами и фильтрами видимого света (особенно для использования на коже животных, в частности людей), являются антиоксидантами, имеют золотисто-желтый цвет, растворимы в масле и стабильны. Это семейство включает каротиноиды диадиноксантин, диатоксантин, фукоксантин и их производные.

Диадиноксантин, диатоксантин и фукоксантин являются каротиноидами ксантофильной группы, обнаруживаемыми для 50% у 10 распространенных по всей земле важных вызывающих цветение групп фитопланктона: диатомовых водорослей, динофлагеллятов, примнесиофитов, эугленофитов, хризофитов. Фукоксантин присутствует также в изобилии в других организмах, например морских водорослях, рафидоцитах и бурых водорослях (макроводорослях), таких как Fucus vesiculosus.

Диатомовые водоросли, динофлагелляты и примнесиофиты характеризуются тем, что обладают способностью синтезировать значительное количество диадиноксантина и диатоксантина в условиях высокой освещенности весной и в летнее время, когда они находятся в неглубоких солоноватых слоях фьордов, прибрежных областях и вдоль ледяной кромки.

У этих организмов развиты эффективные фотозащитные механизмы, чтобы свести к минимуму фотоподавление, которое могло бы происходить в результате периодического воздействия на них света избыточной интенсивности. Среди кратковременных средств защиты, которые активируются неожиданным повышением интенсивности света, важным механизмом, как известно, является фотозащитное рассеяние с излучением избытка поглощенной световой энергии. При этом механизме ксантофиллы, диадиноксантин и диатоксантин участвуют в процессе, называемом нефотохимическим тушением (НФТ; NРQ). Диадиноксантин локализуется в большом собирающем свет пигментобелковом комплексе (ССК; LHC), где он обычно получает световую энергию и посылает её в реакционные центры в фотосистеме II (ФС II; PS II). В НФТ диадиноксантин деэпоксидируется до диатоксантина, который играет активную роль в рассеивании избытка световой энергии, вместо того чтобы посылать её в реакционный центр.

Авторы настоящего изобретения установили, что диадиноксантин, диатоксантин, фукоксантин и родственные соединения обладают особенно полезными свойствами, такими как солнцезащитные свойства, особенно при нанесении на живые организмы.

Соединения ранее не были идентифицированы, как обладающие каким-либо полезным свойством для применения в качестве солнцепоглощающих соединений. Диадиноксантин и диатоксантин, в частности, являются редкими каротиноидами, и считаются трудными для выделения и имеющими плохую стабильность. В частности, когда диадиноксантин и фукоксантин встречаются вместе в биологической системе, способ выделения обоих соединений одновременно, как предполагалось, является особенно трудным. В настоящее время авторы настоящего изобретения выделили данные соединения в стабильной форме и исследовали их свойства. Неожиданно было обнаружено, что данные каротиноиды могут использоваться для поглощения излучения, особенно в ранее не выявленном диапазоне синего света, и, таким образом, обладают полезными свойствами для применения, основанного на свойствах поглощения солнечного света, например, в качестве солнцезащитных средств.

В первом аспекте данное изобретение относится к композиции, содержащей каротиноид, предпочтительно ксантофил, гидроксикаротиноид (в частности, дигидроксикаротиноид) или эпоксикаротиноид, где указанный каротиноид содержит необязательно замещенную, линейную, ненасыщенную алкильную цепь, включающую сопряженные двойные связи, замещенную на каждом конце цепи циклической алкильной группой, и при этом указанная алкильная цепь содержит, по меньшей мере, одну группу -С3R1R2-, где R1 и R2 могут быть одинаковыми или разными и каждый из них представляет собой атом водорода, гидроксильную группу или алкильную группу, или вместе с атомом углерода, с которым они связаны, могут образовывать часть одной из указанных циклических алкильных групп или всю группу, или его фармацевтически приемлемое производное или соль.

Предпочтительно указанная группа -С3R1R2- выбрана из одной из следующих групп:

-СR1=С=СR2-, -С≡С-СR1R2- и -СR1R2=-С≡С-, где предпочтительно R1 или R2 является водородом, а другая группа R (или обе R1 и R2) вместе с атомом углерода, с которым она(и) связана, является(ются) частью группы или всей концевой циклической алкильной группой.

Альтернативно, описанный каротиноид содержит -СR1=С-СR2- или -СR1-С=СR2-, где присутствует только одна из необязательных связей, и R1 или R2 могут отсутствовать или присутствовать вместе на концевом атоме углерода в зависимости от связей, которые присутствуют.

В качестве особенно предпочтительной отличительной особенности каротиноид имеет формулу:

где

каждый из а и с является целым числом от 0 до 2, причем а + с ≥1, предпочтительно = 1;

b является целым числом от 6 до 25, особенно предпочтительно 11, 13, 14, 16, 17 или 19;

R1 и R2 являются такими, как определено ранее;

R3 и R5 могут быть одинаковыми или разными, и каждый из них представляет собой циклическую алкильную группу или часть циклической алкильной группы, и остальная часть указанной циклической группы представлена R1, R2 или R4 (или R1 и R2) вместе с атомом углерода, с которым он связан; и

R4 представляет собой необязательно замещенную алкильную группу, атом водорода, атом кислорода или гидроксильную группу, или вместе с атомом углерода, с которым он связан, может образовывать часть одной из указанных циклических алкильных групп или всю группу, причем, если R4 является атомом кислорода, и тем самым представляет карбонильную группу, смежный с ним атом углерода имеет две группы R4, предпочтительно атомы водорода.

Такие соединения, поэтому, могут быть представлены формулой:

где относительно предшествующей формуле R4 представлен группами с R по R4s (где, необязательно, =СR4r-СR4s- может отсутствовать), а равно 0, b равно 17 или 19, с равно 1, R3 вместе с R и атомом углерода, с которым они связаны, образует циклическую группу, и R5 вместе с R2 и атомом углерода, с которым они связаны, образует циклическую группу. (В альтернативном варианте осуществления группа

-СR1ССR2R5 в формуле выше может быть заменена группой -С≡С-СR1R2R5.)

Необязательно группа -СR4СR4- может быть заменена группой -СR4R4СО-, как описано здесь выше. В предпочтительном виде указанная группа -СR4СR4- является

-СR4bСR-. Одна или более из групп с R по R4s предпочтительно представляет собой алкильную группу, особенно предпочтительно R4d, R4h, R4m и R4q представляют собой алкильные группы, предпочтительно метильные группы.

Предпочтительные циклические группы (которые могут быть одинаковыми или разными на том и другом концах углеводородной цепи) являются необязательно замещенными ароматическими или неароматическими углеводородами, предпочтительно гексильными группами. Циклическая группа предпочтительно является замещенной циклогексильной, циклогексенильной группой (например, 1-циклопентен-1-ил) или циклогексановым бивалентным радикалом циклогексилиденом, причем такие группы предпочтительно замещены по одному или более из кольцевых атомов углерода алкильной группой, эпоксигруппой, гидроксильной группой или карбонильной группой, которые сами могут быть дополнительно замещены.

В особенно предпочтительном виде циклическая группа является циклогексильной группой, и С2 гексильной группы замещен гидроксильной группой или алкильной группой (предпочтительно метильной группой) (и/или С1 и С2 несут эпоксидную группу), С4 замещен алкильной группой (предпочтительно метильной группой) и/или гидроксильной группой (которая сама может быть замещенной карбонильной группой, например, с получением ацетоксигруппы), и С6 является дизамещенным алкильными группами, предпочтительно метильными группами.

Как указано здесь, алкильные группы могут быть моно- или полиненасыщенными и включают как алкенильные, так и алкинильные группы. Такие группы могут содержать до 40 атомов углерода. Алкильная цепь предпочтительно представляет собой С15-С25, например С19-С23. Алкильные группы заместителей предпочтительно являются более короткими, например предпочтительные алкильные группы содержат до 10, например от 1 до 5 атомов углерода. В частности предпочтительны линейные насыщенные углеводороды, например, с 1, 2 или 3 атомами углерода. Замещенные алкильные группы могут быть моно- или полизамещенными, например, они могут быть алкоксиалкильными, гидроксиалкоксиалкильными, полигидроксиалкильными, гидроксиполиалкиленоксиалкильными, оксаалкильными, полиоксаалкильными и тому подобное.

Циклические группы могут быть, таким образом, выбраны из группы, состоящей из:

которая отражает циклические группы, обычно обнаруживаемые в каротиноидах, причем указанная группа R соответствует остатку молекулы, и С16, С17 и/или С18 могут быть замещены алкильной или содержащей кислород группой, как описано выше, и где соответствующее циклогексенильное кольцо превращено в циклогексильное кольцо, и/или С3 может быть замещен алкильной или содержащей кислород группой, как описано выше. Предпочтительными циклическими группами по данному изобретению являются:

Предпочтительными соединениями, таким образом, являются каротиноиды, содержащие одну или более алкадиениленовых или алкиниленовых групп (предпочтительно одну или более из пропдиениленовой или этиниленовой групп) в углеводородной цепи, причем алкадиениленовая или алкиниленовая группа может включать углерод, который является частью концевой циклической группы.

Каротиноиды данного изобретения имеют в основе каротиновую структуру с необязательно замещенными β, ε, γ, κ, ф или χ циклическими группами, как описано здесь ранее. Такие каротиноиды имеют, по меньшей мере, одну дидегидрогруппу, предпочтительно в одном или более из положений, соответствующих положению, выбранному из: а) 6,7; b) 6',7'; с) 7,8 и d) 7',8' в каротиновой структуре. Особенно предпочтительно дидегидрогруппа присутствует в положениях 6', 7' и/или 7', 8'.

Предпочтительно описанное выше семейство не охватывает встречающиеся в природе каротиноиды, помимо конкретно названных каротиноидов, описанных здесь в соответствии с данным изобретением, например фукоксантин, диатоксантин и диадиноксантин, и предпочтительно также и их встречающиеся в природе производные, такие как их секо-, апо- или нор-каротиноидные производные или продукты разложения. В предпочтительном виде описанное выше семейство не распространяется на аллоксантин, неоксантин, крококсантин или вочериаксантин, особенно предпочтительно неоксантин.

Особенно предпочтительно, когда каротиноид представляет собой: 3'-ацетат 5,6-эпокси-3,3',5'-тригидрокси-6',7'-дидегидро-5,6,7,8,5',6'-гексагидро-β,β-каротен-8-он (предпочтительно 3S,5R,6S,3'S,5'R,6'R); 5,6-эпокси-7',8'-дидегидро-5,6-дигидро-β,β-каротен-3,3'-диол (предпочтительно 3S,5R,6S) или 7',8'-дидегидро-β,β-каротен-3,3'-диол (предпочтительно 3R,3'R).

Особенно предпочтительно, когда указанное соединение представляет собой диадиноксантин, диатоксантин или фукоксантин, которые имеют структуры, представленные на фигуре 1.

В особенно предпочтительном аспекте каротиноид имеет формулу:

где

R1 представляет атом водорода, когда -С3R1R2- представляет собой -СR1=С=СR2- или образует часть циклической группы вместе с R2 и R5, когда -С3R1R2- является

-С≡С-СR1R2-;

R3 является циклической группой, выбранной из циклических групп I, II и III (как определено здесь ранее);

каждая из групп с R по R представляет необязательно замещенную алкильную группу, атом водорода, атом кислорода или гидроксильную группу, причем если R4 является атомом кислорода, смежный атом углерода несет две группы R4, предпочтительно R, R4b, R4d, R, R4f, R4i, R4j, R4k, R4m, R4n, R являются атомами водорода, и R, R4g, R4l, R являются метильными группами или -СR-СR4b- является группой -СН2-СО-;

R2 является частью циклической группы, и эта циклическая группа может быть такой же, как и R3 или другой, и остальная часть указанной циклической группы представлена R2 и углеродом, с которым он связан, когда -С3R1R2- является -СR1=С=СR2-, или представлена R1 и R2 вместе с атомом углерода, с которым они связаны, когда -С3R1R2- является -С≡С-СR1R2-, или представляет собой его фармацевтически приемлемое производное или его соль.

Особенно предпочтительно, когда R3 является циклической группой I или III, и R5 (вместе с R2 или R1 и R2) является циклической группой I или II, предпочтительно I, и предпочтительно -С3R1R2- является -С≡С-СR1R2-.

В особенно предпочтительном аспекте каротиноид имеет формулу:

где

каждый из R3 и R6, которые могут быть одинаковыми или разными, является циклической группой, выбранной из циклических групп I и III (которым дано определение здесь ранее);

каждая из групп с R по R представляет собой необязательно замещенную алкильную группу, атом галогена, атом кислорода или гидроксильную группу, причем если R4 является атомом кислорода, смежный атом углерода несет две группы R4, предпочтительно R, R4b, R4d, R, R4f, R4i, R4j, R4k, R4m, R4n, R являются атомами водорода, и R, R4g, R4l, R являются метильными группами, или представляет собой его фармацевтически приемлемое производное или его соль.

Предпочтительно R6 является циклической группой I. (Когда R3 и R6 являются циклической группой I, соединение является диатоксантином, и когда R3 является циклической группой III, и R6 является циклической группой I, соединение является диадиноксантином.)

Фармацевтически приемлемые производные, которые описаны более подробно здесь далее, включают продукты разложения, такие как диадинохром, в которых по отношению к формуле, представленной выше, R3-СR-СR4b- является конденсированной гетероциклической группой, в которой кислород эпоксидной группы циклической группы III образует связь с алкильной цепью, содержащей сопряженные двойные связи, с образованием 5-членной гетероциклической группы, содержащей атом кислорода, СR-СR4b из алкильной цепи и 2 атома углерода из циклической группы III.

В альтернативном предпочтительном аспекте каротиноид имеет формулу:

где

каждый из R3 и R7, которые могут быть одинаковыми или разными, является циклической группой, выбранной из циклических групп II и III (которым дано определение здесь ранее);

-СR-СR4b- является группой -СН2-СО-;

каждая из групп с R по R является необязательно замещенной алкильной группой, атомом водорода, атомом кислорода или гидроксильной группой, причем если R4 является атомом кислорода, смежный атом углерода несет две группы R4, предпочтительно R4d, R, R4f, R4i, R4j, R4k, R4m, R4n, R являются атомами водорода, и R, R4g, R4l, R являются метильными группами или представляет собой его фармацевтически приемлемое производное или его соль.

Предпочтительно R3 является циклической группой III, и предпочтительно R7 является циклической группой II.

Под «фармацевтически приемлемым» или «физиологически приемлемым» подразумевается, что ингредиент должен быть совместим с другими ингредиентами в композиции, а также быть физиологически приемлемым для реципиента.

Фармацевтически приемлемые производные (которые имеют такие же или подобные функциональные свойства, что и соединения, описанные выше) включают изомеры в диапазоне от всех транс до смеси цис-транс и до всех цис-изомеров, и включают оптические изомеры (например, 3S, 5S, 6R, 3'R и 3S, 5R, 6S, 3'R для диадиноксантина). Производные дополнительно включают молекулы, которые были модифицированы, например, путем модификации углеводородной главной цепи, например, путем замещения одной или более из алкильных групп, или модификацией одной из или обеих из циклических групп (например, как описано здесь ранее), при условии, что такие модификации не изменяют функциональных свойств соединений, которые здесь описаны. Например, понятие производных распространяется на сложные эфиры, например, каротиноиды могут быть этерифицированы жирными кислотами.

Понятие производных также распространяется на производные, которые могут встречаться в природе, такие как секо-, апо- и нор-каротиноидные производные. Термин «секо-каротиноиды» относится к производным каротиноидов, которые подверглись окислительному расщеплению без потери каких-либо атомов углерода. Апо-каротиноиды являются производными, в которых углеродный скелет укорачивается во время окислительного расщепления, и нор-каротиноиды являются производными, в которых атомы углерода были удалены с помощью других процессов, отличных от расщепления углерод-углеродных связей. Понятие «производные», таким образом, распространяется на усеченные каротиноиды, например те, в которых одна или более из изопреновых единиц удалены из изопреновой полимерной цепи.

Производные включают также эпоксидные производные и их 5,8-эпоксидные изомеры. Сюда включены также продукты разложения, например, в которых карбонильная группа фукоксантина реагирует, например, с боргидридом натрия в этаноле. Как упомянуто выше, сложный продукт диадинохром является типичным примером продукта разложения диадиноксантина. Включены также дегидратированные производные, например, образующиеся после обработки соединений, описанных здесь ранее, хлористым водородом в хлороформе.

Производные могут быть также получены с модификацией соединений данного изобретения для их использования для косметического и фармацевтического применения, например, путем добавления направляющих или функциональных групп, например, для улучшения липофильности, вспомогательного клеточного транспорта, растворимости и/или стабильности. Таким образом, олигосахариды, жирные кислоты, жирные спирты, аминокислоты, пептиды или протеины могут быть соединены с вышеназванными соединениями. Производные могут быть в форме «пролекарств», так что добавленный компонент может быть удален путем отщепления после введения, например, путем отщепления заместителя, добавленного посредством этерификации, который может быть удален под действием эстераз.

Производные, которые сохраняют функциональную активность, могут быть испытаны для того, чтобы установить, сохраняют ли они желательные свойства с помощью описанного здесь испытания, например, для определения фотозащитных свойств.

Активный ингредиент для применения может быть соответственно модифицирован для использования в фармацевтической композиции. Например, соединения, используемые в соответствии с данным изобретением, могут быть стабилизированы против разложения посредством использования производных, которые описаны выше.

Активный ингредиент может также быть стабилизирован в композициях, например, путем использования соответствующих добавок, таких как соли или не электролиты, ацетат, ДСН, ЭДТА, цитратный или ацетатный буферы, маннит, глицин, САЧ (НSА) или полисорбат.

Фармацевтически приемлемые соли являются предпочтительно кислотно-аддитивными солями с физиологически приемлемыми органическими или неорганическими кислотами. Подходящие кислоты включают, например, хлористоводородную, бромистоводородную, серную, фосфорную, уксусную, молочную, лимонную, винную, янтарную, малеиновую, фумаровую и аскорбиновую кислоты. Гидрофобные соли можно также соответственно получить, например, путем осаждения. Подходящие соли включают, например, ацетат, бромид, хлорид, цитрат, гидрохлорид, малеат, мезилат, нитрат, фосфат, сульфат, тартрат, олеат, стеарат, тозилат, кальциевые, меглуминовые, калиевые и натриевые соли. Способы образования соли являются общепринятыми в данной области.

Предпочтительно соединения, используемые в композициях и применениях по данному изобретению, получают или производят из природных источников. Их можно, однако, полностью или частично, получать синтетически (например, из коммерчески доступных каротиноидов, таких как β-каротин, астаксантин, лютеин или зеаксантин) или получать их производные после очистки. Предпочтительно данные соединения выделяют из природных источников, предпочтительно макро- или микроводорослей, в частности микроводорослей, принадлежащих к фитопланктону, группам диатомовых водорослей, динофлагеллятов, примнесиофитов, эугленофитов, хризофитов, особенно предпочтительно из диатомовых водорослей Phaeodactulym Tricornutum или Procentrum minimum, или микроводорослей Prymnesium parvum.

Фукоксантин можно, кроме того, выделить из различных других источников, таких как какие-либо морские обрастания (царство: простейшие, подгруппа: Phaeophyta), например, включая Fucus vesiculosus, как указано здесь ранее, Fucus serratus и Laminaria hyperborea. Другие источники включают: Undaria pinnitifida, Sargassum muticum, Macrocystis pyrifera, Macrocystis angustifolia, Padina boryana, Ecklonia maxima, Laminaria pallida, Ecklonia biruncinata, Pelargophycus porra, Turbinaria ornata, Bifurcaria brassicaeformis и Splachnidium rugosum.

Соединения данного изобретения могут быть выделены из природных источников или выделены из природных источников, которые были модифицированы так, что дают возможность производства каротиноидов, используемых в данном изобретении, например, путем трансформации микроорганизмов для получения необходимых для синтеза ферментов и выделения этих соединений из данных микроорганизмов.

Обычно такие соединения выделяют методами, известными специалистам в данной области, такими как разделение и хроматография (см., Haugan & Liaaen-Jensen, 1989, Phytochemistry, 28(10), p.2797-2798) или ВЭЖХ (Zapata et al., 2000, MEPS, 195, p.29-45). Метод Britten также можно использовать для выделения, например, фукоксантина (Britton et al. and Schiedt & Liaaen-Jensen, 1995, в “Carotenoids, Volume 1A: Isolation and Analysis”, Eds. Britton et al., Birkhauser Verlag, Basel, p.13-16 and p.81-108, соответственно). Эти соединения можно также выделить путем экстрагирования сверхкритическим СО2, которое использовали для выделения каротиноидов (Mendes et al., 2003, Inorganica Chimica Acta, Vol. 356, p.328-334; Valderrama et al., 2003. J. Chem. Eng. Data, 48, p.827-830).

Соединения для использования в композициях данного изобретения могут также быть выделены по методикам, описанным в примерах. Такие методы и продукты таких методов образуют дополнительные аспекты данного изобретения. Таким образом, в дополнительном аспекте данное изобретение относится к способу очистки каротиноида из водорослей, включающему стадии

(i) смешивания водорослей с водой, доведенной до рН 8-12 (предпочтительно рН 8-10, например, рН 8,3),

(ii) добавления спирта, предпочтительно этанола (или альтернативно, метанола) до конечного отношения вода:спирт от 0,2 до 1,5:1,0 (предпочтительно от 0,3 до 1,0:1, например, 0,3:1),

(iii) экстрагирования указанной водноспиртовой смеси (водной фазы) жидким органическим растворителем (органическая фаза), предпочтительно гептаном (или альтернативно, гексаном) при соотношении водноспиртовая смесь:органический растворитель, равном от 0,75 до 1,5:1,0 (предпочтительно от 1 до 1,4:1, например, 1,3:1),

(iv) необязательно охлаждения указанной органической фазы, например, до менее 10˚С, например ≤5, 0, -5, -10 или -20˚С (например, 5-10˚С) в течение более 5 минут, например 15-60 минут или долее, например в течение 12-26 часов, например 24 часов; и

(v) сбора водной и/или органической фазы и очистки из нее каротиноида.

При описанном выше способе порядок, в котором добавляют воду, спирт и органический растворитель, не является решающим. Так, спирт и воду можно добавлять один к другому, а затем можно добавлять органический растворитель, или спирт и органический растворитель можно смешать с последующим добавлением воды.

Предпочтительно указанный способ используют для выделения диадиноксантина, диатоксантина и/или фукоксантина, причем диадиноксантин и диатоксантин выделяют из органической фазы, а фукоксантин выделяют из водной фазы. Стадию (iii) предпочтительно выполняют путем смешивания в течение 30-90 минут, например 1 часа при температуре окружающей среды, например, 15-25˚С, например около 20˚С. Конкретные варианты общего метода описаны в примерах.

Спирт для использования при данном способе является жидким при комнатной температуре и растворимым в воде, но не гептане, и предпочтительно является этанолом или метанолом, хотя можно использовать и другие спирты, такие как пропанол. Органические растворители по существу не смешиваются с водой и предпочтительно являются жидкими при -20˚С, например гептан, гексан или пентан.

Выделенные таким образом соединения предпочтительно по существу не содержат загрязняющих компонентов, происходящих из материала источника или веществ, используемых при процедуре выделения. Особенно предпочтительно, когда данное соединение очищают до степени чистоты более 50 или 60%, например >70, 80 или 90%, предпочтительно более 95% или 99% чистоты, которая определена по весу (сухому весу). Такие уровни чистоты соответствуют конкретному соединению, представляющему интерес, но включая его изомеры и, необязательно, продукты его разложения. Где допустимо, можно использовать обогащенные препараты, которые имеют более низкую чистоту, например, содержат более 1, 2, 5 или 10% соединения, представляющего интерес, например более 20 или 30%.

Обычно уровень чистоты можно определить по анализу, например, используя спектрофотометрию в УФ/видимой области, ВЭЖХ анализ или масс-спектрометрию. Синтетически полученные или модифицированные соединения подобным же образом не должны содержать загрязняющих компонентов.

Каротиноиды в соответствии с данным изобретением могут быть получены синтетически на основе, например, синтетической углеродной структуры. Такие структуры можно получить, используя методики, известные специалистам в данной области, такие как реакции типа реакции Виттига, реакции Гриньяра и Нефа, енолэфирные конденсации, реакции Реформатского, синтез оснований Манника по Робинсону, восстановительная или окислительная димеризация и реакции Вюртца (см., например, Haugan, Dr. Ing. thesis, University of Trondheim, NTH, 1994, from p.155 и Mayer & Isler, 1971, in “Carotenoids”, Ed. Isler, Birkhäuser, Basel, p.325).

Эту углеродную структуру можно затем соответственно модифицировать, чтобы получить представляющий интерес каротиноид, используя методики, известные специалистам в данной области. Например, можно синтезировать фукоксантин, как описано (Ito et al., 1994, Pure & Appl. Chem., 66(5), p.939-946), в котором часть С10 углеродной структуры конденсирована с молекулами, дающими циклические концевые группы. Синтез диатоксантина описан в публикации Haugan et al., 1994, см.выше, p.165-205. Диадиноксантин можно получить, например, из диатоксантина путем введения эпоскигруппы к 5'-6' или 5-6 двойной связи диатоксантина. Производные этих синтетически полученных каротиноидов могут быть получены, как описано выше, с использованием методик, известных специалистам в данной области.

Каротиноидное соединение может присутствовать в указанных композициях в виде единственного активного ингредиента или может сочетаться с другими ингредиентами, в частности другими активными ингредиентами, например, для увеличения интервала, сверх которого может быть предложена защита от солнечного света и/или для изменения физических или химических свойств продукта, или для того, чтобы сделать его привлекательным для потребителя. Таким образом, например, в композицию могут быть включены одно или более из дополнительных солнцезащитных соединений, или они могут применяться вместе с данной композицией. Можно использовать химические или физические солнцезащитные вещества, например, как описано здесь ранее, которые способны поглощать/гасить излучение, в частности солнечное излучение, особенно в интервале УФВ и более коротком УФА диапаз