Способы регулирования свойств полимера

Иллюстрации

Показать все

Настоящее изобретение относится к способу изменения распределения состава сополимера этилена с альфа-олефином путем изменения по меньшей мере одного или более из следующих параметров: молярное отношение водорода к этилену, молярное отношение сомономера к этилену, парциальное давление этилена и температура в реакторе. Также настоящее изобретение относится к способу получения первого и второго сополимера этилена с альфа-олефином. Техническим результатом заявленного изобретения является возможность осуществления способов регулирования распределения состава полиолефина без необходимости использования смешанных катализаторов, множественных реакторов, способных к конденсации агентов, и/или смешивания после реактора. 2 н. и 24 з.п. ф-лы, 3 табл., 13 пр., 5 ил.

Реферат

Перекрестная ссылка на связанные заявки

Настоящее описание заявляет приоритет заявки 60/899526, поданной 5 февраля 2007 г., описание которой включено в качестве ссылки во всей полноте.

Область техники, к которой относится изобретение

Настоящее изобретение относится в общем к способам регулирования свойств полимера. Конкретно изобретение относится к способам регулирования распределения состава сомономера полиолефинов, например сополимеров этилена с альфа-олефином.

Предпосылки создания изобретения

Распределение состава полиолефина, например сополимера этилена с альфа-олефином, означает распределение сомономера (ветви с короткой цепью) в молекулах, которые включают полиэтиленовый полимер. Если количество ветвей с короткой цепью меняется на протяжении молекул полимера, то есть количество сомономера на 1000 атомов углерода меняется по длине молекул полиэтилена, считают, что полимер имеет «широкое» распределение состава. Если количество сомономера на 1000 атомов углерода одинаковое для молекул полиэтилена с различной длиной цепи, распределение состава называют «узким».

Распределение состава, как известно, влияет на свойства сополимеров, например на количество экстрагируемых веществ, устойчивость к растрескиванию под действием окружающей среды, термосвариваемость, а также прочность на разрыв. Распределение состава полиолефина можно легко измерить способами, известными в данной области техники, например дробное элюирование с повышением температуры (ДЭПТ) или анализ фракционирования кристаллизацией (CRYSTAF).

Полиолефины, например сополимеры этилена с альфа-олефином, обычно получают в реакторе низкого давления, с использованием, например, процессов полимеризации в растворе, суспензии или газовой фазе. Полимеризация протекает в присутствии каталитических систем, например, таких, в которых применяют катализатор Циглера-Натта, катализатор на основе хрома, металлоценовый катализатор или их комбинации.

В данной области техники в общем известно, что распределение состава полиолефина в основном определяется видом использованного катализатора и обычно не меняется для заданной каталитической системы. На катализаторах Циглера-Натта и катализаторах на основе хрома образуются полимеры с широкими распределениями состава, в то время как на металлоценовых катализаторах обычно образуются полимеры с узкими распределениями состава. Однако в патенте US 6242545 и WO 2004/000919 описаны определенные металлоцены, например гафноцены, в присутствии которых получаются полиэтилены, имеющие широкое распределение состава.

Хотя распределение состава в первую очередь определяется использованной каталитической системой, делались попытки изменить распределение состава полиолефина. Например, нужного распределения состава можно достичь со смесями полимеров. В патенте US 5382630 описаны, между прочим, смеси линейных сополимеров этилена, приготовленные из компонентов, которые обладают одинаковой молекулярной массой, однако содержания в них различных сомономеров отличаются, или содержание сомономеров в них одинаково, но различаются молекулярные массы, или содержания сомономера увеличиваются с увеличением молекулярной массы.

В другом способе изменения распределения состава применяют несколько катализаторов, которые по разному отзываются на концентрации сомономеров, присутствующих в реакторе, как описано, например, в патентных заявках US 2004/0225088 и 2004/0122054.

В еще некоторых способах получения полиолефинов, имеющих нужные распределения состава, используют множественные реакторы, содержащие одну или более каталитических систем, и/или добавление в реактор способного к конденсации агента. Например, в WO 2006/007046 описан, между прочим, способ расширения показателя уширения распределения состава (CDBI) в системе единственный реактор/единственный катализатор посредством повышения количества способного к конденсации агента в реакторе. Однако иногда в реакторе не содержится способный к конденсации агент или увеличение количества способного к конденсации агента неосуществимо, поскольку при этом возникают проблемы жесткости частиц и/или работоспособности системы.

Другие основные ссылки включают WO 01/49751, WO 01/98409, ЕР 1669373 А, а также патентные публикации US 2004/121922 и 2005/148742.

Таким образом, желательна и выгодна разработка способов регулирования распределения состава полиолефина, например, сополимера этилена с альфа-олефином, без необходимости использования смешанных катализаторов, множественных реакторов, способных к конденсации агентов и/или смешивания после реактора.

Краткое изложение сущности изобретения

Авторы изобретения обнаружили такие способы, в которых распределение состава полиолефина, например сополимера этилена с альфа-олефином, можно регулировать с помощью изменения одного или более из следующих параметров: молярное отношение водорода к этилену, молярное отношение сомономера к этилену, парциальное давление этилена, а также температура реактора.

Изменения в распределении состава можно охарактеризовать с помощью одного или более из следующих параметров:

а) изменения распределения состава, например изменения величины Т7525 по меньшей мере на 5°С или изменения величины по Т90 меньшей мере на 5°С (как определено в настоящем описании);

б) увеличение или снижение площади под высокотемпературным пиком в эксперименте ДЭПТ или CRYSTAF (как определено в настоящем описании) по меньшей мере на 5%;

в) изменение доли некристаллизующихся полимерных цепей по меньшей мере на 5%, причем долю некристаллизующихся полимерных цепей определяют на основании ступенчатого повышения линии ниже 30°С в эксперименте CRYSTAF (как определено в настоящем описании);

г) снижение величины одного из пиков в эксперименте ДЭПТ или CRYSTAF (как определено в настоящем описании) для полиэтилена, имеющего бимодальное распределение состава, так, что в результате образуется мономодальное распределение; и

д) появление дополнительного пика в эксперименте ДЭПТ или CRYSTAF (как определено в настоящем описании) для полиэтилена, имеющего мономодальное распределение состава, так, что в результате образуется бимодальное распределение.

Краткое описание чертежей

На фиг.1 представлены кривые ДЭПТ для примеров 1-4 из табл.1, которые представляют нормализованную концентрацию в зависимости от температуры элюирования.

На фиг.2 представлены кривые ДЭПТ для примеров 5-8 из табл.2, которые представляют нормализованную концентрацию в зависимости от температуры элюирования.

На фиг.3 представлены кривые CRYSTAF для примеров 12 и 13 из табл.3, которые представляют производную от совокупной концентрации в зависимости от температуры кристаллизации.

На фиг.4 представлены кривые CRYSTAF для примеров 11 и 12 из табл.3, которые представляют производную от совокупной концентрации в зависимости от температуры кристаллизации.

На фиг.5 представлены кривые CRYSTAF для примеров 9 и 10 из табл.3, которые представляют производную от совокупной концентрации в зависимости от температуры кристаллизации.

Подробное описание изобретения

До того как данные соединения, компоненты, составы и/или способы будут описаны в настоящем описании, необходимо понять, что, если не указано иное, настоящее изобретение не ограничено конкретными соединениями, компонентами, составами, реагентами, реакционными условиями, лигандами, металлоценовыми структурами или подобными вещами, поскольку они могут меняться, если не указано иное. Также следует понять, что использованную в настоящем описании терминологию применяют только для целей описания конкретных предпочтительных вариантов, при этом не предполагается, что она ограничивает сферу действия настоящего изобретения.

Также следует отметить, что использованное в описании и приложенной формуле изобретения единственное число включает и множественное число, если не указано иное. Так, например, ссылка на «уходящую группу», например, в описании группировки, «замещенной уходящей группой», включает более одной уходящей группы так, что группировка может быть замещена двумя или более таких групп. Аналогичным образом выражение «атом галогена», как, например, в описании группы, «замещенной атомом галогена», включает более одного атома галогена, например, так, что группировка может быть замещена двумя или более атомами галогена, ссылка на «заместитель» включает один или более заместителей, ссылка на «лиганд» включает один или более лигандов и так далее.

Предпочтительные варианты изобретения направлены на способы регулирования распределения состава полиолефинов, например сополимеров этилена с альфа-олефином, путем изменения по меньшей мере одного из следующих параметров: молярное отношение водорода к этилену, молярное отношение сомономера с этилену, температура в реакторе и парциальное давление этилена в реакторе.

В другом классе предпочтительных вариантов изобретение направлено на способ изменения распределения состава сополимера этилена с альфа-олефином, имеющего бимодальное распределение состава, так, что отношение величины высокотемпературного пика к низкотемпературному пику в экспериментах CRYSTAF или ДЭПТ меняется по меньшей мере на 10%. Таких результатов можно добиться изменением по меньшей мере одного или более из следующих параметров: молярного отношения водорода к этилену, молярного отношения сомономера к этилену, парциального давления этилена и температуры в реакторе, необязательно без значительного изменения плотности сополимера.

В еще одном классе предпочтительных вариантов изобретение направлено на способ изменения распределения состава сополимера этилена с альфа-олефином, имеющего бимодальное распределение состава, так, чтобы отношение величины высокотемпературного пика к низкотемпературному пику в экспериментах CRYSTAF или ДЭПТ менялось по меньшей мере на 10%. Таких результатов можно добиться изменением по меньшей мере одного или более из следующих параметров: молярного отношения водорода к этилену, молярного отношения сомономера к этилену, парциального давления этилена и температуры в реакторе, необязательно без значительного изменения плотности сополимера или индекса расплава.

В одном из классов предпочтительных вариантов изобретение направлено на способ изменения распределения состава сополимера этилена с альфа-олефином, в котором изменения распределения состава характеризуются изменением величины Т7525 на 5°С или более. Таких результатов можно добиться изменением по меньшей мере одного или более из следующих параметров: молярного отношения водорода к этилену, молярного отношения сомономера к этилену, парциального давления этилена и температуры в реакторе, необязательно без значительного изменения плотности сополимера или индекса расплава.

В другом классе предпочтительных вариантов изобретение направлено на способ изменения распределения состава сополимера этилена с альфа-олефином, в котором изменения распределения состава характеризуются изменением величины Т90 на 5°С или более. Таких результатов можно добиться изменением одного или более из следующих параметров: молярного отношения водорода к этилену, молярного отношения сомономера к этилену, парциального давления этилена и температуры в реакторе, необязательно без значительного изменения плотности сополимера или индекса расплава.

В другом классе предпочтительных вариантов изобретение направлено на способ формирования первого и второго сополимера этилена с альфа-олефином, включающий контактирование одной каталитической системы, этилена, по меньшей мере одного альфа-олефина, не являющегося этиленом, при условиях полимеризации в одном реакторе;

в котором первый и второй сополимеры этилена с альфа-олефином оба обладают плотностью, составляющей 0,910 г/см3 или более, индекс расплава для них составляет от 15 до 50, полимеризация происходит в одном реакторе с использованием одного катализатора, и

а) в котором указанный первый сополимер этилена с альфа-олефином характеризуется мономодальным распределением состава, отличающимся тем, что в ДЭПТ эксперименте присутствует один пик, и

в котором указанный второй сополимер этилена с альфа-олефином обладает полимодальным распределением состава, отличающимся тем, что в ДЭПТ эксперименте присутствует по меньшей мере два пика; или

б) в котором указанный первый сополимер этилена с альфа-олефином обладает полимодальным распределением состава, отличающимся тем, что в ДЭПТ эксперименте присутствует по меньшей мере два пика, и

указанный второй сополимер этилена с альфа-олефином обладает мономодальным распределением состава, отличающимся тем, что в ДЭПТ эксперименте присутствует один пик.

Определения

В настоящем описании выражение «полиэтилен» означает по меньшей мере один сополимер этилена с альфа-олефином, который представляет собой, например, гексен и/или бутен.

В настоящем описании выражение «распределение состава» (иногда его используют взаимозаменяемо с выражением «распределение состава сомономера» или «распределение ветвей из коротких цепей») означает распределение сомономера среди молекул, которые составляют полиэтиленовый полимер. Распределение состава можно определить на основе экспериментов ДЭПТ или CRYSTAF, как описано в настоящем описании.

В настоящем описании мономодальное распределение состава можно определить на основании присутствия только одного отдельного пика в эксперименте ДЭПТ или CRYSTAF, как описано в настоящем описании. Полимодальное распределение состава, иногда, в некоторых предпочтительных вариантах бимодальное распределение состава определяют как появление по меньшей мере двух отдельных пиков (например, двух или более), высокотемпературного пика и низкотемпературного пика, в экспериментах ДЭПТ или CRYSTAF, как описано в настоящем описании. «Пик» присутствует в том случае, если общий наклон кривой изменяется с положительного на отрицательный при повышении температуры. Два «пика» присутствуют в том случае, когда существует локальный минимум между пиками, в котором общий наклон кривой изменяется с отрицательного на положительный с повышением температуры. Относительное соотношение двух пиков можно определить на основании кривой ДЭПТ или CRYSTAF с использованием кривой гауссова распределения, удовлетворяющей каждому из пиков на кривой ДЭПТ или CRYSTAF, и интегрировании площади под каждым пиком, при этом суммарная площадь под всей кривой нормализуется к 100%.

В настоящем описании величины Т90, Т75, Т25 представляют собой температуры, при которых 90, 75 и 25%, соответственно, полимера вымывается в эксперименте ДЭПТ, как описано в настоящем описании.

В настоящем описании долю фракции высокой плотности (% высокой плотности) рассчитывают из суммарной площади пика, отражающего ту часть полимера, которая элюируется при высокой температуре в экспериментах ДЭПТ или CRYSTAF, причем суммарная площадь под всей кривой нормализуется к 100%.

В настоящем описании долю некристаллизованной фракции (% некристаллизованной) определяют ступенчатым повышением кривой ниже 30°С в эксперименте CRYSTAF. Heкристаллизующуюся долю рассчитывают путем интегрирования области низкотемпературной части под кривой CRYSTAF, в то время как суммарную площадь под всей кривой нормализуют к 100%.

В настоящем описании плотность измеряют по градиентной методике в соответствии со стандартом ASTM D 1505.

В настоящем описании индекс расплава измеряют в соответствии с ASTM-D-1238-E (190°С, масса 2,16 кг).

В настоящем описании выражение «значительное» в предложении «без значительного изменения плотности сополимера» означает, что изменение плотности (+/-) составляет менее 0,015 г/см3 в некоторых предпочтительных вариантах менее 0,008 г/см3 в других предпочтительных вариантах и меньше 0,004 г/см3 в еще некоторых предпочтительных вариантах.

В настоящем описании выражение «значительное» в предложении «без значительного изменения плотности сополимера или индекса расплава» означает, что изменение плотности (+/-) составляет менее 0,015 г/см3 в некоторых предпочтительных вариантах, менее 0,008 г/см3 в других предпочтительных вариантах и меньше 0,004 г/см3 в еще некоторых предпочтительных вариантах, и что изменение индекса расплава (+/-) составляет менее 2 г/10 мин в некоторых предпочтительных вариантах, менее 1 г/10 мин в других предпочтительных вариантах и менее 0,5 г/10 мин в еще некоторых предпочтительных вариантах.

В настоящем описании ДЭПТ измеряют с использованием прибора ДЭПТ аналитического размера (поставляется фирмой Polymerchar, Испания), с колонкой следующих размеров: внутренний диаметр (ID) 7,8 мм, внешний диаметр (OD) 9,52 мм и длина колонки 15 см. Колонку заполняют стальными шариками. 0,5 мл раствора полимера концентрации 6,4% (мас./об.) в ортодихлорбензоле (ОДХБ) (ОДХБ фирмы Aldrich 99+%, стабилизированный 0,5 г (БГТ)/4 л), содержащего 6 г БГТ/4 л (бутилированный гидрокситолуол, или 2,6-ди-трет-бутил-4-метилфенол), загружают в колонку и охлаждают от 140 до 25°С при постоянной скорости охлаждения 1,0°С/мин. Затем ОДХБ прокачивают через колонку со скоростью потока 1,0 мл/мин и температуру колонки повышают с постоянной скоростью нагрева 2°С/мин, с целью вымывания полимера. Концентрацию полимера в элюированной жидкости определяют посредством измерения поглощения при волновом числе 2857 см-1, с использованием инфракрасного детектора. Концентрацию полимера в растворе рассчитывают затем из поглощения и строят кривую зависимости поглощения от температуры.

В настоящем описании CRYSTAF измеряют с применением продажного инструмента фирмы PolymerChar S.A., модель 200. Примерно 20-30 мг полимера помещают в реактор и растворяют в 30 мл 1,2-дихлорбензола (ОДХБ, Aldrich 99+%, стабилизированный 0,5 г БГТ/4 л) при 160°С в течение 60 минут, а затем уравновешивают в течение 45 минут при 100°С. Растворы полимера охлаждают до 0°С при скорости кристаллизации 0,2°С/мин. Инфракрасный детектор с двумя длинами волн используют для определения концентрации полимера во время кристаллизации (3,5 мкм, 2853 см-1 симм. Линейных колебаний) и компенсации дрейфа базовой линии (3,6 мкм) на протяжении анализа. Концентрацию в растворе отслеживают через определенные интервалы температуры, получают интегральную кривую концентрации. Производная этой кривой по температуре (dw/dT) представляет массовую долю кристаллизованного полимера при каждой температуре. Эту производную кривой интегральной концентрации затем строят в виде зависимости от температуры кристаллизации.

Компоненты катализатора

Каталитическая система включает любую необходимую каталитическую композицию, известную в данной области техники, пригодную для полимеризации олефинов, например, но не ограничиваясь перечисленным, катализаторы на основе ванадия, катализаторы Циглера-Натта на основе титана (которые могут включать магниевый компонент), металлоцены, например металлоцены металлов 4 группы (предпочтительно гафноцены и цирконоцены), каталитические композиции на основе хрома и оксида хрома, а также каталитические системы координационного типа на основе элементов 3-10 групп (например, бидентатные или тридентатные аминовые/иминовые координационные комплексы с железом, палладием, никелем или цирконием). В настоящем описании, если не указано иное, используется вид Периодической таблицы в соответствии с указаниями Международного союза по чистой и прикладной химии (ИЮПАК) (3 октября 2005 года) (www.iupac.org/reports/periodictable/).

В одном из классов предпочтительных вариантов катализатор полимеризации включает металлоцен; в особенно предпочтительном варианте каталитическая композиция включает гафноцен; в наиболее предпочтительном варианте металлоцен в каталитической композиции состоит практически из гафноцена, то есть одного комплекса гафния с по меньшей мере одним лигандом.

«Гафноцен» может представлять собой компонент катализатора, включающий комплексы гафния моно-, бис- или трисциклопентадиенильного типа. В одном из предпочтительных вариантов лиганды циклопентадиенильного типа включают циклопентадиенил или лиганды, изолобальные циклопентадиенилу, а также его замещенные версии. Представительными, но не исключительными примерами лигандов, изолобальных циклопентадиенилу, являются циклопентафенантранеил, инденил, бензинденил, флуоренил, октагидрофлуоренил, циклооктатетраенил, циклопентациклододецен, фенантринденил, 3,4-бензофлуоренил, 9-фенилфлуоренил, 8-Н-циклопент[а]аценафтиленил, 7Н-дибензофлуоренил, индено[1,2-9]антрен, тиофеноинденил, тиофенофлуоренил, гидрированные версии перечисленного (например, 4,5,6,7-тетрагидроинденил, или «H4Ind») и замещенные версии перечисленного. В одном из предпочтительных вариантов гафноцен представляет собой немостиковый бисциклопентадиенилгафноцен, а также его замещенные версии. В другом предпочтительном варианте гафноцен не включает незамещенные мостиковые и немостиковые бисциклопентадиенилгафноцены, а также незамещенные мостиковые и немостиковые бисинденилгафноцены, при этом «незамещенный» означает, что с кольцами связаны только гидридные группы и никакие другие.

Предпочтительно гафноцен, подходящий для применения в настоящем изобретении, можно представить формулой (где Hf представляет собой гафний):

в которой n составляет 1 или 2, q составляет 1, 2 или 3, каждый Ср независимо представляет собой циклопентадиенильный лиганд или лиганд, изолобальный циклопентадиенилу, или замещенную его версию, связанный с гафнием; а Х выбирают из группы, включающей гидрид, галогениды, С110алкилы и С212алкенилы; и в которой если n равно 2, каждый Ср может быть связан с другим через мостиковую группу А, выбранную из группы, включающей С15алкилены, кислород, алкиламин, силилуглеводороды и силоксилуглеводороды. Пример С15алкиленов включает этиленовые (-СН2СН2-) мостиковые группы; пример алкиламиновой мостиковой группы включает метиламид (-(СН3)N-); пример силилугдеводородной мостиковой группы включает диметилсилил (-(CH3)2Si-); и пример силоксилуглеводородной мостиковой группы включает (-О-(СН3)2Si-О-).

В одном из предпочтительных вариантов гафноцен представляют формулой (1), n равно 2, a q составляет 1 или 2.

В настоящем описании выражение «замещенный» означает, что такая группа содержит по меньшей мере одну группировку на месте одного или более атомов водорода в любом положении, группировки выбирают из таких групп, как радикалы галогена (например, F, Cl, Br), гидроксильные группы, карбонильные группы, карбоксильные группы, аминогруппы, фосфиновые группы, алкоксильные группы, фенильные группы, нафтильные группы, C110алкильные группы, С210алкенильные группы и их комбинации. Примеры замещенных алкилов и арилов включают, но не ограничиваются ими, ацильные радикалы, алкиламиновые радикалы, алкоксильные радикалы, арилоксильные радикалы, алкилтио-радикалы, диалкиламиновые радикалы, алкоксикарбонильные радикалы, арилоксикарбонильные радикалы, карбамоильные радикалы, алкил- и диалкил-карбамоильные радикалы, ацилоксильные радикалы, ациламиновые радикалы, ариламиновые радикалы и их комбинации.

В другом классе предпочтительных вариантов гафноцен, пригодный для применения в настоящем изобретении, можно представить формулой:

в которой каждый Ср представляет собой циклопентадиенильный лиганд, и каждый из них связан с гафнием; каждый R независимо выбирают из гидридов и C110алкилов, наиболее предпочтительно гидридов и С15алкилов; Х выбирают из группы, включающей гидрид, галогениды, С110алкилы и С212алкенилы; более предпочтительно Х выбрают из группы, включающей галогениды, С26алкилены, а также С16алкилы, наиболее предпочтительно Х выбирают из группы, включающей хлорид, фторид, С15алкилы и С26алкилены. В одном из предпочтительных вариантов гафноцен представляют формулой (2), приведенной выше, в которой по меньшей мере одна группа R представляет сбой алкил, определенный выше, предпочтительно С15алкил, а остальные представляют собой гидриды. В другом предпочтительном варианте каждый Ср независимо замещен одной, двумя или тремя группами, выбранными из группы, включающей метил, этил, пропил, бутил и их изомеры.

В определенных предпочтительных вариантах процесс полимеризации можно проводить так, чтобы каталитическая композиция была гетерогенной и включала по меньшей мере один материал носителя. Материал носителя может представлять собой любой материал, известный в данной области техники и предназначенный для нанесения каталитических композиций, например неорганический оксид, предпочтительно оксид кремния, оксид алюминия, оксид кремния-оксид алюминия, хлорид магния, графит, магнезит, оксид титана, оксид циркония и монтмориллонит, любой из которых может быть химически/физически модифицированным, например в процессах фторирования, прокаливания или других процессах, известных в данной области техники.

В одном из предпочтительных вариантов материал носителя может представлять собой оксид кремния, средний размер которого, определенный на основании анализа Малверна, составляет от 0,1 до 100 мкм, наиболее предпочтительно от 10 до 50 мкм.

В одном из классов предпочтительных вариантов каталитическая композиция может включать по меньшей мере один активатор. Такие активаторы хорошо известны в данной области техники и включают, но не ограничиваются ими, кислоты Льюиса, например, циклические или олигомерные поли(гидрокарбил) оксиды алюминия и так называемые некоординирующие активаторы (НКА).

По меньшей мере один активатор может также включать алюмоксан (например, метилалюмоксан МАО) и модифицированный алюмоксан (например, ММАО или ТИБАО). Активаторы широко используют, они хорошо известны в данной области техники и могут подходить для активирования катализатора полимеризации олефина.

В особенно предпочтительном варианте активатор представляет собой алюмоксан, наиболее предпочтительно металюмоксан, например, описанный в J.B.P.Soares, A.E.Hamielec в 3(2) POLYMER REACTION ENGINEERING 131-200 (1995). Алюмоксан можно совместно с катализатором наносить на материал носителя, необязательно в молярном отношении алюминия к гафнию (Al:Hf), составляющем от 50:1 до 200:1 или от 80:1 до 120:1.

Процесс полимеризации

Реактор полимеризации может представлять собой любой тип реактора, известный в данной области техники, который можно применять в получении полиолефинов. Примером такого реактора является проточный газофазный реактор, более конкретно проточный газофазный реактор с псевдоожиженным слоем.

Такие реакторы, например, обычно способны работать при общем давлении менее 10000 кПа, предпочтительно менее 8000 кПа, еще более предпочтительно менее 6000 кПа, еще более предпочтительно менее 4000 кПа и наиболее предпочтительно менее 3000 кПа.

В одном из классов предпочтительных вариантов реактор представляет собой проточный реактор, что означает, что мономеры и каталитическую композицию подают в реактор непрерывно или регулярно, в то время как полимерный продукт, например полиэтилен, непрерывно или регулярно удаляют из реактора. Такие реакторы полимеризации включают так называемые суспензионные реакторы, растворные реакторы и газофазные реакторы с псевдоожиженным слоем. Такие реакторы описаны в A.E.Hamielec, J.B.P.Soares в Polymerization Reaction Engineering-Metallocene Catalysts, 21 PROG. POLYM. SCI. 651-706 (1996).

В конкретном классе предпочтительных вариантов реактор полимеризации, подходящий для настоящего изобретения, представляет собой проточный газофазный реактор с псевдоожиженным слоем, включающий подаваемый поток или рециклирующий газ, включающий этилен и сомономер, например, гексен, бутен, октен и/или их смеси, оба они непрерывно проходят через реактор полимеризации любым подходящим способом. Такие реакторы хорошо известны в данной области техники и описаны более подробно в патентах US 5352749, 5462999 и в WO 03/044061. Количество сомономера можно выразить как молярное отношение к количеству этилена в реакторе. Предпочтительно питающий поток или рециклирующий газ обеспечивается для того, чтобы содействовать поддержанию в реакторе непрерывного потока этилена и сомономера.

В предпочтительных вариантах, в которых применяют газофазный реактор с псевдоожиженным слоем, поток мономера проходит в секцию полимеризации. В качестве иллюстрации секции полимеризации в описание может быть включен реактор, находящийся в трубопроводном соединении с одной или более разгрузочных емкостей, буферных емкостей, продувочных емкостей и компрессоров для рециркулирования. В одном или более предпочтительных вариантов реактор включает реакционную зону, находящуюся в трубопроводном соединении с зоной снижения скорости. Реакционная зона включает слой растущих полимерных частиц, образовавшихся частиц полимера и частиц каталитической композиции, псевдоожиженный за счет подачи непрерывного потока полимеризующихся исходных веществ и модифицирующих газовых компонентов в виде свежего потока и рецируклирующей жидкости, проходящих через зону реакции. Предпочтительно свежий поток включает способный к полимеризации мономер, наиболее предпочтительно этилен и по меньшей мере один другой альфа-олефин и может включать также «конденсирующие агенты», как это известно в данной области техники и описано, например, в патентах US 4543399, 5405922 и 5462999.

Псевдоожиженный слой обычно выглядит как плотная масса двигающихся отдельных частиц, предпочтительно частиц полиэтилена, которая образуется при прохождении газа через слой. Падение давления в слое может быть равно или немного больше массы слоя, деленной на площадь поперечного сечения. Поэтому оно зависит от геометрии реактора. Чтобы поддержать существование псевдоожиженного слоя в реакционной зоне, приведенная скорость газа через слой должна превышать минимальную скорость, необходимую для превращения слоя в псевдоожиженный. Предпочтительно приведенная скорость газа может по меньшей мере в два раза превышать минимальную скорость потока.

В целом, отношение высоты к диаметру реакционной зоны может меняться в интервале от примерно 2:1 до примерно 5:1. Интервал, конечно, можно изменять в сторону больших или меньших соотношений. Он зависит от требуемой производительности. Площадь поперечного сечения зоны снижения скорости обычно составляет от примерно 2 до примерно 3, умноженных на площадь поперечного сечения реакционной зоны.

Зона снижения скорости имеет больший внутренний диаметр, чем реакционная зона, и может быть конической формы. Как ясно из названия, в этой зоне происходит снижение скорости газа вследствие увеличения площади поперечного сечения. Такое снижение скорости газа способствует падению захваченных частиц обратно в слой, что снижает количество захваченных частиц, уходящих из реактора. Этот газ, выходящий из верхней части реактора, представляет собой рециркулирующий газовый поток.

Рециркулирующий поток сжимают в компрессоре и затем пропускают через зону теплообмена, в которой удаляют тепло из потока до его возвращения в псевдоожиженный слой. Зона теплообмена обычно представляет собой теплообменник, который может быть горизонтального или вертикального типа. При желании можно применять несколько теплообменников, с целью ступенчатого снижения температуры рециркулирующего газа. Также можно располагать компрессор ниже теплообменника или в промежуточной точке между несколькими теплообменниками. После охлаждения рециркулирующий поток возвращают в реактор по входной линии для рециркулирующего газа. Охлажденный рециркулирующий поток поглощает тепло, которое вырабатывается при реакции полимеризации.

Обычно рециркулирующий поток возвращают в реактор и в псевдоожиженный слой через газораспределительную тарелку. Дефлектор газа предпочтительно устанавливают на входе в реактор с целью предотвращения осаждения и агломерации содержащихся в нем частиц полимера в твердую массу, а также с целью предотвращения накопления жидкости на дне реактора, и, кроме того, чтобы облегчить переходы от процессов, в которых в рециклирующем газе содержится жидкость, к тем, в которых жидкость в газе отсутствует, и наоборот. Иллюстративный дефлектор, подходящий для этих целей, описан, например, в патентах US 4933149 и 6627713.

Каталитическую композицию или систему, используемую в псевдоожиженном слое, предпочтительно хранят в резервуаре под подушкой из газа, который инертен (или не реагирует во время процесса полимеризации) по отношению к сохраняемому материалу, например под азотом или аргоном. Каталитическую композицию можно добавлять в реакционную систему или в реактор в любом месте и любым подходящим способом, предпочтительно ее добавляют в реакционную систему или непосредственно в псевдоожиженный слой, или ниже места расположения последнего теплообменника (теплообменника, расположенного наиболее далеко по ходу потока) в линии рециркуляции, в этом случае активатор подают в слой или линию рециркуляции из дозатора. Каталитическую композицию вводят в слой в точке выше распределительной тарелки. Предпочтительно каталитическую композицию вводят в точке в слое, в которой происходит хорошее перемешивание с частицами полимера. Введение каталитической композиции в место выше распределительной тарелки обеспечивает удовлетворительную эксплуатацию реактора полимеризации с псевдоожиженным слоем.

Мономеры можно вводить в зону полимеризации различными способами, включая прямой ввод через наконечник в слой или линию рециркуляции газа. Мономеры можно также распылять в верхней части слоя через форсунку, расположенную выше слоя, что может облегчать удаление некоторой части остатков мелочи с помощью рециркулирующего потока газа.

Свежую текучую среду можно подавать в слой через отдельную линию, входящую в реактор. Состав свежего потока определяют с помощью газового анализатора. Газовый анализатор определяет состав рециркулирующего потока, и состав свежего потока регулируют соответствующим образом, чтобы поддерживать практически постоянным состав газа в реакционной зоне. Газовый анализатор может быть обычного типа, который определяет состав рециркулирующего потока с целью поддержания отношений компонентов в подаваемом потоке. Такое оборудование производится многими фирмами. Газовый анализатор обычно располагают так, чтобы в него подавался газ из точки отбора проб, расположенной между зоной снижения скорости и теплообменником.

Производительность по полиолефину можно удобным образом регулировать путем изменения скорости подачи каталитической композиции, подачи активатора или того и другого. Поскольку любые изменения в скорости подачи каталитической композиции будут менять скорость реакции, и, следовательно, скорость, с которой тепло вырабатывается псевдоожиженным слоем, температуру рециркулирующего потока, входящего в реактор, регулируют так, чтобы приспособиться к любым изменениям скорости генерирования тепла. Это обеспечивает поддержание практически постоянной температуры в слое. Полное оснащение средствами измерения как псевдоожиженного слоя, так и системы охлаждения рециркулирующего потока, безусловно, полезно для определения любых изменений температуры в слое и дает возможность оператору или обычной системе автоматического регулирования сделать подходящие изменения температуры рециркулирующего потока.

При заданном наборе рабочих условий псевдоожиженный слой поддерживают имеющим по существу постоянную высоту путем удаления части слоя в виде продукта со скоростью образования частиц полимерного продукта. Поскольку скорость генерирования тепла напрямую связана со скоростью образования продукта, измерение увеличения температуры в текучей среде на протяжении реактора (разница между температурой потока на входе и на выходе) дает возможность оценить скорость образования полимера в виде частиц при постоянной скорости потока, если во вхо