Композиция смазочного масла для двигателя внутреннего сгорания

Иллюстрации

Показать все

Использование: в двигателях внутреннего сгорания, таких как бензиновые двигатели, дизельные двигатели и газовые двигатели. Сущность: комбинация для улучшения стойкости к окислению содержит (A) по меньшей мере, одно соединение, выбранное из дисульфидных соединений, представленных следующей общей формулой (I): R1OOC-A1-S-S-A2-COOR2 (I), и дисульфидных соединений, представленных следующей общей формулой (II): R7OOC-CR9R10-CR11-(COOR8)-S-S-CR16(COOR13)-CR14R15-COOR12 (II), (B) органическое молибденсодержащее соединение и (C) фенольный антиокислитель и/или антиокислитель на основе амина. Композиция смазочного масла содержит базовое масло и комбинацию для улучшения стойкости к окислению при содержании молибдена 2000 ppm или менее. Содержание серы в композиции составляет 0,3% или менее и содержание сульфатной золы составляет 1% или менее. Технический результат - улучшение стойкости к окислению при одновременном снижении трения наряду с соответствием требованиям природоохранительного законодательства. 2 н. и 5 з.п. ф-лы, 2 табл., 8 пр.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к композиции смазочного масла для двигателей внутреннего сгорания, более конкретно к композиции смазочного масла для двигателей внутреннего сгорания, которая проявляет улучшенную стойкость к окислению и эффект понижения трения с использованием комбинации особого соединения серы, молибденорганического соединения и антиокислителя на основе фенола и/или антиокислителя на основе амина.

Предпосылки создания изобретения

В настоящий момент, природоохранительное законодательство становится все более и более жестким в мировом масштабе. В особенности, условия, касающиеся автомобильной промышленности, такие как законодательство по потреблению топлива и законодательство по выбросам отработавших газов, становятся все более и более жесткими. В предпосылках такого ужесточение законодательства лежат проблемы окружающей среды, такие как глобальное потепление, и необходимость экономии ресурсов (рационального использования природных ресурсов) в связи с возможным исчерпанием нефтяных ресурсов. Следовательно, снижение потребления топлива автомобилями, как полагают, должно быть дополнительно усовершенствовано.

Для того чтобы снизить потребление топлива автомобилями, также является важным не только улучшение автомобилей самих по себе, например снижение его веса, и улучшение двигателей, но и также улучшение моторного масла, такое как снижение его вязкости, и введение хорошей добавки, регулирующей трение, для предотвращения потери на трение в двигателе. Снижение вязкости моторного топлива, однако, вызывает увеличение износа деталей двигателя. Таким образом, с целью снижения потери на трение, которое могло быть вызвано снижением вязкости моторного масла, и предотвращения износа, добавляют трибомодификатор (антифрикционная добавка), противозадирную добавку и так далее. В качестве противозадирной добавки, как правило, используют фосфорсодержащее соединение. Однако известно, что фосфорсодержащее соединение портит катализатор, используемый для очистки выхлопного газа. Следовательно, желательно снизить количество такого фосфорсодержащего соединения в моторном масле настолько, насколько это возможно.

В дизельных двигателях важной задачей является обеспечение способа снижения загрязнения окружающей среды, вызванного компонентами выхлопного газа, такими как твердые частицы (PM) и оксиды азота (NOx). Одно эффективное решение этой задачи представляет собой установление в автомобилях устройства для очистки выхлопного газа с использованием фильтра очистки от микрочастиц или катализатора очистки выхлопного газа (катализатор окисления или восстановления). В том случае, когда традиционно применяемое смазочное масло для двигателей внутреннего сгорания используют в автомобиле, снабженном таким устройством для очистки выхлопного газа, возникает проблема, так как, хотя сажа, которая осаждается на фильтре очистки от микрочастиц, удаляется окислением и сгоранием, фильтр забивается оксидами металлов, фосфатными солями, сульфатными солями и карбоксилатными солями, которые образуются in situ при сгорании. Часть использованного моторного масла сгорает и выходит в виде выхлопного газа. Следовательно, предпочтительно поддерживать содержание металлсодержащих компонентов и серосодержащих компонентов в смазочном масле на минимально возможном уровне. Также предпочтительно снизить содержание фосфорсодержащих компонентов и серосодержащих компонентов в смазочном масле по соображениям предотвращения отравления (дезактивации) катализатора.

С учетом вышесказанного в настоящем изобретении раскрывают композицию смазочного масла дизельного двигателя, снабженного фильтром очистки выхлопных газов дизельного двигателя от микрочастиц (DPF), которая способна снизить забивание фильтра DPF компонентом золы, способна улучшить горючесть/способность гореть твердых частиц, улавливаемых посредством фильтра DPF, способна обеспечить стабильное сгорание твердых частиц (PM) при низкой температуре, способна улучшить эффективность их удаления и способна продлить срок службы фильтра DPF (см., например, Патентный Документ 1). Композиция смазочного масла для дизельного двигателя, снабженного устройством для удаления твердых частиц из выхлопного газа дизельного двигателя, отличается тем, что композиция имеет содержание сульфатированной золы 1,0% по массе или менее, содержание серосодержащего компонента 0,3% по массе или менее и содержание молибдена 100 миллионных долей (ppm) или более.

В качестве противозадирной присадки для смазочного масла, до настоящего времени, как правило, использовали противозадирную добавку на основе фосфора или на основе серы. Для того чтобы выявить противозадирные свойства, противозадирную добавку, которая содержит в свой молекуле атом фосфора и/или атом серы, растворяют или равномерно диспергируют в базовом масле. Примеры известной противозадирной добавки включают соли металлов дитиофосфорной кислоты, сульфурированные жиры, сульфурированные жирные кислоты, сульфурированные сложные эфиры, полисульфиды, сульфурированные олефины, тиокарбаматы, тиотерпены и диалкил-тиодипропионаты. Такие противозадирные присадки, однако, дают проблемы, заключающиеся в том, что металлы корродируют под их воздействием, эффект предотвращения заклинивания/схватывания достигается в недостаточной степени вследствие их взаимодействия с другими присадками, и стойкость к окислению является недостаточной, и, следовательно, они не вполне удовлетворяют техническим требованиям.

При данном условии, авторы настоящей заявки разработали новую противозадирную присадку на основе серы, которая имеет лучшие несущую способность без разрушения масляной пленки и сопротивление износу по сравнению с традиционно применяемой противозадирной присадкой, которая является менее коррозионной для металлов, которая может быть использована в смазочных маслах и которая включает дисульфидное соединение, имеющее особую структуру (см., например, Патентные Документы 2 и 3).

Известно, что улучшение сопротивления износу, улучшение стойкости к окислению, улучшение противонагарного свойства и улучшение снижения трения могут быть получены в том случае, когда молибденсодержащую присадку добавляют к смазочному маслу, такому как моторное масло для легковых автомобилей, моторное масло для большегрузных дизелей или моторное масло для двигателей, работающих на природном газе (см., например, Патентные Документы 4-10). В качестве молибденсодержащей присадки могут быть упомянуты, например, молибденорганические соединения, такие как сульфурированный дитиокарбамат оксимолибдена, сульфурированный дитиофосфат оксимолибдена, сульфурированный дитиоксантогенат оксимолибдена, аминокомплексы молибдена, трехъядерные молибден-серные соединения и серосодержащие молибденовые комплексы сукцинимида.

[Патентный Документ 1] Публикация Японской Нерассмотренной Заявки на Патент № 2002-60776

[Патентный Документ 2] Публикация Японской Нерассмотренной Заявки на Патент № 2004-262964

[Патентный Документ 3] Публикация Японской Нерассмотренной Заявки на Патент № 2006-45335

[Патентный Документ 4] Публикация Японской Нерассмотренной Заявки на Патент № 2001-262175

[Патентный Документ 5] Публикация Японской Нерассмотренной Заявки на Патент № 2003-252887

[Патентный Документ 6] Японский Перевод Публикации Международной Заявки согласно PCT № 2003-523454

[Патентный Документ 7] Японский Перевод Публикации Международной Заявки согласно PCT № 2003-500521

[Патентный Документ 8] Публикация Японской Нерассмотренной Заявки на Патент № 2004-51985

[Патентный Документ 9] Публикация Японского Нерассмотренного Патента № Н03-22438

[Патентный Документ 10] Публикация Японской Нерассмотренной Заявки на Патент № 2004-2866

Раскрытие Изобретения

[Задача, которая должна быть решена Изобретением]

При вышеупомянутом условии, задачей настоящего изобретения является предоставление композиции смазочного масла, которая является малозольной (с малым содержанием золы) и малофосфористой (с низким содержанием фосфора), которую используют для двигателей внутреннего сгорания, таких как бензиновые двигатели, дизельные двигатели и газовые двигатели, которая имеет улучшенные стойкость к окислению и эффект снижения трения и которая соответствует требованиям природоохранительного законодательства.

[Средство для Решения Задачи]

Авторы настоящего изобретения сделали серьезное исследование с намерением разработать композицию смазочного масла, имеющую вышеописанные предпочтительные свойства, и обнаружили, что введение дисульфидного соединения, имеющего особую структуру, может улучшить эффект снижения трения, а использование молибденорганического соединения вместе с антиокислителем на основе фенола и/или антиокислителем на основе амина может улучшить способность сохранять эффект снижения трения и стойкость к окислению, вследствие чего вышеупомянутые задачи могут быть решены. Настоящее изобретение было выполнено на основе вышеупомянутого обнаружения.

То есть настоящее изобретение обеспечивает следующее.

[1] Композицию смазочного масла для двигателей внутреннего сгорания, содержащую базовое масло, (А) по меньшей мере, одно соединение, выбранное из группы, состоящей из дисульфидных соединений, представленных следующей общей формулой (I):

R1OOC-A1-S-S-A2-COOR2 (I)

(где R1 и R2, каждый независимо, представляют собой С130 углеводородную группу, которая может содержать атом кислорода, атом серы или атом азота, A1 и А2, каждый независимо, представляют собой группу формулы CR3R4 или CR3R4-CR5R6, где R3-R6, каждый независимо, представляют собой атом водорода или С120 углеводородную группу),

и дисульфидных соединений, представленных следующей общей формулой (II):

R7OOC-CR9R10-CR11(COOR8)-S-S-CR16(COOR13)-CR14R15-COOR12 (II)

(где R7, R8, R12 и R13, каждый независимо, представляют собой С130 углеводородную группу, которая может содержать атом кислорода, атом серы или атом азота, и R9-R11 и R14-R16, каждый независимо, представляют собой атом водорода или С15 углеводородную группу),

(B) молибденорганическое соединение и (С) антиокислитель на основе фенола и/или антиокислитель на основе амина.

[2] Композицию смазочного масла для двигателей внутреннего сгорания в соответствии с вышеупомянутым пунктом [1], дополнительно содержащую (D) моющую присадку на основе металла и/или беззольный дисперсант.

[3] Композицию смазочного масла для двигателей внутреннего сгорания в соответствии с вышеупомянутыми пунктами [1], где композиция смазочного масла имеет содержание молибдена 2000 миллионных долей (ppm) или менее.

[4] Композицию смазочного масла для двигателей внутреннего сгорания в соответствии с любым одним из вышеупомянутых пунктов [1]-[2], где композиция смазочного масла имеет содержание серы 0,3% по массе или менее.

[5] Композицию смазочного масла для двигателей внутреннего сгорания в соответствии с пунктом [1], где композиция смазочного масла имеет содержание фосфора 0,1% по массе или менее.

[6] Композицию смазочного масла для двигателей внутреннего сгорания в соответствии с любым одним из вышеупомянутых пунктов [1]-[2], где композиция смазочного масла имеет содержание сульфатированной золы 1,0% по массе или менее.

[Эффект изобретения]

В соответствии с настоящим изобретением, посредством использования дисульфидного соединения, имеющего особую структуру, вместе с молибденорганическим соединением и антиокислителем на основе фенола и/или антиокислителем на основе амина может быть обеспечена композиция смазочного масла для двигателей внутреннего сгорания, которая имеет низкое содержание золы и низкое содержание фосфора, которая имеет улучшенные стойкость к окислению и эффект снижения трения и которая соответствует требованиям природоохранительного законодательства, в частности композиция смазочного масла, которую используют для двигателей внутреннего сгорания, таких как бензиновые двигатели, дизельные двигатели и газовые двигатели.

Лучший Способ Осуществления Изобретения

Композиция смазочного масла для двигателей внутреннего сгорания настоящего изобретения (в дальнейшем в этом документе время от времени называемая просто как «композиция смазочного масла») отличается тем, что композиция содержит базовое масло, (А) дисульфидное соединение, (В) молибденорганическое соединение и (С) антиокислитель на основе фенола и/или антиокислитель на основе амина.

Базовое масло, используемое в композиции смазочного масла настоящего изобретения, не ограничено особым образом и может быть выбрано произвольно из тех минеральных масел и синтетических масел, которые традиционно используют в качестве базового масла для смазочных масел для двигателей внутреннего сгорания.

В качестве минерального масла могут быть упомянуты, например, очищенное минеральное масло, полученное из фракции смазочного масла, которую получают вакуумной перегонкой остаточного масла, получаемого атмосферной перегонкой сырой нефти, и которую подвергают одному или более процессам, выбранным из деасфальтизации растворителем, экстракции растворителем, гидрокрекинга, депарафинизации растворителями, каталитической депарафинизации, гидроочистки и других процессов, и минеральное масло, полученное изомеризацией парафина или GTL WAX.

В качестве синтетического масла могут быть упомянуты, например, полибутен; полиолефины, такие как гомополимеры и сополимеры α-олефина (например, сополимеры этилена и α-олефина); различные типы сложных эфиров, такие как сложные эфиры полиолов, сложные эфиры двухосновных кислот и сложные эфиры фосфатов; различные типы простых эфиров, такие как полифениловые эфиры; полигликоли; алкилбензолы; и алкилнафталины. Среди этих синтетических масел, полиолефины и сложные эфиры полиолов являются особенно предпочтительными.

В настоящем изобретении, вышеупомянутые минеральные масла могут быть использованы в качестве базового масла поодиночке или в комбинации двух или более минеральных масел. Подобным образом, вышеупомянутые синтетические масла могут быть использованы поодиночке или в комбинации двух или более синтетических масел. Дополнительно, одно или более минеральных масел и одно или более синтетических масел могут быть использованы в комбинации.

Вязкость базового масла особым образом не ограничена. Кинематическая вязкость при 100°С базового масла составляет, как правило, 2-30 мм2/с, предпочтительно 3-15 мм2/с, более предпочтительно 4-10 мм2/с, хотя диапазон вязкости варьируется в зависимости от предполагаемого использования композиции смазочного масла. В том случае, когда кинематическая вязкость составляет 2 мм2/с или более при 100°С, потери на испарение являются небольшими. С другой стороны, в том случае, когда кинематическая вязкость составляет 30 мм2/с или менее, динамическая потеря на сопротивление вязкости является не чрезмерно большой, так что эффект снижения потребления топлива является достижимым.

Базовое масло предпочтительно имеет %CA, которое определяют посредством кольцевого анализа, 3,0 или менее и содержание серы 50 миллионных долей по массе или менее. Как использовано в этом документе, «%CA, которое определяют посредством кольцевого анализа», как полагают, относится к процентному содержанию ароматического углерода, вычисленному в соответствии со способом кольцевого анализа по n-d-M, и «содержание серы» представляет собой значение, которое измеряют в соответствии с японскими промышленными стандартами JIS K2541.

Базовое масло, имеющее %СА 3,0 или менее и содержание серы 50 миллионных долей по массе или менее, имеет хорошую стойкость к окислению, может предотвращать увеличение кислотного числа и образование углеродистых отложений и также может обеспечивать композицию смазочного масла, которая является менее коррозионной по отношению к металлам.

Процентное содержание ароматического углерода (%СА) в базовом масле составляет предпочтительно 1,0 или менее, более предпочтительно 0,5 или менее, и содержание серы в базовом масле составляет предпочтительно 30 миллионных долей по массе или менее.

Дополнительно, индекс вязкости базового масла составляет предпочтительно 70 или более, более предпочтительно 100 или более, еще более предпочтительно 120 или более. В том случае, когда индекс вязкости составляет 70 или более, температурная зависимость вязкости базового масла является небольшой.

В композиции смазочного масла настоящего изобретения, (А) дисульфидное соединение особой структуры используют вместе с (В) молибденорганическим соединением и (С) антиокислителем на основе фенола и/или антиокислителем на основе амина с целью получения хорошей стойкости к окислению и эффекта снижения коэффициента трения.

В качестве дисульфидного соединения компонента (А) используют, (а-1) по меньшей мере, одно соединение, выбранное из дисульфидных соединений, представленных следующей общей формулой (I):

R1OOC-A1-S-S-A2-COOR2 (I)

и (а-2) дисульфидных соединений, представленных следующей общей формулой (II):

R7OOC-CR9R10-CR11(COOR8)-S-S-CR16(COOR13)-CR14R15-COOR12 (II)

В общей формуле (I), R1 и R2, каждый независимо, представляют собой С130, предпочтительно С120, более предпочтительно С218, особенно предпочтительно С318 углеводородную группу. Углеводородная группа может иметь неразветвленную цепь, может быть разветвленной или циклической и может содержать атом кислорода, атом серы или атом азота. Группы R1 и R2 могут быть одинаковыми или могут отличаться друг от друга, но предпочтительно являются одинаковыми по соображениям простоты способа получения.

Символы A1 и А2, каждый независимо, представляют собой группу формулы CR3R4 или CR3R4-CR5R6, где R3-R6, каждый независимо, представляют собой атом водорода или С120, предпочтительно С112, более предпочтительно С18 углеводородную группу. Группы A1 и А2 могут быть одинаковыми или могут отличаться друг от друга, но предпочтительно являются одинаковыми по соображениям простоты способа получения.

Предпочтительно, что содержание полисульфидных соединений, имеющих 3 или более атомов серы в соединении общей формулы (I), составляет 30% по массе или менее, исходя из общего количества полисульфидных соединений и дисульфидного соединения. В том случае, когда вышеупомянутое содержание составляет 30% или менее, коррозионное свойство соединения общей формулы (I) по отношению к цветным металлам может быть в достаточной мере подавлено. Содержание полисульфидных соединений, имеющих 3 или более атомов серы, составляет более предпочтительно 10% по массе или менее, еще более предпочтительно 5% по массе или менее.

Таким образом, важным является то, что в получении дисульфидного соединения, представленного общей формулой (I), способ должен быть использован так, чтобы выход побочного продукта полисульфидных соединений, имеющих 3 или более атомов серы, находился в пределах вышеупомянутого диапазона. Дисульфидное соединение общей формулы (I) может быть получено, например, посредством следующего способа.

А именно, проводят окислительное сочетание с использованием в качестве исходного вещества сложного эфира меркаптоалканкарбоновой кислоты, представленного общей формулой (III) и/или общей формулой (IV):

R1OOC-A1-SH (III)
R2OOC-A2-SH (IV)

(где R1, R2, A1 и A2 являются такими, как определены выше).

С использованием вышеупомянутого способа, по существу полисульфидные соединения не получают в качестве побочного продукта. То есть получают только R1OOC-A1-S-S-A2-COOR2, R1OOC-A1-S-S-A1-COOR1 и R2OOC-A2-S-S-A2-COOR2.

В качестве окислителя, использованного для окисления сложного эфира α-меркаптокарбоновой кислоты с получением соответствующего дисульфида, может быть использован окислитель, который используют в получении дисульфида из меркаптана. Примеры окислителя включают кислород, пероксид водорода, галогены, такие как йод и бром, гипогалогенные кислоты и гипогалогениты, сульфоксиды, такие как диметилсульфоксид и диизопропилсульфоксид, и оксид марганца (IV). Среди этих окислителей, кислород, пероксид водорода и диметилсульфоксид являются предпочтительными, поскольку они являются недорогими и позволяют получать дисульфид облегченным способом.

В вышеупомянутой общей формуле (II), R7, R8, R12 и R13, каждый независимо, представляют собой С130, предпочтительно С120, более предпочтительно С2 - С18, особенно предпочтительно С318 углеводородную группу. Углеводородная группа может иметь неразветвленную цепь, может быть разветвленной или циклической и может содержать атом кислорода, атом серы или атом азота. Группы R7, R8, R12 и R13 могут быть одинаковыми или могут отличаться друг от друга, но предпочтительно являются одинаковыми по соображениям упрощенности способа получения.

Символы R9-R11 и R14-R16, каждый независимо, представляют собой атом водорода или С15 углеводородную группу и предпочтительно атом водорода по соображениям доступности.

Дисульфидное соединение, представленное общей формулой (II), может быть получено, например, посредством следующих двух способов. Первый способ включает окислительное сочетание сложного диэфира меркаптоалкан-дикарбоновой кислоты, представленного общей формулой (V) и/или общей формулой (VI), в качестве исходного вещества:

R7OOC-CR9R10-CR11(COOR8)-SH (V)
R12OOC-CR14R15-CR16(COOR13)-SH (VI)

где R7-R16 являются такими как определены выше.

В особенности, получают следующие соединения.

R7OOC-CR9R10-CR11(COOR8)-S-S-CR16(COOR13)-CR14R15-COOR12,

R7OOC-CR9R10-CR11(COOR8)-S-S-CR11(COOR8)-CR9R10-COOR7 и

R12OOC-CR14R15-CR16(COOR13)-S-S-CR16(COOR13)-CR14R15-COOR12.

В качестве окислителя для окислительного сочетания может быть использован окислитель, аналогичный окислителю, используемому в получении дисульфидного соединения общей формулы (I).

Второй способ получения вышеупомянутого дисульфидного соединения включает окислительное сочетание меркаптоалкан-дикарбоновой кислоты, представленной общей формулой (VII) и/или общей формулой (VIII), в качестве исходного вещества:

HOOC-CR9R10-CR11(COOH)-SH (VII)
HOOC-CR14R15-CR16(COOH)-SH (VIII)

где R9-R11 и R14-R16 являются такими, как определены выше. После окислительного сочетания продукт этерифицируют одноатомным спиртом, который имеет С130 углеводородную группу и который может содержать атом кислорода, серы или азота.

В особенности, получают следующие соединения.

HOOC-CR9R10-CR11(-COOH)-S-S-CR16(COOH)-CR14R15-COOH,

HOOC-CR9R10-CR11(-COOH)-S-S-CR11(COOH)-CR9R10-COOH и

HOOC-CR14R15-CR16(-COOH)-S-S-CR16(COOH)-CR14R15-COOH.

В этом случае, также может быть использован вышеописанный окислитель.

После окислительного сочетания продукт этерифицируют спиртом, представленным следующей общей формулой (IX):

R17-OH (IX)

где R17 представляет собой группу, аналогичную группе, которая определена для R7, R8, R12 и R13.

Этерификация может быть выполнена обычным способом, а именно конденсацией с дегидратацией при использовании кислотного катализатора.

В частности, получают следующие соединения:

R17OOC-CR9R10-CR11(COOR17)-S-S-CR16(COOR17)-CR14R15-COOR17,

R17OOC-CR9R10-CR11(COOR17)-S-S-CR11(COOR17)-CR9R10-COOR17 и

R17OOC-CR14R15-CR16(COOR17)-S-S-CR16(COOR17)-CR14R15-COOR17.

Примеры дисульфидного соединения, представленного общей формулой (I), включают

бис(метоксикарбонилметил)дисульфид,

бис(этоксикарбонилметил)дисульфид,

бис(н-пропоксикарбонилметил)дисульфид,

бис(изопропоксикарбонилметил)дисульфид,

бис(н-бутоксикарбонилметил)дисульфид,

бис(н-октоксикарбонилметил)дисульфид,

бис(додецилоксикарбонилметил)дисульфид,

бис(циклопропоксикарбонилметил)дисульфид,

1,1-бис(1-метоксикарбонилэтил)дисульфид,

1,1-бис(1-метоксикарбонил-н-пропил)дисульфид,

1,1-бис(1-метоксикарбонил-н-бутил)дисульфид,

1,1-бис(1-метоксикарбонил-н-гексил)дисульфид,

1,1-бис(1-метоксикарбонил-н-октил)дисульфид,

1,1-бис(1-метоксикарбонил-н-додецил)дисульфид,

2,2-бис(2-метоксикарбонил-н-пропил)дисульфид,

α,α-бис(α-метоксикарбонилбензил)дисульфид,

1,1-бис(2-метоксикарбонилэтил)дисульфид,

1,1-бис(2-этоксикарбонилэтил)дисульфид,

1,1-бис(2-н-пропоксикарбонилэтил)дисульфид,

1,1-бис(2-изопропоксикарбонилэтил)дисульфид,

1,1-бис(2-циклопропоксикарбонилэтил)дисульфид,

1,1-бис(2-метоксикарбонил-н-пропил)дисульфид,

1,1-бис(2-метоксикарбонил-н-бутил)дисульфид,

1,1-бис(2-метоксикарбонил-н-гексил)дисульфид,

1,1-бис(2-метоксикарбонил-н-пропил)дисульфид,

2,2-бис(3-метоксикарбонил-н-пентил)дисульфид и

1,1-бис(2-метоксикарбонил-1-фенилэтил)дисульфид.

Примеры дисульфидного соединения, представленного общей формулой (II), включают тетраметил-дитиомалат, тетраэтил-дитиомалат, тетра-1-пропил-дитиомалат, тетра-2-пропил-дитиомалат, тетра-1-бутил-дитиомалат, тетра-2-бутил-дитиомалат, тетраизобутил-дитиомалат, тетра-1-гексил-дитиомалат, тетра-1-октил-дитиомалат, тетра-1-(2-этил)гексил-дитиомалат, тетра-1-(3,5,5-триметил)гексил-дитиомалат, тетра-1-децил-дитиомалат, тетра-1-додецил-дитиомалат, тетра-1-гексадецил-дитиомалат, тетра-1-октадецил-дитиомалат, тетрабензил-дитиомалат, тетра-α-(метил)бензил-дитиомалат, тетра-α,α-диметилбензил-дитиомалат, тетра-1-(2-метокси)этил-дитиомалат, тетра-1-(2-этокси)этил-дитиомалат, тетра-1-(2-бутокси)этил-дитиомалат, тетра-1-(2-этокси)этил-дитиомалат, тетра-1-(2-бутокси-бутокси)этил-дитиомалат и тетра-1-(2-фенокси)этил-дитиомалат.

В настоящем изобретении, дисульфидные соединения компонента (А) могут быть использованы поодиночке или в комбинации двух или более дисульфидных соединений.

Содержание компонента (А) преимущественно задают так, чтобы композиция смазочного масла имела общее содержание серы предпочтительно 0,3% по массе или менее, более предпочтительно 0,05-0,2% по массе, с точки зрения баланса между эффектом, воздействием на катализатор очистки выхлопного газа и экономической эффективностью.

В композиции смазочного масла настоящего изобретения, дисульфидное соединение компонента (А) должно быть использовано вместе с молибденорганическим соединением в качестве компонента (В) и антиокислителем на основе фенола и/или антиокислителем на основе амина в качестве компонента (С).

Молибденорганическое соединение в качестве компонента (В) может быть выбрано из ряда соединений, таких как сульфурированный дитиокарбамат оксимолибдена (MoDTC), сульфурированный дитиофосфат оксимолибдена (MoDTP), сульфурированный дитиоксантогенат оксимолибдена (MoDTX), аминокомплексы молибдена, трехъядерные молибден-серные соединения и серосодержащие молибденовые комплексы сукцинимида.

Сульфурированный дитиокарбамат оксимолибдена (MoDTC), сульфурированный дитиофосфат оксимолибдена (MoDTP), сульфурированный дитиоксантогенат оксимолибдена (MoDTX) представлены следующими общими формулами (X), (XI) и (XII), соответственно.

[Химическая Формула 1]

В общей формуле (X) R18 и R19, каждый независимо, представляют собой С523 углеводородную группу и могут быть одинаковыми или могут отличаться друг от друга. В качестве С523 углеводородной группы может быть упомянута С523 неразветвленная или разветвленная алкильная или алкенильная группа и С623 циклоалкильная, арильная, алкиларильная и арилалкильная группы. Углеводородная группа предпочтительно имеет 8-23 атома углерода. Конкретные примеры углеводородной группы включают 2-этилгексильную группу, н-октильную группу, нонильную группу, децильную группу, лаурильную группу, тридецильную группу, пальмитильную группу, стеарильную группу, олеильную группу, эйкозильную группу, бутилфенильную группу и нонилфенильную группу. Символы m и n представляют собой каждый положительное целое число с оговоркой, что сумма m и n равна 4.

В общей формуле (XI) R20 и R21, каждый независимо, представляет собой С118 углеводородную группу и могут быть одинаковыми или могут отличаться друг от друга. Углеводородная группа предпочтительно имеет 3-18 атомов углерода. В качестве С318 углеводородной группы может быть упомянута С318 неразветвленная или разветвленная алкильная или алкенильная группа и С618 циклоалкильная группа, С618 арильная группа и С718 алкиларильная или арилалкильная группа. Конкретные примеры углеводородной группы включают изопропильную группу, н-пропильную группу, н-бутильную группу, изобутильную группу, втор.-бутильную группу, амильную группу, гексильную группу, циклогексильную группу, 2-этилгексильную группу, н-октильную группу, нонильную группу, децильную группу, лаурильную группу, тридецильную группу, пальмитильную группу, стеарильную группу, олеильную группу, бутилфенильную группу и нонилфенильную группу. Символы p и q представляют собой каждый положительное целое число с оговоркой, что сумма p и q равна 4.

В общей формуле (XII) R22 и R23, каждый независимо, представляет собой С130 углеводородную группу и могут быть одинаковыми или могут отличаться друг от друга. Углеводородная группа предпочтительно имеет 3-20 атомов углерода и может представлять собой, например, С520 неразветвленную или разветвленную алкильную или алкенильную группу и С620 циклоалкильную группу и С620 арильную, алкиларильную и арилалкильную группы. Конкретные примеры углеводородной группы включают изопропильную группу, н-пропильную группу, изобутильную группу, н-бутильную группу, втор.-бутильную группу, амильную группу, гексильную группу, циклогексильную группу, 2-этилгексильную группу, н-октильную группу, нонильную группу, децильную группу, лаурильную группу, тридецильную группу, пальмитильную группу, стеарильную группу, олеильную группу, бутилфенильную группу и нонилфенильную группу. Символы X и Y представляют собой каждый атом кислорода или атом серы и могут быть одинаковыми или могут отличаться друг от друга. В композиции настоящего изобретения, сульфурированные дитиокарбаматы оксимолибдена (MoDTCs), представленные вышеупомянутой общей формулой (X), могут быть использованы поодиночке или в комбинации двух или более сульфурированных дитиокарбаматов оксимолибдена. Также сульфурированные дитиофосфаты оксимолибдена (MoDTPs), представленные вышеупомянутой общей формулой (XI), могут быть использованы поодиночке или в комбинации двух или более сульфурированных дитиофосфатов оксимолибдена, и сульфурированные дитиоксантогенаты оксимолибдена (MoDTXs), представленные вышеупомянутой общей формулой (XII), могут быть использованы поодиночке или в комбинации двух или более сульфурированных дитиоксантогенатов оксимолибдена.

В качестве аминокомплекса молибдена может быть использовано соединение шестивалентного молибдена, точнее говоря продукт, получаемый реакцией триоксида молибдена и/или молибденовой кислоты с аминосоединением, например соединение, получаемое способом, раскрытым в Публикации Японской Нерассмотренной Заявки на Патент № 2003-252887.

Аминосоединение, которое должно прореагировать с соединением шестивалентного молибдена, не ограничено особым образом. Примеры аминосоединения включают моноамины, диамины, полиамины и алканоламины. Более конкретные примеры включают алкиламины, имеющие С130 неразветвленную или разветвленную алкильную группу, такие как метиламин, этиламин, пропиламин, бутиламин, пентиламин, гексиламин, гептиламин, октиламин, нониламин, дециламин, ундециламин, додециламин, тридециламин, тетрадециламин, пентадециламин, гексадециламин, гептадециламин, октадециламин, диметиламин, диэтиламин, дипропиламин, дибутиламин, дипентиламин, дигексиламин, дигептиламин, диоктиламин, динониламин, дидециламин, диундециламин, дидодециламин, дитридециламин, дитетрадециламин, дипентадециламин, дигексадециламин, дигептадециламин, диоктадециламин, метилэтиламин, метилпропиламин, метилбутиламин, этилпропиламин, этилбутиламин и пропилбутиламин; алкениламины, имеющие С230 неразветвленную или разветвленную алкенильную группу, такие как этениламин, пропениламин, бутениламин, октениламин и олеиламин; алканоламины, имеющие С130 неразветвленную или разветвленную алканольную группу, такие как метаноламин, этаноламин, пропаноламин, бутаноламин, пентаноламин, гексаноламин, гептаноламин, октаноламин, нонаноламин, метанолэтаноламин, метанолпропаноламин, метанолбутаноламин, этанолпропаноламин, этанолбутаноламин и пропанолбутаноламин; алкилендиамины, имеющие С130 алкиленовую группу, такие как метилендиамин, этилендиамин, пропилендиамин и бутилендиамин; полиамины, такие как диэтилентриамин, триэтилентетрамин, тетраэтиленпентамин и пентаэтиленгексамин; соединения, имеющие С820 алкильную или алкенильную группу, соединенную с вышеприведенными в качестве примера моноаминами, диаминами и полиаминами, такие как ундецилдиэтиламин, ундецилдиэтаноламин, додецилдипропаноламин, олеилдиэтаноламин, олеилпропилендиамин и стеарилтетраэтиленпентамин; и гетероциклические соединения, такие как имидазолин; алкиленоксидные аддукты этих соединений и смеси этих соединений. Среди этих аминосоединений, первичные амины, вторичные амины и алканоламины являются предпочтительными.

Углеводородные группы таких аминосоединений предпочтительно имеют число углеродов 4 или более, более предпочтительно 4-30, особенно предпочтительно 8-18. В том случае, когда число углеродов в углеводородной группе аминосоединений составляет менее чем 4, растворимость имеет тенденцию к снижению. В том случае, когда число углеродов аминосоединения составляет не более чем 30, содержание молибдена в аминокомплексе молибдена становится относительно высоким. Следовательно, желаемый эффект может быть получен даже с небольшим количеством комплекса. Аминосоединения могут быть использованы поодиночке или в комбинации двух или более аминосоединений.

Соединение шестивалентного молибдена предпочтительно подвергают реакции с аминосоединением в таком количестве, чтобы молярное соотношение атома Мо молибденового соединения к аминосоединению составляло 0,7:1-5:1, более предпочтительно 0,8:1-4:1, еще более предпочтительно 1:1-2,5:1. Способ реакции особым образом не ограничивают. Может быть принят известный способ, такой как, например, раскрытый в Публикации Японской Нерассмотренной Заявки на Патент № 2003-252887.

В качестве молибденорганического соединения, использованного в качестве компонента (В) в настоящем изобретении, могут быть использованы не только вышеописанные сульфурированный дитиокарбамат оксимолибдена, сульфурированный дитиофосфат оксимолибдена, сульфурированный дитиоксантогенат оксимолибдена и аминоко