Система управления с прогнозируемым временем отклика полевого устройства по беспроводной сети

Иллюстрации

Показать все

Изобретение относится к беспроводным сетям. Технический результат заключается в обеспечении возможности определять, была ли нарушена связь с одним из полевых устройств при осуществлении связи через беспроводную сеть. Главный компьютер осуществляет связь с полевыми устройствами путем отправки управляющих сообщений и получения ответных сообщений по беспроводной сети. Когда главный компьютер отправляет по беспроводной сети управляющее сообщение, на главный компьютер выдается прогнозируемое время отклика, в пределах которого полевое устройство, принимающее сообщение, выдает ответ. Беспроводная сеть совершает циклы между состоянием ожидания и активным состоянием на основе цикла беспроводной сети «источник тока подключен»/«источник тока отключен». Прогнозируемое время отклика основывается на текущем состоянии беспроводной сети, цикле «источник тока подключен»/«источник тока отключен», времени включения полевого устройства, выполнения действия (типа измерения параметра) и выдачи ответных сообщений. 2 н. и 11 з.п. ф-лы, 6 ил.

Реферат

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к беспроводным сетям. В частности, настоящее изобретение относится к ячеистой беспроводной сети, в которой сообщения управления процессом циркулируют между главным компьютером и полевыми устройствами в узлах беспроводной ячеистой сети.

Во многих промышленных установках системы управления используются для контроля и управления материальными запасами, процессами и т.п. Часто такие системы управления имеют централизованную диспетчерскую с главным компьютером, который осуществляет связь с полевыми устройствами, которые отделены или географически удалены от диспетчерской.

Вообще, в состав каждого полевого устройства входит преобразователь, который может выдавать выходной сигнал на основе физического ввода или выдавать физический выходной сигнал на основе входного сигнала. К типам преобразователей, используемых в полевых устройствах, относятся различные аналитические приборы, датчики давления, термисторы, термопары, тензодатчики, расходомеры, устройства позиционирования, приводы, соленоиды, индикаторы и т.п.

Традиционно аналоговые полевые устройства подключались к технологическим подсистемам и диспетчерской через двужильный токовый контур типа витой пары, при этом каждое устройство подключалось к диспетчерской через одиночный двужильный токовый контур типа витой пары. Обычно разность напряжений между двумя жилами контура поддерживается на уровне около 20-25 Вт, а ток составляет от 4 до 20 мА. Аналоговое полевое устройство передает сигнал в диспетчерскую путем модуляции тока, проходящего по контуру, до тока, пропорционального измеренному технологическому параметру. Аналоговое полевое устройство, которое работает под управлением диспетчерской, управляется величиной тока в контуре, которая модулируется портами технологической подсистемы под управлением контроллера.

В то время как исторически полевые устройства были способны выполнять только одну функцию, позже в распределенных системах управления применялись гибридные системы, в которых на сигнал токового контура накладываются цифровые данные. С помощью протокола HART (Highway Addressable Remote Transducer) на сигнал токового контура накладывается сигнал цифрового потока. Сигнал цифрового потока может использоваться для передачи вторичной и диагностической информации. Примерами информации, передаваемой с цифровым потоком, могут служить вторичные технологические параметры, диагностическая информация (например, диагностика датчиков, диагностика устройств, диагностика проводки, технологическая диагностика и т.п.), рабочие температуры, температуры датчиков, данные калибровки, идентификационные номера устройств, информация по конфигурации и т.д. Соответственно, у отдельного полевого устройства могут быть различные входные и выходные переменные, и оно может выполнять разные функции.

Для подключения множества полевых устройств к главному компьютеру в диспетчерской в цифровом канале связи используется другой подход. Примеры протоколов цифровой связи, используемых с полевыми устройствами, подключенными к цифровым каналам, включают Foundation Fieldbus, Profibus, Modbus и DeviceNet. Передача сообщений по каналам двусторонней цифровой связи между главным компьютером и множеством полевых устройств может быть обеспечена по той же самой двужильной проводке, по которой на полевые устройства подается напряжение.

Обычно удаленные устройства подключаются к системе управления путем прокладки кабелей от диспетчерской до удаленного устройства. Если удаленное устройство находится на расстоянии, например, полумили, издержки на прокладку кабеля могут быть большими. Если к удаленным устройствам нужно прокладывать множество кабелей, издержки становятся еще выше. Беспроводная связь предлагает искомую альтернативу, и беспроводные ячеистые сети были предложены для использования в промышленных системах управления технологическим процессом. Однако для минимизации издержек желательно также поддерживать существующие системы управления и протоколы связи, уменьшать издержки, связанные с заменой существующих систем на беспроводную связь.

В системах беспроводных ячеистых сетей, намеченных для низковольтных датчиков/приводов, многие сетевые устройства должны быть снабжены батареями с большим ресурсом работы или низковольтными источниками питания, получающими энергию из окружающей среды. Выходные разъемы для питания переменным током, например, 120 В располагаются обычно вдали от опасных зон там, где должны располагаться приборы (датчики) и приводы, и при этом не должно быть больших издержек на установку. Необходимость в низких издержках на установку приводит к использованию устройств с питанием от батарей, связанных между собой в рамках беспроводной ячеистой сети. Эффективное использование источника тока с ограниченным ресурсом, например, батареи гальванических элементов, не способной подзаряжаться, является жизненно важным для хорошо функционирующего беспроводного устройства. Как ожидается, батареи будут работать больше 5 лет и желательно в течение срока службы изделия.

Каждый узел беспроводной ячеистой сети должен быть способен направлять сообщение самому себе, а также другим узлам ячеистой сети. Концепция сообщений, проходящих через всю сеть от одного узла к другому, выгодна потому, что можно использовать менее мощную радиосвязь, при этом ячеистая сеть может охватывать существенную физическую область с передачей сообщения с одного ее конца на другой. В отличие от линий прямой связи, в которых используются удаленные узлы, передающие сообщение непосредственно основной централизованной станции, ячеистой сети не нужна мощная радиосвязь.

Протокол ячеистых сетей позволяет создавать альтернативные маршруты прохождения сообщений между узлами и между узлами и системой сбора данных или мостом или шлюзом по некоторой более скоростной шине данных более высокого уровня. Наличие дополнительных, резервных маршрутов для радиосообщений увеличивает надежность данных, гарантируя, что для передачи сообщения существует хотя бы один резервный маршрут, который будет использован, если другой маршрут будет блокирован или по нему ухудшится сообщение из-за плохих условий внешней среды или из-за помех.

Некоторые протоколы ячеистой сети направляются детерминированно таким образом, что у каждого узла имеется приписанный ему родитель и, по крайней мере, один альтернативный родитель. Согласно иерархии в ячеистых сетях в большей степени, чем в человеческих семьях, у родителей имеются дети, у детей свои дети (внуки) и т.д. Каждый узел передает через сеть сообщение для своих потомков в пункт конечного назначения, например, на межсетевой интерфейс. Родительские узлы могут питаться от батарей или от энергоустройств с ограниченным ресурсом. Чем больше у узла потомков, тем больший поток он может пропустить, что, в свою очередь, увеличивает его энергопотребление и сокращает ресурс его батарей.

В целях энергосбережения некоторые протоколы позволяют ограничивать трафик, проходящий через узел в единицу времени, путем включения радиосвязи в течение ограниченного временного интервала только для прослушивания сообщений. Таким образом, для уменьшения средней мощности протокол может обеспечить циклический режим работы радиосвязи в интервале между состояниями «включено» и «выключено». Применение некоторых протоколов обеспечивает глобальный рабочий цикл, позволяющий сберегать энергию, при этом в состоянии «включено» и «выключено» находится вся сеть одновременно. Применение других протоколов (например, на основе TDMA) позволяет организовать локальный рабочий цикл, при котором связь осуществляется только между парой связанных друг с другом узлов, планово синхронно включаемых и выключаемых в заданный момент времени. Обычно канал передачи данных задается путем назначения для пары узлов временного сегмента для передачи данных, радиочастотного канала для радиосвязи, при этом эти узлы должны принимать (Rx) и передавать (Тх) информацию в данный момент времени.

В некоторых протоколах применяется концепция приписывания каналов передачи данных к узлам на регулярной плановой основе, что обеспечивает регулярную доставку обновлений и сообщений от устройств сети. В некоторых перспективных протоколах на основе TDMA могут применяться концепции множества рабочих графиков, при этом данные графики используются одновременно или некоторые из них могут включаться/отключаться контроллером глобальной сети по мере необходимости. Например, графики медленной работы обеспечивают передачу сообщений между узлами с более длинными интервалами между сообщениями (большая продолжительность цикла) с целью обеспечения низкого энергопотребления. Графики быстрой работы обеспечивают передачу сообщений между узлами более быстро с целью обеспечения повышенной пропускной способности и сокращения времени ожидания, что приводит к повышенному энергопотреблению узлов. В случае протоколов, позволяющих применять различные рабочие графики, некоторые графики могут быть оптимизированы под восходящий трафик, другие под нисходящий трафик, а остальные под функции управления сетью, например, для объединения и конфигурирования устройств. Путем глобального включения/отключения различных графиков по всей сети для удовлетворения различных требований в разные моменты времени обеспечивается гибкость работы, позволяющая достигать компромиссы между энергопотреблением и низким временем ожидания, при этом ко всем узлам применяется один график, и это не позволяет обеспечивать оптимизацию на местном уровне.

В синхронизированной системе перед тем как пропустить через себя сообщения узлы должны будут ожидать режима передачи до следующего заданного включения. Ожидание увеличивает время задержки, что может быть очень вредно во многих случаях, если его не ограничивать и не управлять им должным образом. Если два узла, которые связаны вместе, не синхронизированы должным образом, они не смогут пропускать через себя сообщения потому, что радиосвязь будет включаться в несоответствующий период времени или в неверном режиме (Rx или Тх). Если единственный график работы имеет большую продолжительность цикла, интервал времени между намеченными сеансами связи будет большим, и это будет влиять на время задержки. Если используется график быстрой работы, интервал времени между намеченными сеансами связи будет коротким, но ресурс работы батареи будет в известной мере сокращаться через какое-то время.

Некоторые протоколы позволяют применять график медленной работы в фоновом режиме и глобально включать/отключать дополнительный график быстрой работы. Так как для глобального включения всей сети в график быстрой работы и приема подтверждения от узлов, что они слышали глобальную команду, требуется время, во время переходного периода сеть или подсеть работает в режиме пониженной чувствительности. Кроме того, при глобальном включении в график быстрой работы всех родительских узлов сети мощность расходуется впустую, даже в тех узлах, потомкам которых не выгодно работать по графику быстрой работы. Эти невосприимчивые родительские узлы должны чаще прослушивать глобальный график быстрой работы (то есть включать свою радиосвязь в режим Rx более часто), даже если их потомки не могут отправить дополнительное сообщение о том, что график регулярной работы в этой части сети выполняется неудовлетворительно.

Некоторые протоколы могут ограничивать число потомков узла, сокращая, таким образом, нагрузку на узел. В других протоколах для снижения потребляемой мощности может применяться сочетание всех этих мер. Все эти меры по энергосбережению уменьшают готовность узлов сети выполнять работу по пропуску через них сообщений, увеличивая, таким образом, время задержки передаваемых через сеть сообщений. Цикличность работы радиосвязи увеличивает время задержки. Пересылка сообщений с одного узла на другой увеличивает время задержки. Увеличение числа переходов (числа пересылок) путем ограничения числа потомков увеличивает время задержки. Применение графика медленной работы (период длинного цикла) увеличивает время задержки. Даже глобальное включение графика быстрой работы занимает время. Вероятно, что ценность информации уменьшается со временем, поэтому, чем больше время задержки, тем менее ценной может быть информация.

КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

В системе управления главный компьютер взаимодействует с полевыми устройствами путем отправки сообщений на полевые устройства и получения сообщений от полевых устройств. При передаче сообщений на полевые устройства и от полевых устройств по низковольтной беспроводной сети полевые устройства не всегда находятся в состоянии готовности для обеспечения связи потому, что сеть подвержена циклам «источник тока подключен»/«источник тока отключен», а полевые устройства включаются только тогда, когда необходимо выдать ответ на сообщение. В настоящем изобретении предлагается контролировать доставку сообщений между главным компьютером и полевыми устройствами, при условии, что беспроводная сеть и полевые устройства постоянно питаются от источника энергии.

При отправке сообщения с главного компьютера на полевые устройства беспроводная сеть выдает на главный компьютер прогнозируемое время отклика. Прогнозируемое время отклика показывает, когда главный компьютер может ожидать ответ от полевого устройства, к которому обращено сообщение. Прогнозируемое время отклика может учитывать текущее состояние беспроводной сети, цикл «источник тока подключен»/«источник тока отключен», в котором работает беспроводная сеть, и время включения полевого устройства для его активизации, выполнения действия и выдачи ответного сообщения. Это позволяет главному компьютеру считать, что беспроводная сеть находится в состоянии готовности по требованию даже при том, что есть периоды времени, когда беспроводная сеть выключена и когда полевые устройства выключены.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На фиг.1 представлена схема, иллюстрирующая систему управления, в которой беспроводная ячеистая сеть направляет радиосообщения по маршрутам между главным компьютером и полевыми устройствами.

На фиг.2 представлена блок-диаграмма части системы управления, изображенной на фиг.1, включая главный компьютер, шлюзовой узел и беспроводный узел с полевым устройством.

На фиг.3 представлена схема, иллюстрирующая формат радиосообщений, передаваемых по беспроводной сети.

На фиг.4 показан формат управляющего сообщения главного компьютера для полевого устройства на основе протокола системы управления.

На фиг.5 представлен один вариант осуществления управляющего сообщения, измененного таким образом, чтобы сформировать полезную нагрузку радиосообщения, показанного на фиг.3.

На фиг.6 представлен другой вариант осуществления управляющего сообщения, измененного с помощью замыкающего блока данных таким образом, чтобы сформировать полезную нагрузку радиосообщения, показанного на фиг.3.

ДЕТАЛЬНОЕ ОПИСАНИЕ

На фиг.1 показана система управления 10, в состав которой входит: главный компьютер 12, высокоскоростная сеть 14 и беспроводная ячеистая сеть 16, в состав которой входит: шлюз 18 и беспроводные узлы 20, 22, 24, 26, 28 и 30. Шлюз 18 является местом сопряжения ячеистой сети 16 с главным компьютером 12 через высокоскоростную сеть 14. Сообщения могут передаваться от главного компьютера 12 на шлюз 18 по сети 14, а затем передаваться на отдельный узел ячеистой сети 16 по одному из нескольких путей. Точно так же сообщения от отдельных узлов ячеистой сети 16 маршрутизируются по ячеистой сети 16 с одного узла на другой по одному из нескольких путей, пока они не достигнут шлюза 18, и затем они по высокоскоростной сети 14 передаются на главный компьютер 12.

В системе управления 10 могут применяться полевые устройства, которые предназначены для использования в проводных распределенных системах управления, а также полевые устройства, которые специально разработаны как беспроводные передатчики для использования в беспроводных ячеистых сетях. Узлы 20, 22, 24, 26, 28 и 30 являются примерами беспроводных узлов, в состав которых входят обычные полевые устройства.

В состав беспроводного узла 20 входит радио 32, беспроводный маршрутизатор (WDR) 34 и полевые устройства FD1 и FD2. Узел 20 является примером узла, имеющего один уникальный беспроводный адрес и два уникальных адреса полевых устройств.

Узлы 22, 24, 26 и 28 являются примерами узлов, имеющих один уникальный беспроводный адрес и один уникальный адрес полевого устройства. В состав узла 22 входит радио 36, беспроводный маршрутизатор 38 и полевое устройство FD3. Точно так же в состав полевого устройства 24 входит радио 40, беспроводный маршрутизатор 42 и полевое устройство FD4; в состав узла 26 входит радио 44, беспроводный маршрутизатор 46 и полевое устройство FD5, и в состав узла 28 входит радио 48, беспроводный маршрутизатор 50 и полевое устройство FD6.

Узел 30 имеет один уникальный беспроводный адрес и три уникальных адреса полевых устройств. В его состав входит радио 52, беспроводный маршрутизатор 54 и полевые устройства FD7, FD8 и FD9.

В соответствии с предпочтительным вариантом осуществления настоящего изобретения беспроводная сеть 16 является низковольтной, в которой многие узлы питаются от батарей с большим ресурсом работы или от низковольтных источников, получающих энергию из окружающей среды. Связь по беспроводной сети 16 может осуществляться в соответствии с конфигурацией ячеистой сети, в которой осуществляется передача сообщений с одного узла на другой через сеть 16. Это позволяет использовать низковольтную высокочастотную радиосвязь, при этом для передачи сообщения с одного конца сети на другой сеть 16 может охватывать большую физическую область.

В проводной системе управления взаимодействие между главным компьютером и полевыми устройствами происходит с использованием известных управляющих сообщений согласно протоколу управляющего сообщения типа HART, Foundation Fieldbus, Profibus и т.п. В полевых устройствах, применяемых в проводных системах управления (типа полевых устройств FD1-FD9, показанных на фиг.1), используются управляющие сообщения согласно одному из известных протоколов управляющего сообщения. Беспроводные узлы 20-30, которые являются частью беспроводной сети 16, не могут непосредственно обмениваться этими известными управляющими сообщениями с главным компьютером 12 потому, что беспроводная связь по сети 16 осуществляется согласно беспроводному протоколу, что является общим принципом.

Вместо того чтобы требовать от главного компьютера 12 и полевых устройств FD1-FD9 обмениваться сообщениями с использованием протокола беспроводной связи, может быть предложен способ отправки и приема известных управляющих сообщений для полевых устройств между главным компьютером 12 и полевыми устройствами FD1-FD9 по беспроводной сети 16. Известные управляющие сообщения для полевых устройств вкладываются в общий протокол беспроводной связи так, что главный компьютер 12 и полевые устройства FD1-FD9 могут осуществлять обмен сообщениями для осуществления управляющего взаимодействия с полевыми устройствами FD1-FD9. В результате беспроводная сеть 16 и ее протокол беспроводной связи абсолютно прозрачны как для главного компьютера 12, так и для полевых устройств FD1-FD9. Хотя изобретение может применяться и к другим протоколам управляющего сообщения (например, Foundation Fieldbus, Profibus и т.д.), в следующем описании в качестве примера известного протокола управляющего сообщения будет использоваться протокол HART.

Подобная проблема относится к адресам, используемым главным компьютером 12, для того, чтобы направлять сообщения на полевые устройства FD1-FD9. В проводных системах главный компьютер обращается к каждому полевому устройству, обладающему уникальным полевым адресом устройства. Адрес определяется как часть конкретного используемого протокола связи и обычно составляет часть управляющих сообщений, отправляемых главным компьютером в адреса полевых устройств.

Когда беспроводная сеть, например, сеть 16, представленная на фиг 1, используется для маршрутизации сообщений с главного компьютера на полевые устройства, адреса полевых устройств, используемые главным компьютером, оказываются не совместимыми с беспроводными адресами, используемыми в соответствии с протоколом связи беспроводной сети. Кроме того, с отдельным узлом может быть связано множество полевых устройств, как показано на фиг.1 (беспроводные узлы 20 и 30). В состав беспроводного узла 20 входят два полевых устройства FD1 и FD2, в то время как беспроводный узел 30 включает три полевых устройства FD7-FD9.

В альтернативном подходе для перевода адресов полевых устройств, выдаваемых главному компьютеру 16, в соответствующие адреса беспроводной связи используется шлюз 18. Радиосообщение отправляется в адрес беспроводной связи, и в его состав входит также адрес полевого устройства так, чтобы узел, принимающий это сообщение, мог направить сообщение на соответствующее полевое устройство. При переводе адресов полевых устройств в соответствующие адреса беспроводной связи главный компьютер 12 может функционировать в его родном домене полевых адресов при взаимодействии с полевыми устройствами. Беспроводная сеть 16 прозрачна как для главного компьютера 12, так и для полевых устройств FD1-FD9.

Еще одной проблемой, возникающей при использовании беспроводной сети 16 с целью обеспечения связи между главным компьютером 12 и полевыми устройствами FD1-FD9, является проблема неготовности полевых устройств из-за энергосбережения. В проводной системе управления главный компьютер взаимодействует с полевыми устройствами так, как будто они находятся в состоянии готовности по требованию. Предполагается, что полевые устройства всегда получают питание и находятся в состоянии готовности.

В низковольтной беспроводной сети дело обстоит не так. В целях энергосбережения полевые устройства в низковольтной беспроводной сети находятся большую часть времени в состоянии неготовности или в режиме ожидания. Периодически беспроводная сеть выходит из состояния ожидания, и в это время сообщения могут отправляться на полевые устройства и полевыми устройствами. По истечении некоторого времени беспроводная сеть снова переводится в состояние ожидания с низким энергопотреблением.

Если главный компьютер пытается установить связь в то время, когда беспроводная сеть находится в режиме ожидания или когда какое-либо отдельное полевое устройство находится в режиме ожидания с низким энергопотреблением, неспособность этого полевого устройства реагировать немедленно может интерпретироваться главным компьютером как отказ связи. Главный компьютер не определяет специфический маршрут, по которому проходят сообщения в беспроводной сети, и не контролирует циклы повышенного и пониженного энергопотребления беспроводной связи. В результате главный компьютер может интерпретировать отсутствие реакции полевых устройств как отказ устройства, когда отсутствие реакции вызвано внутренними причинами путей системы связи в низковольтной беспроводной сети.

Для того чтобы сделать беспроводную сеть 16 прозрачной для главного компьютера 12, шлюз 18 прерывает передачу сообщений с полевых устройств между главным компьютером 12 и беспроводной сетью 16. Шлюз 18 определяет текущее состояние беспроводной сети 16 и отслеживает ее циклы «источник тока подключен»/«источник тока отключен». Кроме того, он сохраняет информацию на время отклика каждого включаемого полевого устройства с последующей передачей сообщения в ответ на управляющее сообщение, принятое от главного компьютера 12.

При отправке сообщения с главного компьютера 12 на шлюз 18 на основе адреса полевого устройства определяется ожидаемое время отклика. Это ожидаемое время отклика передается на главный компьютер 12, чтобы до истечения ожидаемого времени отклика отсутствие ответного сообщения не обрабатывалось как отказ связи. В результате главный компьютер 12 обрабатывает полевые устройства FD1-FD9, как если бы они были в состоянии готовности по требованию, в то время как, фактически, беспроводная сеть 16 и полевые устройства FD1-FD9 находятся в состоянии неготовности по требованию.

На фиг.2 представлена блок-диаграмма части системы управления 10, представленной на фиг.1. На фиг 2 показан главный компьютер 12, высокоскоростная сеть 14, шлюз 18 и беспроводный узел 22.

На фиг.2 главный компьютер 12 выполняет роль главной распределенной системы управления, выполняющей прикладные программы, что облегчает отправку сообщений на полевые устройства FD1-FD9, а также получение и анализ данных, содержащихся в сообщениях от полевых устройств FD1-FD9. В качестве прикладной программы главный компьютер 12 может использовать AMS (tm), Device Manager, что позволяет пользователям контролировать полевые устройства FD1-FD9 и взаимодействовать с ними.

Главный компьютер 12 поддерживает связь со шлюзом 18 с помощью формата на языке XML (расширяемый язык разметки). Управляющие сообщения, намеченные для полевых устройств FD1-FD9, представлены в соответствии с протоколом HART и передаются на шлюз 18 в формате XML.

В примере осуществления настоящего изобретения, представленном на фиг.2, в состав шлюза 18 входит интерфейс шлюза 60, администратор ячеистой сети (Mesh Manager) 62 и радио 64. Интерфейс шлюза 60 принимает XML-документ от главного компьютера 12, извлекает управляющее сообщение в протоколе HART и изменяет формат управляющего сообщения, чтобы вложить его в радиосообщение, которое передается по беспроводной сети 16.

Администратор ячеистой сети 62 формирует радиосообщение с вложенным управляющим сообщением HART и с беспроводным адресом узла, соответствующим полевому устройству, на которое направлено сообщение HART.

Администратор ячеистой сети 62 может поддерживать, например, просмотровую таблицу, которая обеспечивает корреляцию адреса каждого полевого устройства с беспроводным адресом узла, в котором располагается полевое устройство, соответствующее адресу этого полевого устройства. В этом примере интересующим нас полевым устройством является устройство FD3, расположенное в беспроводном узле 22. В состав радиосообщения, соответствующего беспроводному протоколу, входит адрес беспроводного узла, который используется для маршрутизации радиосообщения по сети 16. Адрес полевого устройства содержится в сообщении HART, вложенном в радиосообщение, и не используется для маршрутизации радиосообщения по сети 16. Вместо этого по достижении радиосообщением узла назначения используется адрес полевого устройства.

Администратор ячеистой сети 62 дает команду радио 64 на передачу радиосообщения так, чтобы оно было передано по сети 16 на узел 22 с одной пересылкой или множеством пересылок.

Например, сообщение на узел 22 может быть передано от шлюза 18 на узел 20 и затем на узел 22 или альтернативно от шлюза 18 на узел 26 и затем на узел 22. В сети 16 также возможны и другие маршруты.

Интерфейс шлюза 60 и администратор ячеистой сети 62 также взаимодействуют с главным компьютером 12 для управления отправкой управляющих сообщений на полевые устройства, как если бы беспроводная сеть 16 была включена, хотя она может быть и выключена (т.е. находится в режиме ожидания). Администратор ячеистой сети 60 определяет адекватное состояние, т.е. состояние «источник тока подключен»/«источник тока отключен» беспроводной сети 16. Он также рассчитывает циклы «источник тока подключен»/«источник тока отключен», чтобы определить на будущее, когда состояние беспроводной сети 16 изменится со состояния «источник тока подключен» на состояние «источник тока отключен» или со состояния «источник тока отключен» на состояние «источник тока подключен». Время отклика может измениться, если сообщение отправляется тогда, когда беспроводная сеть включена, но отклика не будет до следующего цикла «источник тока подключен». Еще одним фактором является время пуска полевого устройства. Администратор ячеистой сети 62 или интерфейс шлюза 60 могут поддерживать базу данных времен пуска различных полевых устройств. Зная адрес полевого устройства, можно определить ожидаемое время пуска.

На основе состояния беспроводной сети 16 «источник тока подключен»/«источник тока отключен» может рассчитываться интервал времени перед изменением состояния беспроводной сети, момент пуска полевого устройства, ожидаемое время маршрутизации сообщения в сети и возможность отклика в следующем цикле включения, но не в текущем цикле, расчетное время доставки сообщений на полевые устройства и возврата ответного сообщения в шлюз 18. Затем эта информация может подаваться на главный компьютер 12. Так как поступление отклика на главный компьютер 12 не ожидается до оцененного момента отклика, до этого момента главный компьютер 12 не обрабатывает отказ приема сообщения как отказ связи или отказ полевого устройства.

С учетом факторов, влияющих на время отклика, шлюз 18 может также определять наилучшую стратегию в осуществлении связи с полевым устройством при известном цикле «источник тока подключен»/«источник тока отключен», в котором находится беспроводная сеть 16. Например, если возможно изменение цикла «источник тока подключен»/«источник тока отключен» из состояния «источник тока подключен» в состояние «источник тока отключен», лучшей стратегией для начала маршрутизации сообщения по беспроводной сети 16 является ожидание начала следующего цикла «источник тока подключен».

Как показано на фиг.2, в состав беспроводного узла 22 входит радио 36, беспроводный маршрутизатор (WDR) 38 и полевое устройство FD3. В этом конкретном примере полевое устройство FD3 является стандартным полевым устройством HART, которое передает полевые данные с помощью протокола управляющего сообщения HART. С помощью беспроводного маршрутизатора 38 полевое устройство FD3 подключается к источнику тока или отключается от источника тока.

Радиосообщение, передаваемое по сети 16, принимается радио 36 беспроводного узла 22. Радиосообщение проверяется беспроводным маршрутизатором 38, не адресовано ли оно узлу 22. Так как узел 22 является адресом назначения, радиосообщение открывается и из него извлекается вложенное сообщение HART. На основе адреса полевого устройства, содержащегося во вложенном сообщении HART, беспроводный маршрутизатор 38 определяет, что сообщение HART намечено для полевого устройства FD3.

С целью энергосбережения беспроводный маршрутизатор 38 может поддерживать полевое устройство FD3 в режиме ожидания, пока от него не потребуются какие-либо действия. После приема сообщения HART, содержавшегося в радиосообщении, беспроводный маршрутизатор 38 предпринимает попытки запустить полевое устройство FD3. Для этого может потребоваться несколько секунд, а может произойти задержка, например, на 30-60 секунд. Когда полевое устройство FD3 готово к приему сообщения HART и начинает после этого работать, беспроводный маршрутизатор 38 передает в полевое устройство FD3 управляющее сообщение HART.

В сообщении, принятом полевым устройством FD3, может содержаться требование на отправку ответного сообщения, которое включает данные измерений или другую, например, статусную информацию. Полевое устройство FD3 выполняет требуемое действие по сбору данных измерений или выдаче статусной информации, выдаче ответного сообщения в управляющем формате HART и передаче сообщения на беспроводный маршрутизатор 38. Затем ответное сообщение HART изменяется и вкладывается в ответное радиосообщение согласно беспроводному протоколу и адресуется шлюзу 18. Беспроводный маршрутизатор 38 отправляет ответное радиосообщение на радио 36 для передачи его по беспроводной сети 16. Затем путем одной пересылки или нескольких пересылок радиосообщение передается в шлюз 18, где ответное сообщение HART извлекается из ответного радиосообщения, форматируется в XML и передается по высокоскоростной сети 14 на главный компьютер 12.

На фиг.3 показана схема типичного радиосообщения, отправляемого по беспроводной сети, изображенной на фиг.1 и 2. В состав радиосообщения 70 входят двоичные разряды беспроводного протокола 72, полезная нагрузка 74 и двоичные разряды беспроводного протокола 76. Двоичные разряды беспроводного протокола 72 и 76 необходимы для соответствующей маршрутизации радиосообщения 70 по ячеистой сети 16 до пункта назначения. Полезная нагрузка 74 является сущностью передаваемого управляющего сообщения. В настоящем изобретении управляющее сообщение (по протоколу управляющего сообщения, используемому как главным компьютером 12, так и полевыми устройствами FD1-FD9) вложено в радиосообщение 70 в качестве полезной нагрузки 74.

На фиг.4 показан формат управляющего сообщения 80, выданный главным компьютером 12. В этом конкретном примере управляющее сообщение 80 генерируется с помощью протокола HART. Управляющее сообщение 80 включает преамбулу 82, разграничитель 84, адрес полевого устройства 86, команду 88, отсчет байтов 90, данные 92 и контрольный байт 94. Управляющее сообщение 80 изменяется в интерфейсе шлюза 60 и затем вкладывается в радиосообщение 70 в качестве полезной нагрузки 74.

На фиг.5 изображен первый пример осуществления формата полезной нагрузки 74, сформированной из управляющего сообщения 80. Для получения полезной нагрузки 74 интерфейс 60 удаляет верхушку физического уровня управляющего сообщения 80 и добавляет информацию о последовательности.

Как видно при сравнении фиг.4 и 5, первое различие между полезной нагрузкой 74 и управляющим сообщением 80 состоит в том, что была удалена преамбула 82.

Так как управляющее сообщение отправляется по сети с помощью беспроводного протокола, преамбула не нужна. Удаление преамбулы 82 повышает эффективность сети 16 путем отказа от ненужной информации.

Второе различие между полезной нагрузкой 74 и управляющим сообщением 80 состоит в добавлении идентификатора сообщения ID 96, который является двухбайтовым номером, который следует за данными 92, и предшествует контрольному байту 94. Удаление преамбулы 82 и добавление идентификатора сообщения ID 96 также требует, чтобы контрольный байт 94 был рассчитан повторно.

Идентификатор сообщения ID 96 служит для отбрасывания устаревших сообщений. Это позволяет получателю сообщения отбрасывать сообщения с нарушенным порядком следования. Беспроводная ячеистая сеть 16 разработана таким образом, что сообщения могут попадать в пункт назначения разными путями. Сообщение передается от одного узла к другому и может поступить в конкретный узел с задержкой. Это может быть вызвано помехами или плохим качеством сигнала. В случае большой задержки главный компьютер 12 может выдать повторное и/или новое сообщение. В этом случае возможно, что одно или несколько сообщений могут достигнуть узла назначения прежде, чем туда попадет задержанное сообщение. При доставке задержанного управляющего сообщения используется идентификатор сообщения ID 96, с помощью которого управляющее сообщение принимается или отбрасывается.

На фиг.6 изображен второй пример осуществления формата полезной нагрузки 74, в котором замыкающий код функции (trailer function code) 98 и замыкающая полезная нагрузка (trailer payload) (или идентификатор сообщения ID) 96 образуют замыкающий блок данных (trailer frame) 100, прицепленный к управляющему сообщению, сформированному разграничителем 84, адресом полевого устройства 86, командой 88, отсчетом байтов 90, данными 92 и контрольным байтом 94. Замыкающий блок данных 100 не включен в контрольный байт 94 и вместо этого зависит от уровней протокола беспроводной сети по целостности и надежности данных.

Замыкающий блок данных 100 содержит код функции 98 и полезную нагрузку 96 (с идентификатором сообщения ID). Код функции 98 - это байт без знака, который определяет содержимое замыкающего блока данных 100. Неопределенные байты полезной нагрузки типа дополнительных, ничего не значащих заполняющих байтов (холостое заполнение) будут игнорироваться. Замыкающий блок данных 100 используется только в сообщениях между шлюзом 18 и беспроводными полевыми устройствами FD1-FD9. В таблице 1 представлен пример кодов функций, определенных для замыкающего блока данных 100.

Таблица 1