Способ и устройство для переупорядочения данных в усовершенствованной системе высокоскоростного пакетного доступа

Иллюстрации

Показать все

Изобретение относится к системам связи. Технический результат заключается в снижении задержки при выполнении процедуры обновления ячейки. Раскрыты способ и устройство для приема передач Высокоскоростного Общего Канала Нисходящей Линии Связи (High Speed Downlink Shared Channel, HS-DSCH). Объект Управления Доступом к Среде HS-DSCH (HS-DSCH Medium Access Control, MAC-ehs) принимает Протокольные Блоки Данных (Protocol Data Unit, PDU) MAC-ehs через HS-DSCH в одном из состояний Cell_FACH, Cell_PCH и URA_PCH. Переупорядочиваемые PDU, входящие в состав PDU MAC-ehs, могут быть переданы в следующий объект обработки без выполнения переупорядочения этих PDU. Определенная очередь переупорядочения может войти в режим ожидания при возникновении запускающего события, и PDU MAC-ehs, распределенные в очереди упорядочения в состоянии ожидания, могут быть перенаправлены в следующий объект обработки без выполнения переупорядочения. Процедура сброса MAC-ehs может быть расширена для определенной передачи таким образом, чтобы сброс MAC-ehs выполнялся после приема PDU MAC-ehs в целевой ячейке. 3 н. и 19 з.п. ф-лы, 4 ил.

Реферат

Область техники

Настоящее изобретение относится к беспроводной связи.

Уровень техники

В настоящее время Усовершенствованные системы Высокоскоростного Пакетного Доступа (Evolved High Speed Packet Access, HSPA) разрабатываются в рамках Релиза 7 Проекта Партнерства 3-го Поколения (Third Generation Partnership Project, 3GPP). Одним из новшеств Релиза 7 3GPP является возможность для Пользовательского Оборудования (User Equipment, UE) принимать пользовательские данные и/или данные управления через Общий Высокоскоростной Канал Нисходящей Линии Связи (High-Speed Downlink Shared Channel, HS-DSCH) не только в состоянии Cell_DCH, но и в состояниях Cell_FACH, URA_PCH, Cell_PCH.

При Высокоскоростном Пакетном Доступе по Нисходящей Линии Связи (High Speed Downlink Packet Access, HSDPA) UE принимает пакет (то есть Протокольный Блок Данных (Protocol Data Unit, PDU) MAC-hs или PDU MAC-ehs) из Узла-В (Node-B), который реализует метод Гибридного Автоматического Запроса на Повтор (Hybrid Automatic Repeat Request, HARQ). В состоянии Cell_DCH, UE передает Подтверждение Приема (Acknowledgment, ACK) или Неподтверждение Приема (Acknowledgment, NACK) в Node-B после каждой передачи HARQ, чтобы указать, успешно ли выполнен прием UE.

Из-за задержки, необходимой UE для декодирования и передачи этой обратной связи, Node-B передает (или повторно передает) разные пакеты после передачи заданного пакета, но до приема соответствующей обратной связи для непрерывной передачи пакетов. Поскольку количество передач, необходимых для успешного декодирования в UE, отличается от пакета к пакету, существует вероятность того, что объект HARQ в UE не доставит пакеты в том же порядке, в котором были выполнены их соответствующие исходные передачи из Node-B. Для смягчения данной проблемы, уровень Управления Доступом к Среде (Medium Access Control, MAC) в UE выполняет переупорядочение до доставки принятых пакетов в высшие уровни. Переупорядочение основано на Номере Последовательности Передачи (Transmission Sequence Number, TSN) в заголовке MAC-hs.

В состоянии Cell_DCH, UE определяет, предназначена ли передача HS-DSCH из Node-B конкретному UE путем маркирования Циклического Контроля Избыточности (Cyclic Redundancy Check, CRC) Высокоскоростного Общего Канала Управления (High-Speed Shared Control Channel, HS-SCCH) посредством уникального (специфичного конкретному UE) Временного Идентификатора Радио Сети HS-DSCH (HS-DSCH Radio Network Temporary Identifier, H-RNTI). Тем не менее, в состоянии Cell_PCH, URA_PCH или Cell_FACH, UE может не иметь H-RNTI. Например, при повторном выборе ячейки UE может быть неизвестен его H-RNTI, который должен применяться в целевой ячейке, когда UE принимает сообщение подтверждения обновления ячейки. Для разрешения этой проблемы сеть может использовать общий H-RNTI, который могут декодировать все WTRU и использовать внутриполосную сигнализацию для идентификации заданного UE. Кроме того, общий H-RNTI может потребоваться для обеспечения возможности широковещательной рассылки сообщений (например, сообщений Широковещательного Канала Управления (Broadcast Control Channel, BCCH) всем WTRU, расположенным в заданной ячейке.

Ряд проблем возникает при попытке реализации функции переупорядочения с UE, которые принимают данные через HS-DSCH, используя общий H-RNTI. Первая проблема заключается в том, что UE потенциально задерживает доставку данных на высшие уровни, поскольку функция переупорядочения ожидает поступления пакетов, которые даже не предназначены для этого UE.

Еще одна проблема возникает, когда UE выполняет сброс MAC-hs или MAC-ehs (например, при повторном выборе ячейки). После выполнения повторного выбора ячейки, UE инициализирует некоторые переменные, относящиеся к переупорядочению (например, next_expected_TSN и RcvWindow_UpperEdge), в течение сброса MAC-ehs. Тем не менее, при использовании общего H-RNTI целевая ячейка не может повторно инициализировать значение TSN без воздействия на все другие WTRU, которые уже используют этот общий H-RNTI в целевой ячейке. Следовательно, UE, которое присоединяется к целевой ячейке, не может полагаться на повторную инициализацию TSN, чтобы выполнить переупорядочение последовательности. В результате может возникнуть ряд нежелательных эффектов. Например, если Номер Последовательности (Sequence Number, SN) первого принятого пакета после сброса MAC-ehs окажется в исходном окне приема и ниже исходной величины next_expected_TSN, то этот пакет будет исключен.

Согласно предшествующему уровню техники из-за этого могли возникнуть чрезмерные задержки при выполнении процедуры обновления ячейки с использованием HS-DSCH в состоянии Cell_FACH. Передачи Node-B через высокоскоростной канал, которые выполняются без сведений об идентичности UE (то есть используя общий H-RNTI), создают сложности для поддержки переупорядочения. Node-B не может использовать номера TSN, которые специфичны для конкретного UE, поскольку идентичность целевого приемника неизвестна в объекте MAC-ehs заданного UE. Таким образом, UE, которое начинает прослушивать подобные передачи, не будет иметь сведений о следующем TSN, который следует ожидать для доставки в последовательности.

Сущность изобретения

Раскрыты способ и устройство для приема передач HS-DSCH. Объект MAC-ehs в Беспроводном Блоке Передачи/Приема (Wireless Transmit/Receive Unit, WTRU) принимает PDU MAC-ehs через HS-DSCH, работая в одном из состояний Cell_FACH, Cell_PCH и URA_PCH. Переупорядочиваемые PDU, входящие в состав PDU MAC-ehs, могут быть переданы в следующий объект обработки без выполнения переупорядочения этих PDU.

Для приема PDU MAC-ehs может быть использован один процесс HARQ, и все повторные передачи PDU MAC-ehs могут быть завершены до начала передачи следующего PDU MAC-ehs. Альтернативно, для PDU MAC-ehs может не выполняться каких-либо повторных передач HARQ, и все PDU MAC-ehs могут быть переданы только один раз. Альтернативно, объект HARQ может удерживать принятый PDU MAC-ehs и доставлять принятый PDU MAC-ehs только после завершения последних передач HARQ принятого PDU MAC-ehs. Альтернативно, объект HARQ может сразу доставить успешно декодированный PDU MAC-ehs в следующий объект обработки и передать индикацию о том, когда возникает последняя передача HARQ для успешно декодированного PDU MAC-ehs. Функция Исключения Дублирования и Переупорядочения (Duplicate Avoidance and Reordering, DAR) может быть применена на уровне Управления Радиолинии (Radio Link Control, RLC) ко всем логическим каналам и данным Режима Подтверждения Приема (Acknowledged Mode, AM).

Определенная очередь переупорядочения может войти в режим ожидания при возникновении запускающего события, и PDU MAC-ehs, распределенные в очереди упорядочения в состоянии ожидания, могут быть перенаправлены в следующий объект обработки без выполнения переупорядочения PDU. Процедура сброса MAC-ehs может быть расширена для определенной передачи таким образом, чтобы сброс MAC-ehs выполнялся после приема PDU MAC-ehs в целевой ячейке. При выполнении сброса MAC-ehs переменные next_expected_TSN и RcvWindow_UpperEdge устанавливаются в значение "Ожидание".

TSN, который следует использовать в некоторой ячейке для передачи PDU MAC-ehs с использованием общего H-RNTI канала HS-DSCH, может быть предоставлен в WTRU, и объект MAC-ehs может быть сконфигурирован посредством этого TSN. Сообщение Управления Радио Ресурсами (Radio Resource Control, RRC), передаваемое через HS-DSCH с использованием H-RNTI канала HS-DSCH, может быть сформировано достаточно маленьким, чтобы уместиться в один PDU MAC-ehs.

В состоянии ожидания переупорядочения переупорядочиваемые переменные могут быть переданы на основании TSN первого PDU MAC-ehs. Принятые PDU MAC-ehs могут быть сохранены в буфере переупорядочения и доставлены в объект высшего уровня на основании информации HARQ. Когда номера TSN ограничены, модуль x может быть использован для всех арифметических операций объекта переупорядочения, где x являет собой наименьший ограниченный номер TSN. Номер TSN может назначаться каждому WTRU независимым образом.

Краткий перечень чертежей

Более глубокое понимание настоящего изобретения можно получить при изучении следующего подробного описания и сопутствующих чертежей, на которых:

Фиг.1 - структурная схема примера WTRU;

Фиг.2 - структурная схема объекта MAC-ehs;

Фиг.3 - структурная схема объекта WTRU MAC-ehs без переупорядочения для данных, принятых из определенных приоретизированных очередей; и

Фиг.4 - структурная схема объекта WTRU MAC-ehs без переупорядочения и без повторной сборки для данных, принятых из определенных приоретизированных очередей.

Подробное описание

В использованном здесь значении термин "Беспроводной Блок Приема/Передачи" (Wireless Transmit/Receive Unit, WTRU) включает в себя, но не ограничивается перечисленным, Пользовательское Оборудование (User Equipment, UE), мобильную станцию, фиксированную или мобильную абонентскую станцию, пейджер, сотовый телефон, Персональный Цифровой Секретарь (Personal Digital Assistant, PDA), компьютер или любой другой тип пользовательских устройств, способных работать в беспроводной среде. В использованном здесь значении термин "Node-B" включает в себя, но не ограничивается перечисленным, базовую станцию, локальный контроллер, Точку Доступа (Access Point, AP) или любой другой тип интерфейсного устройства, способного работать в беспроводной среде. Далее следует описание вариантов осуществления, где в качестве примера рассматривается состояние Cell_FACH. Следует отметить, что варианты осуществления применимы также к состояниям Cell_PCH и URA_PCH.

Фиг.1 представляет собой структурную схему примера WTRU 100. WTRU 100 включает в себя физический уровень 110, уровень 120 Управления Доступом к Среде (Medium Access Control, MAC), уровень 130 Управления Радиолинией (Radio Link Control, RLC) уровень 140 Управления Радио Ресурсами (Radio Resource Control, RRC), высший(ие) уровень(и) 150 и т.п. MAC-уровень 120 включает в себя объект MAC-ehs. Следует отметить, что объект MAC-ehs также могут обозначать термином "объект MAC-hs" или другим именем. В настоящем документе используется только термин "MAC-ehs".

Фиг.2 представляет собой структурную схему объекта 200 MAC-ehs. Объект 200 MAC-ehs включает в себя объект 202 HARQ, объект 204 разборки, объект 206 распределения в очередь переупорядочения, множество очередей 208 упорядочения, объекты 210 демультиплексирования и объекты 212 повторной сборки. PDU MAC-ehs, принятый через объект 202 HARQ, разбирается на переупорядочиваемые PDU объектом 204 разборки. Переупорядочиваемые PDU распределяются в очередь 208 переупорядочивания посредством объекта 206 распределения в очередь переупорядочивания на основании принятого идентификатора логического канала. Переупорядочиваемые PDU реорганизуются согласно номеру TSN. При приеме переупорядочиваемые PDU с последовательными номерами TSN доставляются в высший уровень. Механизм таймера определяет доставку непоследовательных блоков данных в высшие уровни. Для каждой приоритезированной очереди присутствует один объект 208 переупорядочения. Объект 200 демультиплексирования направляет переупорядоченные PDU в объект 212 повторной сборки на основании идентификатора логического канала. Блок 202 повторной сборки повторно собирает сегментированные Сервисные Блоки Данных (Service Data Unit, SDU) MAC-ehs в исходные MAC-ehs SDUs и направляет эти MAC-ehs SDU в высшие уровни.

Согласно первому варианту осуществления PDU MAC-ehs доставляются один за другим из объекта HARQ, и уровень MAC-ehs может быть освобожден от своей обязанности переупорядочения путем подтверждения того, что в WTRU пакеты всегда принимаются в правильном порядке. Если уровень MAC-ehs не должен выполнять переупорядочения, то функция сброса MAC-ehs может быть упрощена, когда WTRU не назначен H-RNTI, который специфичен для конкретного WTRU. Ниже раскрыты четыре опции для реализации первого варианта осуществления. Согласно первой опции для первого варианта осуществления для определенных передач используется один процесс HARQ. Эти передачи могут быть из определенной приоритезированной очереди, определенного логического канала, или для них идентичность целевого WTRU может быть неизвестна в объекте MAC-ehs (то есть когда PDU MAC-ehs передаются с использованием общего H-RNTI). В состоянии Cell_FACH объект MAC-ehs в Node-B многократно передает PDU MAC-ehs предопределенное количество раз без приема обратной связи из WTRU. Это называется схемой повторяющейся передачи HARQ. Node-B завершает все повторные передачи PDU MAC-ehs до начала передачи следующего PDU MAC-ehs для определенных передач, для которых доставка в заданном порядке имеет большое значение.

Согласно первой опции большая задержка, вызываемая минимальным интервалом между следующими друг за другом передачами HARQ в рамках одного процесса HARQ согласно текущим спецификациям 3GPP, может создавать проблему. Согласно текущим спецификациям 3GPP WTRU может исключить любой PDU MAC-ehs, предназначенный для процесса HARQ, если он принимается в периоде пяти (5) подкадров с последнего приема данных, предназначенных для того же процесса HARQ. Подобное ограничение оправдано, когда используется HS-DSCH в состоянии Cell_DCH, поскольку обратная связь HARQ из WTRU задает определенное минимальное время кругового обращения. Тем не менее, когда используется HS-DSCH в состоянии Cell_FACH, WTRU не передает в Node-B обратной связи ACK/NACK и, соответственно, возможно обеспечение меньшего интервала.

Проблема задержки может быть решена путем конфигурирования объекта MAC-ehs иным образом, когда WTRU находится в состоянии Cell_FACH. Например, в состоянии Cell_FACH объект MAC-ehs может быть сконфигурирован так, чтобы исключать пакеты, принятые в периоде пяти подкадров с последнего приема пакета, предназначенного для того же процесса HARQ, и он может реализовывать данную схему только в состоянии Cell-DCH.

Альтернативно, в состоянии Cell_FACH объект MAC-ehs может быть сконфигурирован так, чтобы исключать пакет, предназначенный для процесса HARQ, если он принят в периоде n подкадров с последнего приема пакета, предназначенного для того же процесса HARQ. Число n может быть фиксированным, и оно может быть предварительно задано в спецификациях. Очевидно, что если n=0, то минимум не специфицируется для случая, когда WTRU находится в состоянии Cell_FACH. Число n может зависеть от конкретного WTRU. Минимальное количество n подкадров может быть сигнализировано высшими уровнями в качестве способности конкретного WTRU. Например, WTRU может предварительно сигнализировать в Контроллер Радиосети (Radio Network Controller, RNC) информацию о своих способностях (как часть информационного элемента протокола высшего уровня). RNC может сигнализировать минимальное количество подкадров n, применимых к определенным данным. Альтернативно, RNC может сигнализировать в Node-B минимальное количество n, которое следует использовать для каждого логического канала, для каждой приоритезированной очереди или для каждого H-RNTI.

Вышеупомянутые две альтернативы могут быть комбинированы таким образом, что фиксированное и предварительно заданное минимальное количество подкадров m, которое применимо к любому WTRU, использующему HS_DSCH в состоянии Cell_FACH, может быть предоставлено высшими уровнями в качестве способностей заданного WTRU вместе с наименьшим значением n (<m), зависящим от конкретного WTRU. Это обычно для передачи по определенным логическим каналам, которые не выделены для конкретного WTRU, таким как Общий Канал Управления (Common Control Channel, CCCH) или BCCH. В этом случае Node-B может использовать минимальное значение m для логических каналов, которые не выделены конкретному WTRU, и используют меньшее минимальное значение, зависящее от заданного WTRU, для данных, предназначенных конкретному WTRU.

Когда один процесс HARQ используется только с общим H-RNTI, формат HS-SCCH может быть изменен так, что обычное 3-битное поле "Информация Процесса HARQ" может быть удалено. В результате в HS-SCCH потребуется кодировать меньшее количество информационных битов, и будут более низкие требования к мощности передачи. Блоки WTRU могут определять, которая схема была применена, на основании того, была ли маркирована эта передача посредством общего H-RNTI.

Node-B может быть в явной форме уведомлен о необходимости применения одного процесса HARQ, используя одно из обычных сообщений Прикладной Части Node-B (Node-B Application Part, NBAP), используемых для конфигурирования и повторного конфигурирования ресурсов HS-DSCH. Может быть добавлен новый Информационный Элемент (Information Element, IE), указывающий количество процессов HARQ, которые должны использоваться объектом MAC-ehs.

Альтернативно, обычный информационный элемент в сообщениях NBAP, используемых для конфигурирования ресурсов HS-DSCH, может быть расширен для этой цели. Например, выделение памяти HARQ для информационного элемента может быть расширено так, чтобы включать в себя новое поле, указывающее количество процессов HARQ, которые должны быть использованы, либо может быть установлена битовая строка для всех процессов HARQ, чтобы указывать, какой процесс HARQ может быть использован для определенного логического канала или определенного общего H-RNTI.

Альтернативно, Node-B может быть уведомлен в явной форме посредством еще одного информационного элемента. Например, когда таймер T1 устанавливается в нулевое (0) значение, это может в явной форме означать, что используется только один процесс HARQ. Альтернативно, новый информационный элемент, который указывает запрет использования реорганизации или сегментации, может в явной форме сигнализировать использование одного процесса HARQ.

Альтернативно, объекту MAC-ehs в Node-B может быть дана инструкция не включать в состав TSN или включить в состав TSN, но не давать TSN приращение, и это в явной форме может указывать об использовании одного процесса HARQ и наоборот.

Альтернативно, Node-B может быть уведомлен через протокол кадра Iub. В протокол кадра Iub может быть добавлено новое поле, которое указывает, должно ли быть передано конкретное сообщение с использованием одного процесса HARQ или множества процессов HARQ.

Может быть использовано любое сочетание раскрытых выше альтернатив. Согласно второй опции для первого варианта осуществления для определенных передач повторные передачи HARQ не выполняются. Node-B не передает каких-либо повторных передач HARQ для блоков PDU из определенной приоритезированной очереди, из определенного логического канала или для которых идентичность целевого WTRU неизвестна в объекте MAC-ehs (то есть когда используется общий H-RNTI), и PDU MAC-ehs для этих данных передаются через эфирный канал только один раз. PDU MAC-ehs будут приняты в исходном порядке, и WTRU не потребуется выполнять какое-либо переупорядочивание для конкретной передачи. Объект MAC-ehs в WTRU перенаправляет успешно декодированные PDU напрямую в объект высшего уровня, в обход функции переупорядочения.

Посредством конфигурационной информации L3 (например, BCCH/BCH) WTRU может быть в явной форме уведомлено о том, что для каждого PDU выполняется одна передача HARQ, для конкретной приоритезированной очереди или логического канала или для конкретных передач. Альтернативно, может использоваться новая сигнализация L1 (например, новое поле в HS-SCCH), чтобы указывать об отсутствии повторных передач HARQ. Альтернативно, поля в HS-SCCH могут быть модифицированы так, чтобы указывать, что для конкретного пакета повторных передач HARQ не будет. Альтернативно, в заголовок MAC-ehs может быть добавлено новое поле, чтобы указывать об одной передаче HARQ заданного пакета.

Согласно третьей опции для первого варианта осуществления, используется схема повторяющейся передачи HARQ и доставка декодированного пакета задерживается в объекте HARQ блока WTRU. При данной опции Node-B может использовать более одного процесса HARQ (например, чтобы обеспечивать лучшее временное разнесение). Тем не менее, налагается определенное ограничение, заключающееся в том, чтобы последние передачи HARQ последовательных PDU MAC-ehs передавались по порядку в Node-B. Иначе говоря, последняя передача HARQ для PDU MAC-ehs №n-1 всегда передается до последней передачи для PDU MAC-ehs №n. Подобное ограничение может быть удовлетворено, например (но не ограничиваясь этим), когда повторные передачи HARQ возникают через фиксированный интервал (синхронный HARQ).

Объект HARQ в WTRU не доставляет успешно декодированный пакет до тех пор, пока все передачи (то есть предопределенное количество повторений) для этого пакета не будут выполнены. Для того чтобы определить, были ли выполнены все передачи для пакета, объект HARQ в WTRU может выждать до приема передачи HS-SCCH с флагом Индикатора Новых Данных (New Data Indicator, NDI), указывающим о новом PDU. Альтернативно, WTRU может подсчитать количество передач (например, на основании передач HS-SCCH) для PDU MAC-ehs и доставить успешно декодированный PDU MAC-ehs только после того, как будет достигнуто предварительно заданное максимальное количество передач относительно этого PDU MAC-ehs. Это максимальное количество сигнализируется в WTRU через высшие уровни.

Согласно четвертой опции для первого варианта осуществления объект HARQ в WTRU сразу доставляет успешно декодированные пакеты в вышестоящие объекты (то есть объект переупорядочения), в объект MAC-ehs, и объект переупорядочения сохраняет доставленный PDU MAC-ehs до тех пор, пока он не получит от объекта HARQ индикацию о том, что последняя передача HARQ была выполнена. После приема упомянутой индикации объект переупорядочения передает PDU MAC-ehs в вышестоящие объекты/подуровни. Объект HARQ может выполнить это определение на основании одного из способов, описанных выше для третьей опции.

Согласно этой опции объект переупорядочения не нуждается в использовании поля TSN блока PDU MAC-ehs (если таковой присутствует), чтобы определить время, когда нужно передать PDU в вышестоящие объекты, но он все же может использовать таймер выдержки (такой как T1), чтобы доставить PDU MAC-ehs, для которого из объекта HARQ не было получено какой-либо индикации. Определенные очереди переупорядочения могут полагаться на индикацию, предоставленную объектом HARQ, чтобы определить время, когда следует доставить PDU в вышестоящие объекты, тогда как другие очереди переупорядочения могут использовать обычный механизм переупорядочения.

Согласно второму варианту осуществления функции MAC (то есть функции MAC-ehs) могут быть упрощены для определенных приоритезированных очередей, чтобы избежать проблем, связанных с переупорядочением в состоянии Cell_FACH. Упрощение функций MAC может быть реализовано в связи с первым вариантом осуществления, и это минимизирует (или устранит) доставку PDU MAC-ehs в вышестоящие объекты не по порядку.

Согласно второй опции для второго варианта осуществления переупорядочение исключается для данных, передаваемых из определенных приоритезированных очередей. Функции MAC-ehs в WTRU модифицируются так, что данные, принятые из определенных приоритезированных очередей, напрямую передаются в объект повторной сборки без выполнения переупорядочения. Объект повторной сборки повторно собирает MAC-ehs SDU из сегментов MAC-ehs SDU.

Фиг.3 представляет собой иллюстрацию объекта 300 MAC-ehs согласно этой опции. Следует отметить, что точный порядок функций демультиплексирования и повторной сборки может отличаться от показанного на Фиг.3. PDU MAC-ehs, принятые через объект 302 HARQ, перенаправляются в объект 304 разборки. Объект 304 разборки разбирает PDU MAC-ehs на переупорядочиваемые PDU. Переупорядочиваемые PDU могут быть размещены в очередь 308 переупорядочения посредством объекта 306 распределения в очередь переупорядочения. Согласно этой опции для определенных приоритезированных очередей переупорядочение исключается и переупорядочиваемые PDU напрямую направляются в объект 310a демультиплексирования. Объект 310a демультиплексирования направляет переупорядочиваемые PDU в соответствующий объект 312a повторной сборки на основании идентификатора логического канала. Блок 312a повторной сборки выполняет повторную сборку из сегментированных MAC-ehs SDU, получая целые MAC-ehs SDU.

Различные критерии могут использоваться, чтобы определить, следует ли распределять данные в объект переупорядочения для переупорядочения или в объект повторной сборки без переупорядочения. Если идентичность WTRU, которому предназначены данные из PDU MAC-ehs, неизвестна объекту MAC-ehs (то есть когда PDU MAC-ehs передаются с использованием общего H-RNTI), PDU MAC-ehs может быть передан в объект повторной сборки без выполнения переупорядочения. Объекту MAC-ehs будет известна идентичность WTRU, если PDU MAC-ehs был принят с использованием выделенного H-RNTI или если идентичность WTRU содержится в самом PDU MAC-ehs. Node-B всегда может использовать общий H-RNTI для любых данных из приоритезированной очереди, которые не поддерживают переупорядочение.

То, следует ли распределять данные в объект переупорядочения для переупорядочения или в объект повторной сборки без упорядочения, может зависеть от идентичности логического канала принятых данных, независимо от того, были ли приняты эти данные с использованием общего H-RNTI или выделенного H-RNTI. Это позволяет мультиплексировать данные из приоритезированных очередей, которые поддерживают переупорядочение, с данными из приоритезированных очередей, которые не поддерживают переупорядочение. Это также позволяет не использовать функцию переупорядочения, даже когда применяется выделенный H-RNTI.

Логические каналы, которые поддерживают переупорядочение, могут быть предварительно определены на основании типа канала (например, CCCH, BCCH, Канал Управления Поисковым Вызовом (Paging Control Channel, PCCH), DCCH и т.п.) и/или идентичности логического канала.

Альтернативно, WTRU может быть уведомлен высшими уровнями (например, сигнализацией Управления Радио Ресурсами (Radio Resource Control, RRC) о логических каналах, которые поддерживают переупорядочение. Например, информационный элемент "Информация сопоставления радио несущей" содержит информацию о логических каналах RLC нисходящей линии связи. Может быть добавлен информационный элемент, чтобы указывать, выполняется ли переупорядочение в MAC-ehs для каждого логического канала. Альтернативно, в информационном элементе "Информация сопоставления радио несущей", информационный элемент "ID очереди переупорядочения", который может быть добавлен для поддержки усовершенствований L2, может принимать особое значение, указывающее очередь, которая не поддерживает упорядочение. Альтернативно, информационный элемент, указывающий параметры очереди (например, "Добавленный или реконфигурированный поток MAC-d", общий поток MAC, рассылаемый в информационной системе и т.п.), может быть модифицирован или расширен так, чтобы указывать, поддерживает ли очередь переупорядочение. Подобная индикация может быть задана путем добавления нового информационного элемента, указывающего, поддерживается ли переупорядочение, или, альтернативно, некоторые обычные информационные элементы могут принимать новое возможное значение, которое будет указывать, что переупорядочение не поддерживается. Например, информационный элемент "T1" может принять одно из возможных значений (например, "0"), указывающее, что переупорядочение не поддерживается в этой очереди. Информационный элемент "Размер окна MAC-hs" также может принять одно из возможных значений (например, "0"), указывающее, что переупорядочение в этой очереди не поддерживается.

Альтернативно, в заголовке PDU MAC-ehs может использоваться другая индикация, указывающая, какие логические каналы поддерживают переупорядочение и какие логические каналы не поддерживают переупорядочение. Например, может быть добавлено специальное поле, указывающее, должно ли быть применено упорядочение или нет. Еще одним примером является использование специального значения для поля TSN (например, "111111").

Любая комбинация вышеперечисленных альтернатив может быть использована для индикации, какие логические каналы поддерживают переупорядочение и какие логические каналы не поддерживают переупорядочение. Например, идентичность логического канала в сочетании с WTRU ID может использоваться, чтобы указывать, следует ли передавать PDU MAC-ehs в очередь переупорядочения для переупорядочения или в объект повторной сборки без выполнения переупорядочения. Сообщения Сигнализации Радио Несущей (Signaling Radio Bearer, SRB) №1 будут переданы по DCCH с использованием общего H-RNTI, но другие сообщения могут быть переданы по DCCH с использованием выделенного H-RNTI. Сообщения DCCH с общим H-RNTI могут быть переданы в объект повторной сборки без выполнения переупорядочения, тогда как сообщения DCCH с выделенным H-RNTI могут быть переданы в очереди переупорядочения для выполнения переупорядочения.

Несмотря на то, что переупорядочение не выполняется, поле TSN все же может использоваться объектом MAC-ehs в Node-B, когда формируется PDU MAC-ehs, и поле TSN может использоваться для облегчения операции повторной сборки, выполняемой в WTRU. Например, объект повторной сборки может удалить любой сегмент, присутствующий в буфере повторной сборки, если принимаются непоследовательные TSN.

Альтернативно, TSN может быть удален из заголовка MAC-ehs. В этом случае WTRU может все же использовать индикацию сегментации, чтобы повторно собирать пакеты, даже несмотря на то, что существует вероятность неуспешной сборки из-за отсутствия PDU. В случае если поле TSN не используется, WTRU будет известно, ожидать ли поле TSN в заголовке MAC-ehs для логического канала, на основании сведений о сопоставлении между этим логическим каналом и очередью, которая не поддерживает переупорядочение.

Ниже описан процесс повторной сборки сегментированных MAC-ehs SDU в случае, когда поле TSN сохраняется в заголовке MAC-ehs, но переупорядочение не выполняется. После приема PDU MAC-ehs WTRU определяет, является ли полезная нагрузка PDU MAC-ehs целым MAC-hs SDU или сегментом, и если это сегмент, то WTRU определяет, является ли этот сегмент первым сегментом, промежуточным сегментом или последним сегментом. Если полезная нагрузка являет собой целый MAC-ehs SDU, то этот MAC-ehs SDU перенаправляется в высший уровень или в объект, следующий за объектом повторной сборки.

Если полезная нагрузка являет собой первый сегмент MAC-ehs SDU и если WTRU сохранило промежуточные сегменты с последовательными номерами последовательности, которые больше, чем у принятого PDU, то первый сегмент комбинируется с последующими сегментами. Если WTRU сохранил последний сегмент с последующим номером последовательности, который выше, чем у принятого PDU, то они комбинируются и полный MAC-ehs SDU доставляется в высший уровень. В противном случае полезная нагрузка сохраняется в объекте повторной сборки.

Если полезная нагрузка являет собой последний сегмент MAC-ehs SDU и если объект повторной сборки сохранил последовательный сегмент с TSN, который ниже, чем у принятого пакета, то они комбинируются. Если формируется целый MAC-ehs SDU, то он доставляется в высший уровень. В противном случае полезная нагрузка сохраняется в буфере повторной сборки.

Если полезная нагрузка являет собой промежуточный сегмент MAC-ehs SDU и если объект повторной сборки сохранил последовательные сегменты с TSN, которые выше или ниже, чем у принятого пакета, то они комбинируются. Если создается целый SDU, то он перенаправляется в высший уровень. В противном случае он сохраняется в буфере повторной сборки.

Для исключения сегментов из объекта повторной сборки может использоваться механизм исключения на основе таймера. Опционально, пакет может быть исключен, если буфер полон или если достигнуто максимальное количество сегментов, которые можно хранить. Сегменты с самыми старыми номерами TSN могут быть исключены. В добавление, обычные параметры переупорядочения - RcvWindow_UpperEdge, next_expected_TSN, T1_TSN и TSN_Flush - не требуется сохранять и обрабатывать.

Механизм исключения на основе таймера может быть реализован согласно одному из следующих вариантов или согласно комбинации из следующих вариантов. Каждый сегмент сохраняется в буфере повторной сборки в течение предопределенного периода времени (то есть при каждом приеме сегмента, соответствующего MAC-ehs SDU, запускается таймер для этого сегмента). Когда таймер истекает, все сегменты, соответствующие этому MAC-ehs SDU, исключаются. Таймер запускается только тогда, когда принимается сегмент, соответствующий переупорядочиваемому PDU с номером TSN, который больше следующего ожидаемого TSN. Переменная Tseg_TSN устанавливается равной значению этого TSN. Когда таймер истекает, могут быть выполнены следующие действия.

a. Если Индикатор Сегмента (Segment Indicator, SI) Tseg_TSN равен "01",

i. Исключить все блоки полезной нагрузки с TSN ≤ Tseg_TSN; и

ii. Установить next_expected_TSN равным TSN следующего непринятого сегмента.

b. Если SI сегмента T1_TSN равен "10",

i. Исключить все блоки полезной нагрузки с TSN < Tseg_TSN; и

ii. Установить next_expected_TSN равным TSN следующего непринятого сегмента.

c. Если SI сегмента Tseg_TSN равен "11",

i. Исключить первый блок полезной нагрузки, соответствующий этому TSN, и все блоки полезной нагрузки с TSN < T1_TSN. Этот этап обеспечивает, что последний блок полезной нагрузки, соответствующий этому TSN, не исключается, поскольку этот блок полезной нагрузки соответствует первому блоку полезной нагрузки.

Согласно второй опции для второго варианта осуществления сегментация, переупорядочение и повторная сборка исключаются для данных, передаваемых из определенных приоритезированных очередей. Любые данные, переданные из определенных приоритезированных очередей, не подвергаются сегментации, повторной сборке или переупорядочению. Фиг.4 представляет собой иллюстрацию объекта MAC-ehs в WTRU согласно этой опции. Как и в первой опции для второго варианта осуществления, различные критерии могут использоваться, чтобы определять, должны ли данные распределяться в очередь переупорядочения или нет.

Согласно этой опции для соответствующих очередей необязательно добавлять поля TSN и SI в PDU MAC-ehs. Альтернативно, поля TSN и SI могут быть добавлены, но поле SI всегда может быть установлено в определенное значение (например, "00"), а TSN может быть установлено в постоянное значение, или опционально ему может даваться приращение, но оно не будет использоваться для целей переупорядочения или повторной сборки. Сверх того, когда в WTRU устанавливаются очереди, нет необходимости в поддержании и обработке следующих переменных: TSN_number, RcvWindow_UpperEdge, next_expected_TSN, T1_TSN и TSN_Flush.

Когда принимается PDU MAC-ehs, блок WTRU определяет, что поля TSN и SI отсутствуют для определенного логического канала, на основании сведений о сопоставлении этого логического канала заданной очереди, которая не поддерживает переупорядочение и сегментацию/повторную сборку, либо на основании использования общего H-RNTI при передаче по этому каналу. В подобном случае блоки MAC-ehs SDU сразу разбираются и демультиплексируются согласно логическому каналу и передаются в высший уровень.

Во втором варианте осуществления процедура сброса MAC-ehs может быть модифицирована. Согласно обычной процедуре сброса MAC-ehs, если сброс MAC-ehs запрашивается высшим уровнем, то в момент активации, указанный высшими уровнями, WTRU должен:

a) очистить программный буфер для всех сконфигурированных процессов HARQ;

b) остановить все активные таймеры (T1) выдержки переупорядочения и установить все таймеры T1 в их исходное значение;

c) начать с TSN со значением "0" для следующей передачи по каждому сконфигурированному процессу HARQ;

d) инициализировать переменные RcvWindow_UpperEdge и next_expected_TSN в их исходные значения;

e) разобрать все PDU MAC-ehs в буфере переупорядочения и доставить все MAC-d PDU в объект MAC-d;

f) очистить буфер переупорядочения; и

g) если сброс MAC-ehs был инициализирован из-за приема информационного элемента "Индикатор сброса MAC-hs" с высших уровней, указать всем объектам RLC AM, сопоставленным каналу HS-DSCH, сгенерировать отчет о статусе.

Если реализована первая опция второго варианта осуществления, то эта процедура модифицируется таким образом, что этап (d) выполняется только для очередей, которые поддерживают переупорядочение. Если первая опция реализована с функцией повторной сборки, то процедура сброса может гарантировать, что буфер повторной сборки очищается после обработки последнего PDU MAC-ehs.

Если реализована вторая опция второго варианта осуществления, то эту процедуру необходимо модифицировать так, чтобы этапы (b)-(f) выполнялись только для очередей, которые поддерживают переупорядочение. В добавление, сегменты в буфере повторной сборки, которые не удается повторно собрать, должны быть исключены.

Следует отметить, что некоторые из этих этапов должны быть модифицированы так, чтобы поддерживать другие будущие функции Усовершенствованного HSPA, такие как усовершенствования L2.

Описанные выше упрощения функций объекта MAC-ehs могут привести к доставке MAC SDU в объект RLC не по порядку. Это может вызвать сложности, в особенности, когда MAC-ehs SDU несут в себе сигнализацию RRC. Этих сложностей можно избежать, если объект RLC будет выполнять переупорядочение. Обычно функция DAR определяется для Режима Неподтверждения Приема (Unacknowledged Mode, UM) RLC. Тем не менее, функция DAR в текущее время доступна только в Канале Потока Обмена Мультимедийной Службы Широковещательной/Многоадресной Рассылки (Multimedia Broadcast/Multicast Service (MB