Катализатор на углеродной основе для десульфуризации дымовых газов, и способ его получения, и его использование для удаления ртути в дымовых газах
Иллюстрации
Показать всеИзобретение относится к катализатору на углеродной основе и его использованию в каталитической десульфуризации дымовых газов для удаления оксидов серы и ртути из дымовых газов. Катализатор на углеродной основе для десульфуризации дымовых газов вводят в контакт с дымовыми газами, содержащими, по меньшей мере, газообразный SO2, кислород и водяные пары, для того чтобы газообразный SO2 смог бы вступить в реакцию с кислородом и водяными парами с образованием серной кислоты, которую необходимо извлечь. В катализаторе используют предварительное увлажнение внутреннего пространства пор катализатора. На поверхность катализатора на углеродной основе вводят йод, бром или их соединение в результате добавления, ионного обмена или нанесения на носитель и проводят водоотталкивающую обработку. В результате проведения водоотталкивающей обработки катализатор содержит смолу, характеризующуюся краевым углом смачивания по отношению к воде, равным 90° и более. Катализатор на углеродной основе также может быть использован в качестве адсорбента ртути для обработки дымовых газов, предназначенного для адсорбирования и удаления металлической ртути из дымовых газов, содержащих металлическую ртуть, газообразный SO2, кислород и водяные пары. Технический результат - степень удаления ртути достигает 100%, катализатор сохраняет стабильную активность по десульфуризации и по удалению ртути в течение продолжительного периода времени без ухудшения свойств. 2 н. и 13 з.п. ф-лы, 1 табл., 11 ил., 14 пр.
Реферат
ОПИСАНИЕ
ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к катализатору на углеродной основе для десульфуризации дымовых газов, предназначенному для извлечения и удаления оксидов серы, содержащихся в дымовых газах, в виде серной кислоты в результате каталитической десульфуризации, и к способу получения такого катализатора на углеродной основе.
Настоящее изобретение также относится к адсорбенту ртути для обработки дымовых газов, предназначенному для адсорбирования и удаления ртути, содержащейся в дымовых газах, в частности металлической ртути, и к способу обработки дымовых газов, который использует такой адсорбент ртути.
УРОВЕНЬ ТЕХНИКИ
В общем случае способ удаления диоксида серы (SO2) в дымовых газах подразделяют на два варианта, один из которых представляет собой влажный способ, где газообразный SO2 абсорбируют абсорбирующей жидкостью и удаляют, а другой из них представляет собой сухой способ, где газообразный SO2 адсорбируют на адсорбенте и удаляют. В случае обработки большого количества дымовых газов, содержащих газообразный SO2 с высокой концентрацией, широко применяют влажный способ. Однако в случае обработки дымовых газов при относительно низкой концентрации или в небольшом количестве в некоторых случаях может быть использован сухой способ, который является простым по структуре и легким по поддержанию и контролю условий проведения.
В качестве способа сухой обработки дымовых газов известен способ десульфуризации дымовых газов (каталитическая десульфуризация), где оксиды серы, такие как газообразный SO2 и тому подобное, которые содержатся в дымовых газах, окисляются под действием присутствующего кислорода при низких температурах с извлечением их в заключение в виде серной кислоты. В случае использования в качестве такого катализатора, который окисляет газообразный SO2 и тому подобное в дымовых газах, керамического носителя, такого как оксид алюминия, диоксид кремния, диоксид титана или цеолит, активность сама по себе будет недостаточной; в соответствии с этим в качестве вещества катализатора должны быть добавлены металл или оксид металла. Кроме того, вследствие воздействия на вещество катализатора образовавшейся серной кислоты, что приводит к растворению или изменению естественных свойств, имеет место недостаток, заключающийся в невозможности стабильного сохранения активности в течение продолжительного периода времени. В результате в качестве катализатора наиболее предпочтительно использовать активированный уголь, который характеризуется превосходной кислотостойкостью и тем самым может сохранять стабильную активность в течение продолжительного периода времени без возникновения ухудшения свойств.
Однако в случае использования в качестве катализатора коммерчески доступного активированного угля как такового проблема будет заключаться в низкой активности катализатора при каталитической десульфуризации и в невозможности плавного выпуска образовавшейся серной кислоты; в соответствии с этим для получения желательного эффекта десульфуризации необходимо добавлять много катализатора и проводить его периодическую регенерацию, что в результате приводит к неудовлетворительной экономической эффективности.
В данной связи, например, в японской выложенной патентной заявке № 2005-288380 предложили способ переработки газа, способный неоднократно подвергать переработке одоризирующие компоненты, загрязнители воздуха и тому подобное в газе в течение продолжительного периода времени. В данном способе подвергаемый обработке газ после увлажнения до превышения 100%-ной относительной влажности вводят в контакт с сотовой конструкцией, содержащей активированный уголь, или сотовой конструкцией, содержащей активированный уголь, являющейся носителем для химического реагента, которая исполняет функцию носителя для химического реагента, такого как йод, бром, кислота, соединение платины и тому подобное, для значительного улучшения эффективности обработки.
В соответствии с вышеупомянутым способом переработки газа утверждается то, что в случае контролируемого выдерживания относительной влажности подвергаемого обработке газа в условиях пересыщенного состояния, то есть при превышении 100%, в контакте с сотовой структурой, содержащей активированный уголь, на поверхности сотовой конструкции, содержащей активированный уголь, формируется однородная тонкая водяная пленка, одоризирующие компоненты и загрязнители воздуха окисляются на поверхности сотовой конструкции, содержащей активированный уголь, с образованием соединений, растворимых в воде, растворимые в воде продукты реакции постепенно элюируются через водяную пленку с поверхности сотовой конструкции, содержащей активированный уголь, отделившись от сотовой конструкции, содержащей активированный уголь, тем самым сотовая конструкция, содержащая активированный уголь, саморегенерируется, что значительно продлевает срок службы при обработке.
Однако в соответствии со способом переработки газа относительную влажность подвергаемого обработке газа требуется отдельно контролируемо выдерживать в результате разбрызгивания или распыления воды или водного раствора в подвергаемом обработке газе или в результате барботирования подвергаемого обработке газа в водном растворе с последующей такой операцией, как использование увлажнителя для превышения 100%; в соответствии с этим проблема заключается в увеличении энергопотребления, необходимого для обработки газа.
Кроме того, для образования однородной тонкой водяной пленки на поверхности сотовой конструкции, содержащей активированный уголь, относительную влажность контролируемо выдерживают превышающей 100%. Однако для подвергаемого обработке газа и сотовой конструкции, содержащей активированный уголь, возникновение их непосредственного контакта друг с другом ингибировано, что в результате приводит к трудности демонстрации активированным углем эксплуатационных характеристик катализатора; в соответствии с этим, еще одна проблема заключается в увеличении количества сотовой конструкции, содержащей активированный уголь, необходимого для получения желательного эффекта десульфуризации.
Кроме того, как описывалось в той же самой литературе, сотовая конструкция, содержащая активированный уголь, характеризующаяся ухудшенной способностью к обработке вследствие долговременного использования, может быть неоднократно использована благодаря разбрызгиванию воды, проблема, которая остается, заключается в том, что сама сотовая конструкция, содержащая активированный уголь, требует проведения регенерационной обработки в виде разбрызгивания воды в течение каждого определенного периода времени. То есть, желательной является разработка катализаторов, характеризующихся более высокими активностями.
С другой стороны, отдельно от потребности в катализаторе, характеризующемся высокой активностью при десульфуризации, существует следующее требование.
То есть в получаемых при сгорании дымовых газах, выпускаемых из котла тепловой электростанции, в дополнение к содержанию в общем случае газообразного SO2 в зависимости от типа сжигаемого ископаемого топлива (в частности, угля) в некоторых случаях содержится ртуть с высокой концентрацией. Ртуть представляет собой ядовитый материал, который создает опасность для здоровья при выпуске в окружающую среду; в соответствии с этим, перед высвобождением дымовых газов в воздух ртуть необходимо удалить. В соответствии с этим, в последнее время появилось ограничение, которое в дополнение к газообразному SO2 делает обязательным удаление ртути.
Что касается ртути в дымовых газах, то присутствуют окисленная ртуть (Hg2+) в форме соединений двухвалентной ртути, полученных в результате окисления в печи для сжигания или под действием окисляющего катализатора аппарата для удаления NOx, и элементарная ртуть (Hg0) в форме простой (0-валентной) металлической ртути. В их числе Hg2+ почти полностью удаляют при использовании аппарата для десульфуризации дымовых газов влажной системы. Однако Hg0 характеризуется низкой растворимостью в абсорбционной жидкости и тем самым низкой эффективностью удаления; в соответствии с этим, в настоящее время почти все ее количество не удаляется и диффундирует в воздух.
В данной связи был предложен (японская выложенная патентная заявка № 2004-66229) способ дополнительного окисления Hg0 в дымовых газах до получения Hg2+ в результате добавления соединения галогена, такого как хлористый водород, бромид кальция и тому подобное, к дымовым газам или углю, который представляет собой топливо, или в результате использования окисляющего катализатора аппарата для удаления NOx. Однако существует проблема срока службы катализатора, и, кроме того, поскольку диффузия Hg0 в дымовых газах начинает определять скорость, трудно добиться достижения высокой эффективности окисления. То есть трудно стабильно окислять Hg0 в Hg2+ с высокой эффективностью в течение продолжительного периода времени.
Кроме того, также был предложен (японская выложенная патентная заявка № Н10-216476) способ добавления фиксатора Hg, такого как хелатообразователь, раствора йодида калия (KI) и тому подобного к абсорбционной жидкости аппарата для влажной десульфуризации дымовых газов или добавления окислителя, такого как хлорноватистая кислота, перекись водорода и тому подобное. Однако фиксатор Hg или окислитель разлагаются вследствие реакции с другим металлом, расходуются на окисление газообразного SO2 в дымовых газах или испаряются и диффундируют из дымовой трубы; в соответствии с этим, проблема заключается в увеличении добавляемого количества добавки. В случае добавления хелатообразователя еще одна проблема заключается в разложении хелатообразователя с образованием сероводорода (H2S), что вызывает распространение зловония.
Как известно, в способе, в котором к абсорбционной жидкости добавляют различные типы добавок, в случае варьирования состояния абсорбционной жидкости в зависимости от изменения нагрузки по выработке электроэнергии или изменения состава дымовых газов, Hg0, однажды абсорбированная в абсорбционную жидкость, будет повторно высвобождаться, или Hg2+ в абсорбционной жидкости будет восстанавливаться до Hg0 и высвобождаться; в соответствии с этим, в разработке также находится и технология, которая не приводит к повторному высвобождению Hg0 (японская выложенная патентная заявка № 2004-313833). Кроме того, в способе, в котором используют окислитель, такой как хлорноватистая кислота, перекись водорода, хромовая кислота или хлор, реакции между окислителем и газообразным SO2 в дымовых газах может не быть, что в результате приводит к большой потере окислителя; в соответствии с этим было предложено распыление окислителя на стороне газа, расположенной по ходу технологического потока после аппарата для десульфуризации дымовых газов (японская выложенная патентная заявка № 2001-162135).
С другой стороны, в качестве способа удаления Hg0 не в результате абсорбирования в абсорбционной жидкости аппарата для влажной десульфуризации дымовых газов, а по другому способу известен (японская выложенная патентная заявка № Н9-308817) способ, по которому в дымовые газы добавляют и в них диспергируют порошок активированного угля в области газа, в которой температура находится в диапазоне приблизительно от 100 до 150°С, а Hg0 адсорбируют на порошкообразном активированном угле и удаляют. Кроме того, как давно уже было известно, эффективным при удалении ртути является активированный уголь, являющийся носителем для бромида и тому подобного (японские выложенные патентные заявки №№ S49-53590 и S43-53591). Однако адсорбционная емкость по ртути у активированного угля в общем случае невелика; в соответствии с этим, с точки зрения однородного контакта, если количество, добавляемое к дымовым газам, не увеличить, преимущество не может быть достигнуто. В результате активированный уголь, в большом количестве добавляемый в дымовые газы, должен собираться совместно с зольной пылью на стороне, расположенной по ходу технологического потока далее, и по этой причине необходимо установить большой электростатический осадитель, и необходимым является аппарат для переработки активированного угля, собранного в состоянии смеси с зольной пылью. Данные способы используют на стороне, расположенной по ходу технологического потока до аппарата для влажной десульфуризации дымовых газов, или применяют в комбинации с аппаратом для сухой или полусухой десульфуризации дымовых газов в целях удаления ртути, содержащейся в дымовых газах на определенных уровнях высоких концентраций. То есть данные способы не удаляют ртуть с низкой концентрацией, такую как содержащаяся в отходящих газах аппарата для влажной десульфуризации дымовых газов.
С другой стороны, был предложен (японская выложенная патентная заявка № Н10-216476) способ, по которому для удаления ртути в дымовых газах активированный уголь, являющийся носителем для йода и тому подобного, вводят в контакт с отходящими газами аппарата для влажной десульфуризации дымовых газов, говоря более подробно, с отходящими газами влажного электростатического осадителя, размещенного на стороне, расположенной по ходу технологического потока после аппарата для влажной десульфуризации дымовых газов. Однако в соответствии с данным способом влажный электростатический осадитель размещают на стороне, расположенной по ходу технологического потока до аппарата для удаления ртути; в соответствии с этим, отходящие газы аппарата для влажной десульфуризации дымовых газов не содержат в дымовых газах водяной пыли. Кроме того, для увеличения температуры до 77°С и более используют подогреватель газа. То есть способ с использованием активированного угля, являющегося носителем для йода, реализуют в результате увеличения температуры для уменьшения относительной влажности, по существу после установления состояния, близкого к состоянию на стороне, расположенной по ходу технологического потока до аппарата для влажной десульфуризации дымовых газов.
Как упоминалось ранее, проблема обычного способа, по которому ртуть в дымовых газах абсорбируют абсорбционной жидкостью аппарата для влажной десульфуризации дымовых газов и удаляют, заключается в трудности стабильного сохранения высокой эффективности удаления ртути в течение продолжительного периода времени. Кроме того, окислитель, предназначенный для окисления ртути, расходуется на окисление газообразного SO2, или хелатообразователь, предназначенный для сбора ртути, вступает в реакцию с другим металлом, что приводит к большим потерям; в соответствии с этим, еще одна проблема заключается в неэффективном использовании добавленных окислителя или хелатообразователя, недостаточном окислении ртути и повторном высвобождении Hg0 из абсорбционной жидкости.
С другой стороны, в способе, в котором для адсорбирования и удаления ртути в дымовых газах диспергируют порошкообразный активированный уголь, как упоминалось ранее, становится большим добавляемое количество активированного угля вследствие низкой адсорбционной емкости по ртути у активированного угля; в соответствии с этим, проблема заключается в невыгодности затрат в случае включения затрат на последующую переработку. Кроме того, в случае высокой концентрации водяных паров или газообразного SO2 в дымовых газах адсорбционная емкость по ртути у активированного угля значительно уменьшается, и даже в случае использования активированного угля, являющегося носителем для соединения галогена, такого как соединение брома и тому подобное, достаточная адсорбционная емкость не может быть получена; в соответствии с этим, в случае использования в комбинации с аппаратом для влажной десульфуризации дымовых газов при переработке на стороне, расположенной по ходу технологического потока до него, значительное воздействие оказывает газообразный SO2, а при переработке на стороне, расположенной по ходу технологического потока после него, значительное воздействие оказывают водяные пары, то есть при проведения обработки на любой стороне от него имеет место дилемма, заключающаяся в невозможности предотвращения большого уменьшения адсорбционной емкости у активированного угля. В соответствии с этим, во многих случаях адсорбционную обработку с использованием активированного угля объединяют с сухой десульфуризацией дымовых газов. То есть обычно ее не предполагается объединять с влажной десульфуризацией дымовых газов, характеризующейся высокой эффективностью десульфуризации, в частности для использования на стороне, расположенной по ходу технологического потока после аппарата для влажной десульфуризации дымовых газов.
ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Настоящее изобретение сделали с учетом известного уровня техники, и его задача заключается в предложении катализатора на углеродной основе для десульфуризации дымовых газов, который может непрерывно сохранять стабильные эксплуатационные характеристики по десульфуризации в течение продолжительного периода времени и является высокоактивным и способным значительно уменьшать количество катализатора, необходимое для переработки дымовых газов, и способа получения такого катализатора на углеродной основе.
Кроме того, еще одна задача настоящего изобретения заключается в предложении адсорбента ртути для обработки дымовых газов, который может эффективно адсорбировать и удалять металлическую ртуть, остающуюся в дымовых газах, даже в случае переработки дымовых газов, характеризующихся высокой влажностью и содержащих водяные пары или водяную пыль, на стороне, расположенной по ходу технологического потока после аппарата для влажной десульфуризации дымовых газов, и способа переработки дымовых газов, в котором используют такой адсорбент ртути.
Для достижения данной цели настоящее изобретение предлагает катализатор на углеродной основе для десульфуризации дымовых газов, который вводят в контакт с дымовыми газами, содержащими, по меньшей мере, газообразный SO2, кислород и водяные пары, для того чтобы газообразный SO2 смог бы вступить в реакцию с кислородом и водяными парами с образованием серной кислоты, которую необходимо извлечь, где на поверхность катализатора на углеродной основе вводят йод, бром или их соединение в результате добавления, ионного обмена или нанесения на носитель, и для катализатора на углеродной основе проводят водоотталкивающую обработку.
Катализатор на углеродной основе предпочтительно представляет собой активированный уголь или волокно из активированного угля. Кроме того, соединением йода или брома предпочтительно является любое соединение, выбираемое из солей щелочных металлов, солей щелочноземельных металлов, солей переходных металлов, гидридов, оксокислот и органических соединений йода или брома.
Количество йода или его соединения, введенное на катализатор на углеродной основе в результате добавления, ионного обмена или нанесения на носитель, предпочтительно находится в диапазоне от 0,020% (масс.) и более до 60% (масс.) и менее при расчете на йод. Кроме того, количество брома или его соединения, введенное на катализатор на углеродной основе в результате добавления, ионного обмена или нанесения на носитель, предпочтительно находится в диапазоне от 0,010% (масс.) и более до 60% (масс.) и менее при расчете на бром.
Водоотталкивающую обработку предпочтительно проводят в результате обеспечения содержания в катализаторе на углеродной основе смолы, характеризующейся краевым углом смачивания по отношению к воде, равным 90° и более, или в результате нагревания катализатора на углеродной основе для удаления гидрофильных групп на его поверхности.
Что касается катализатора на углеродной основе для десульфуризации дымовых газов согласно настоящему изобретению, то на катализатор на углеродной основе вводят йод, бром или их соединение в результате добавления, ионного обмена или нанесения на носитель. В соответствии с этим, в случае введения катализатора в контакт с дымовыми газами, содержащими, по меньшей мере, SO2, кислород и водяные пары, на катализаторе на углеродной основе, например, для йода пройдут реакции, проиллюстрированные далее.
4I- + 4H+ + O2 → 2I2 + 2H2O(Формула 1)
I2 + SO3 2- + H2O → 2I- + H2SO4 (Формула 2)
Тем самым йод и тому подобное на катализаторе на углеродной основе действуют подобно промотору, улучшая эксплуатационные характеристики по десульфуризации. В дополнение к этому, вследствие проведения для катализатора на углеродной основе водоотталкивающей обработки серная кислота, образовавшаяся по формуле 2, непрерывно и плавно высвобождается с катализатора на углеродной основе; в соответствии с этим, эксплуатационные характеристики по десульфуризации могут непрерывно и стабильно сохраняться в течение продолжительного периода времени без регенерирующей разбрызгиваемой воды и тому подобного.
То есть в вышеупомянутой японской выложенной патентной заявке № 2005-288380 важным является формирование однородной водяной пленки на поверхности катализатора, и в данной связи относительную влажность в дымовых газах контролируемо выдерживают большей, чем 100%. С другой стороны, поскольку катализатор согласно настоящему изобретению подвергают водоотталкивающей обработке, однородная водяная пленка на поверхности катализатора не формируется, то есть на поверхности катализатора на углеродной основе образуется сухая область. Тем самым газообразный SO2 в дымовых газах без водяной пленки может быть непосредственно введен в контакт с катализатором на углеродной основе, тем самым промотируется прохождение реакции, и водный раствор образовавшейся серной кислоты может быть плавно объединен и естественным образом отделен от катализатора.
Кроме того, в сухой области на катализаторе на углеродной основе значительное развитие получает действие йода и брома; в соответствии с этим, могут быть получены высокие эксплуатационные характеристики по десульфуризации. В дополнение к этому, также и в диапазоне, в котором относительная влажность в дымовых газах не превышает 100%, могут быть получены эксплуатационные характеристики по десульфуризации, которые являются достаточно высокими и не ухудшаются с течением времени. В результате в то время как в японской выложенной патентной заявке № 2005-288380 вследствие накопления образовавшейся серной кислоты на катализаторе в случае ухудшения эксплуатационных характеристик по обработке по причине долговременного использования необходимо будет повторять регенерационную обработку, при которой серную кислоту удаляют в результате разбрызгивания воды, у катализатора согласно настоящему изобретению вследствие отсутствия такого ухудшения эксплуатационных характеристик отсутствует и потребность в регенерационной обработке.
На предшествующем уровне техники, описанном в японской выложенной патентной заявке № 2005-288380, водяные пары являются обязательными, и чем большей будет концентрация водяных паров, тем более высокими будут и эксплуатационные характеристики. В порядке сопоставления можно сказать то, что, как известно, в случае равенства относительной влажности 80% и менее эксплуатационные характеристики ухудшатся до такой степени, что практическая применимость утратится. В противоположность этому, в случае использования катализатора согласно изобретению в отличие от предшествующего уровня техники практичные эксплуатационные характеристики могут быть обеспечены при равенстве относительной влажности 30% и более, предпочтительно 60% и более; в соответствии с этим, операция увлажнения становится излишней или достаточной является простая операция охлаждения и увлажнения с разбрызгиванием воды и тому подобным, и, кроме того, стабильные и высокие эксплуатационные характеристики по десульфуризации могут быть получены без проведения регенерации с разбрызгиванием воды.
Кроме того, у катализатора на углеродной основе согласно изобретению вследствие проведения водоотталкивающей обработки в дополнение к введению йода и брома в результате добавления, ионного обмена или нанесения на носитель также и при долговременном использовании серная кислота на катализаторе на углеродной основе накапливается в меньшей степени, в соответствии с этим могут быть сохранены стабильные эксплуатационные характеристики по десульфуризации, а потребность в регенерационной обработке может быть исключена. Подобно этому катализатор на углеродной основе подвергают водоотталкивающей обработке; в соответствии с этим, даже в случае постоянного увлажнения катализатора технологической водой или водным раствором серной кислоты может быть сохранена сухая область, и тем самым могут быть получены стабильные эксплуатационные характеристики; в соответствии с этим, например, катализатор на углеродной основе также может быть использован и в случае постоянного разбрызгивания на нем технологической воды или водного раствора серной кислоты.
Кроме того, настоящее изобретение предлагает способ получения катализатора на углеродной основе для десульфуризации дымовых газов, по которому катализатор на углеродной основе вводят в контакт с дымовыми газами, содержащими, по меньшей мере, газообразный SO2, кислород и водяные пары, для обеспечения прохождения реакции между SO2 и кислородом и водяными парами до получения серной кислоты, и серную кислоту извлекают. В данном способе после закупоривания внутреннего пространства пор в результате увлажнения катализатора на углеродной основе на катализаторе на углеродной основе распыляют или разбрызгивают раствор, содержащий йод, бром или их соединение, или катализатор на углеродной основе погружают в раствор для введения йода, брома или их соединения на поверхность катализатора на углеродной основе в результате добавления, ионного обмена или нанесения на носитель.
В данном способе в качестве катализатора на углеродной основе предпочтительно используют активированный уголь или волокно из активированного угля. Кроме того, на катализатор на углеродной основе йод или его соединение вводят в результате добавления, ионного обмена или нанесения на носитель предпочтительно в количестве в диапазоне от 0,020% (масс.) и более до 60% (масс.) и менее при расчете на йод. В альтернативном варианте на катализатор на углеродной основе бром или его соединение вводят в результате добавления, ионного обмена или нанесения на носитель предпочтительно в количестве в диапазоне от 0,010% (масс.) и более до 60% (масс.) и менее при расчете на бром. Катализатор на углеродной основе предпочтительно подвергают водоотталкивающей обработке.
В данном способе в случае увлажнения катализатора на углеродной основе до закупоривания внутреннего пространства пор катализатор на углеродной основе и воду помещают в емкость и давление во внутреннем пространстве емкости уменьшают, выдерживают его таким в течение определенного периода времени и возвращают к атмосферному давлению для обеспечения внедрения воды во внутреннее пространство пор. В альтернативном варианте внутреннее пространство пор катализатора на углеродной основе может быть закупорено конденсированной водой при использовании подачи потока газовой смеси из водяных паров и воздуха на катализатор на углеродной основе для конденсации водяных паров.
Что касается катализатора на углеродной основе для десульфуризации дымовых газов, полученного в соответствии со способом получения согласно изобретению, то на поверхность катализатора на углеродной основе вводят йод, бром или их соединение в результате добавления, ионного обмена или нанесения на носитель. В соответствии с этим, в случае введения катализатора в контакт с дымовыми газами, содержащими газообразный SO2, кислород и водяные пары, как это проиллюстрировано в формулах 1 и 2, йод и тому подобное на катализаторе на углеродной основе будет действовать подобно промотору, делая возможным улучшение эксплуатационных характеристик по десульфуризации.
Теперь в случае простого введения йода и тому подобного на катализатор на углеродной основе в результате добавления, ионного обмена или нанесения на носитель йод и тому подобное в результате добавления, ионного обмена или нанесения на носитель будут введены во внутреннее пространство микропор катализатора на углеродной основе. Однако непосредственно после начала десульфуризации дымовых газов внутреннее пространство пор катализатора на углеродной основе заполняется серной кислотой и после этого не вносит своего вклада в реакции.
В данном случае в способе получения согласно изобретению йод и тому подобное вводят в результате добавления, ионного обмена или нанесения на носитель после предварительного увлажнения катализатора на углеродной основе для заполнения и закупоривания внутреннего пространства пор водой и тому подобным; в соответствии с этим, йод и тому подобное могут быть селективно введены в результате добавления, ионного обмена или нанесения на носитель по соседству с поверхностью катализатора на углеродной основе, где непрерывно протекает каталитическое сульфатирование; в соответствии с этим, добавка, такая как йод и тому подобное, могут быть использованы более эффективно.
В способе получения согласно настоящему изобретению в случае увлажнения катализатора на углеродной основе до закупоривания внутреннего пространства его пор воздуху внутри пор катализатора на углеродной основе будет трудно выйти наружу, и сам катализатор на углеродной основе в некоторой степени будет обладать водоотталкивающей способностью; в соответствии с этим, катализатор на углеродной основе должен быть принудительно погружен в жидкость или оставлен в ней на относительно продолжительный период времени. В соответствии с этим, например, предпочтительно могут быть использованы так называемое импрегнирование при пониженном давлении или добавление водяного пара.
Кроме того, также и в случае проведения для катализатора на углеродной основе водоотталкивающей обработки образовавшаяся серная кислота может быть высвобождена с катализатора на углеродной основе на ранней стадии. На данный момент стадия водоотталкивающей обработки для катализатора на углеродной основе может быть проведена в качестве предварительной обработки для стадии увлажнения внутреннего пространства пор катализатора на углеродной основе и стадии введения йода и тому подобного в результате добавления, ионного обмена и нанесения на носитель, в альтернативном варианте в качестве обработки, следующей за ними.
Однако в случае проведения стадии водоотталкивающей обработки с последующей стадией закупоривания внутреннего пространства пор катализатора на углеродной основе после проведения стадии введения йода или брома в результате добавления, ионного обмена или нанесения на носитель в зависимости от стадии водоотталкивающей обработки или стадии формования в результате перегревания йод будет испаряться или йод будет повторно растворяться и отделяться, демонстрируя меньшую эффективность. В соответствии с этим, при попытке нанесения достаточной величины йода на носитель водоотталкивающая способность станет недостаточной, что в результате приведет к опасности возникновения ухудшения эксплуатационных характеристик. В данной связи стадию закупоривания внутреннего пространства пор катализатора на углеродной основе с последующим проведением стадии введения йода или брома в результате добавления, ионного обмена или нанесения на носитель предпочитается проводить после проведения стадии водоотталкивающей обработки и стадии формования.
Однако при попытке проведения стадии закупоривания внутреннего пространства пор катализатора на углеродной основе после водоотталкивающей обработки катализатор на углеродной основе воду будет отталкивать. В соответствии с этим, в случае проведения водоотталкивающей обработки катализатора на углеродной основе в качестве предварительной обработки предпочтительно использовать, в частности, импрегнирование при пониженном давлении или добавление водяного пара.
Кроме того, с учетом наличия высокой водоотталкивающей способности у самого катализатора на углеродной основе даже в случае использования импрегнирования при пониженном давлении для достаточного закупоривания внутреннего пространства пор водой потребуется достаточно продолжительное время. В соответствии с этим, более предпочтительным является использование способа добавления водяного пара. На данный момент с точки зрения диспергирования газа способ подачи потока газовой смеси на катализатор на углеродной основе предпочтительно представляет собой способ с восходящим потоком.
Количество йода или его соединения, введенных на катализатор на углеродной основе в результате добавления, ионного обмена или нанесения на носитель, при расчете на йод ограничивается диапазоном от 0,020% (масс.) и более до 60% (масс.) и менее, а количество брома или его соединения, введенных на катализатор на углеродной основе в результате добавления, ионного обмена или нанесения на носитель, при расчете на бром ограничивается диапазоном от 0,010% (масс.) и более до 60% (масс.) и менее. Это обуславливается тем, что, как будет описываться далее, в случае отклонения количеств йода или брома от данных диапазонов в обоих случаях коэффициенты активности при десульфуризации ухудшатся.
Кроме того еще, настоящее изобретение предлагает адсорбент ртути для адсорбирования и удаления металлической ртути из дымовых газов, содержащих металлическую ртуть, SO2, кислород и водяные пары, где агент удаления ртути, в частности йод или бром или их соединение, наносят на поверхность носителя в виде материала на углеродной основе, а материал на углеродной основе подвергают водоотталкивающей обработке. У адсорбента ртути согласно настоящему изобретению в результате водоотталкивающей обработки подавляют уменьшение адсорбционной емкости по ртути вследствие действия водяных паров или водяной пыли, в результате нанесения на носитель йода, брома или их соединения адсорбционная емкость по ртути увеличивается, а в результате промотирования абсорбирования кислорода в дымовых газах область адсорбции ртути выдерживают в кислотной атмосфере, и в соответствии с данным всесторонним воздействием металлическая ртуть в дымовых газах эффективно адсорбируется и удаляется.
Материал на углеродной основе, использующийся в адсорбенте ртути согласно настоящему изобретению, предпочтительно получают из частиц активированного угля. Для увеличения площади поверхности активированный уголь предпочтительно имеет вид мелких частиц. Однако, как очевидно, с точки зрения увеличения потребления мощности на стадии измельчения в более мелкий порошок естественным образом существует предел. Кроме того, также существует недостаток, заключающийся в трудности обращения с избыточно мелкими частицами активированного угля. Данная проблема может быть устранена в результате измельчения активированного угля в порошок со средним диаметром частиц в диапазоне от 20 до 200 мкм и последующего вторичного формования с приданием предварительно определенной формы, такой как частица, гранула, лист, сотовая конструкция и тому подобное. В данном случае при неудовлетворении среднего диаметра частиц индивидуальных частиц активированного угля значению 20 мкм водяные пары и серная кислота будут удерживаться между частицами, нарушая газожидкостный контакт. С другой стороны, в случае превышения средним диаметром частиц значения 200 мкм площадь газожидкостного контакта уменьшится, не позволяя увеличить активность.
Соединением йода или брома, использующимся в адсорбенте ртути согласно