Система подвески для транспортного средства, содержащая электромагнитный привод

Иллюстрации

Показать все

Изобретение относится к системе подвески транспортного средства, включающей в себя электромагнитный привод. Система содержит электромагнитный привод, соединительный механизм, контроллер. Электромагнитный привод содержит узел подрессоренной стороны, узел неподрессоренной стороны, электромагнитный двигатель. Соединительный механизм содержит опорную пружину. Контроллер содержит часть определения целевой силы привода и выполнен с возможностью управления силой привода. Часть определения целевой силы привода определяет целевую силу привода на основе требуемой действующей силы и инерционной силы наряду с использованием первой передаточной функции и второй передаточной функции. Первая передаточная функция является функцией, согласно которой выдается величина смещения узла подрессоренной стороны и узла неподрессоренной стороны относительно подрессоренной части и неподрессоренной части, когда вводится сила привода. Вторая передаточная функция является функцией, согласно которой выдается фактическая действующая сила между подрессоренной частью и неподрессоренной частью, когда вводится величина смещения. Технический результат заключается в улучшении управляемости и устойчивости транспортного средства. 7 з.п. ф-лы, 7 ил.

Реферат

Область техники

Настоящее изобретение относится к системе подвески, включающей в себя электромагнитный привод.

Уровень техники

В последние годы была разработана в качестве системы подвески для транспортного средства так называемая система электромагнитной подвески, включающая в себя электромагнитный привод, выполненный с возможностью формирования относительно подрессоренной части и неподрессоренной части силы в направлении, в котором подрессоренная часть и неподрессоренная часть перемещаются к и от друг друга на основании силы электромагнитного двигателя. Например, в публикации JP 2007-203933 раскрыта такая система электромагнитной подвески. Раскрытая система подвески предполагается в качестве высокоэффективной системы подвески ввиду преимущества, что можно легко осуществлять характеристику демпфирования колебаний на основании так называемой теории верхней подвески, так как система подвески может вырабатывать толкающую силу по относительному перемещению подрессоренной части и неподрессоренной части.

Краткое описание изобретения

В системе подвески, раскрытой в вышеуказанной публикации JP 2007-203933, пружина расположена последовательно с электромагнитным приводом, например, с целью борьбы с высокочастотными колебаниями. Однако в сконструированной таким образом системе, когда привод вырабатывает силу привода, сформированная сила привода передается на подрессоренную часть и неподрессоренную часть через пружину. Соответственно, система подвески страдает от проблемы, что сила привода, которая вырабатывается, не может передаваться вследствие временного запаздывания, которое является результатом передачи силы привода через пружину, и тому подобное. Настоящее изобретение было сделано ввиду ситуации, описанной выше. Поэтому задачей изобретения является создание системы подвески, в которой сила, которая действует между подрессоренной частью и неподрессоренной частью благодаря приводу и соединительному механизму, делается надлежащей.

Для решения указанной выше задачи система подвески для транспортного средства согласно настоящему изобретению составлена включением в состав соединительного механизма для упругого соединения: одного из узла подрессоренной стороны и узла неподрессоренной стороны, которые являются составляющими элементами привода; и одной из подрессоренной части и неподрессоренной части, к которой присоединен один из узла подрессоренной стороны и узла неподрессоренной стороны, и настоящая система подвески отличается определением целевой силы привода на основе: (a) требуемой действующей силы, которая требуется для действия между подрессоренной частью и неподрессоренной частью благодаря приводу и соединительному механизму; и (b) инерционной силы одного из узла подрессоренной стороны и узла неподрессоренной стороны по отношению к смещению одной из подрессоренной части и неподрессоренной части наряду с использованием: первой передаточной функции, которая является передаточной функцией, согласно которой выдается величина смещения одного из узла подрессоренной стороны и узла неподрессоренной стороны относительно одной из подрессоренной части и неподрессоренной части, когда вводится сила привода; и второй передаточной функции, которая является передаточной функцией, согласно которой выдается фактическая действующая сила, которая является силой, которая фактически действует между подрессоренной частью и неподрессоренной частью, когда вводится величина смещения.

В системе подвески согласно изобретению сила, которая должна формироваться приводом, определяется с учетом зависимости между силой привода и силой, которая фактически действует между подрессоренной частью и неподрессоренной частью в результате передачи силы привода через соединительный механизм, и, кроме того, с учетом влияния смещения одной из подрессоренной части и неподрессоренной части, к которой присоединен один из узла подрессоренной стороны и узла неподрессоренной стороны соединительным механизмом. Соответственно, сила, которая действует между подрессоренной частью и неподрессоренной частью, может делаться надлежащей.

Варианты осуществления изобретения

Далее будут пояснены различные варианты изобретения, которые считаются способными быть предметом формулы изобретения (в дальнейшем указываемые ссылкой как «способное быть предметом притязания изобретение» там, где уместно). Каждый из вариантов изобретения пронумерован подобно прилагаемым пунктам формулы изобретения и зависит от другого варианта или вариантов там, где уместно. Это предназначено для более легкого понимания изобретения и должно быть понятно, что комбинации составляющих элементов, которые составляют изобретение, не ограничены описанными в последующих вариантах. То есть должно быть понятно, что способное быть предметом притязания изобретение должно интерпретироваться в свете последующих описаний различных вариантов и предпочтительных вариантов осуществления. Кроме того, должно быть понятно, что любой вариант, в котором один или более элементов добавляются в или удаляются из любого одного из следующих вариантов, может рассматриваться в качестве одного варианта, способного быть предметом притязания изобретения.

(1) Система подвески транспортного средства содержит:

электромагнитный привод, включающий в себя: узел подрессоренной стороны, присоединенный к подрессоренной части; узел неподрессоренной стороны, который присоединен к неподрессоренной части и который подвижен относительно узла подрессоренной стороны в соответствии с перемещением подрессоренной части и неподрессоренной части к и от друг друга; и электромагнитный двигатель, привод является сконфигурированным для вырабатывания на основании силы электромагнитного двигателя силы привода, которая является силой по относительному перемещению узла подрессоренной стороны и узла неподрессоренной стороны;

соединительный механизм, который включает в себя опорную пружину для предоставления одному из узла подрессоренной стороны и узла неподрессоренной стороны возможности упруго подпираться одной из подрессоренной части и неподрессоренной части, к которой присоединен упомянутый один из узла подрессоренной стороны и узла неподрессоренной стороны, соединительный механизм является сконфигурированным для соединения упомянутого одного из узла подрессоренной стороны и узла неподрессоренной стороны и упомянутой одной из подрессоренной части и неподрессоренной части; и

контроллер, который включает в себя часть определения целевой силы привода, сконфигурированную для определения согласно предписанному закону управления целевой силы привода, которая является силой привода, требуемой для формирования приводом, контроллер является сконфигурированным для управления силой привода, которая должна формироваться приводом, на основании целевой силы привода,

при этом часть определения целевой силы привода выполнена с возможностью определения целевой силы привода на основе: (a) требуемой действующей силы, которая является силой, требуемой для действия между подрессоренной частью и неподрессоренной частью благодаря приводу и соединительному механизму; и (b) инерционной силы упомянутого одного из узла подрессоренной стороны и узла неподрессоренной стороны по отношению к смещению упомянутой одной из подрессоренной части и неподрессоренной части наряду с использованием: первой передаточной функции, которая является передаточной функцией, согласно которой выдается величина смещения упомянутого одного из узла подрессоренной стороны и узла неподрессоренной стороны относительно упомянутой одной из подрессоренной части и неподрессоренной части, когда вводится сила привода; и второй передаточной функции, которая является передаточной функцией, согласно которой выдается фактическая действующая сила, которая является силой, которая фактически действует между подрессоренной частью и неподрессоренной частью, когда вводится величина смещения.

В качестве системы подвески, имеющей электромагнитный привод, была предложена система, в которой пружина расположена последовательно с приводом с целью борьбы с высокочастотными колебаниями, производимыми, когда транспортное средство, например, наталкивается на неровную поверхность дороги или поверхность дороги с непрерывной неровностью. Система согласно вышеприведенному варианту (1) относится к такой системе. В тех случаях, когда система подвески сконструирована таким образом, сила привода, сформированная приводом, передается на подрессоренную часть и неподрессоренную часть через опорную пружину. Соответственно, сила привода, которая вырабатывается, не может передаваться, вызывая разность между силой привода и фактической действующей силой, которая фактически действует на подрессоренную часть и неподрессоренную часть. Более точно, обеспечивается разность между значением силы привода и значением фактической действующей силы, например, обусловленная временным запаздыванием, которое является результатом передачи силы привода через опорную пружину. Такая разность между силой привода и фактической действующей силой вызывает проблему, что, например, колебания, возникающие в транспортном средстве, не могут демпфироваться надлежащим образом.

Согласно варианту (1) определение целевой силы привода основано на требуемой действующей силе и использует первую передаточную функцию и вторую передаточную функцию, в силу чего целевая сила привода может определяться с учетом характеристики передачи силы привода относительно передачи силы привода на подрессоренную часть и неподрессоренную часть через соединительный механизм. Соответственно, сила, которая действует между подрессоренной частью и неподрессоренной частью, может делаться надлежащей. То есть сила привода, такая как демпфирующая сила, может делаться надлежащей.

В тех случаях, когда используются «первая передаточная функция» и «вторая передаточная функция», описанные в варианте (1), может быть получена зависимость между силой привода и фактической действующей силой. Вкратце, в тех случаях, когда учитывается зависимость между силой привода и фактической действующей силой, сила привода, которая должна вырабатываться приводом, может определяться из условия, чтобы фактическая действующая сила становилась равной требуемой действующей силе. Однако первая передаточная функция и вторая передаточная функция устанавливаются с учетом только перемещения одного из узла подрессоренной стороны и узла неподрессоренной стороны относительно одной из подрессоренной части и неподрессоренной части. Фактически одна из подрессоренной части и неподрессоренной части смещена в любой момент времени. Соответственно, желательно учитывать влияние смещения одной из подрессоренной части и неподрессоренной части. Ввиду этого в варианте (1) целевая сила привода определяется на основании требуемой действующей силы наряду с использованием вышеуказанных первой передаточной функции и второй передаточной функции, а кроме того, на основании инерционной силы одного из узла подрессоренной стороны и узла неподрессоренной стороны по отношению к смещению одной из подрессоренной части и неподрессоренной части. Согласно варианту (1) поэтому сила, которая действует между подрессоренной частью и неподрессоренной частью, может делаться надлежащей, учитывая влияние смещения одной из неподрессоренной части и подрессоренной части, гарантируя эффективное демпфирование колебаний. Соответственно, можно предотвращать ухудшение комфорта во время движения транспортного средства, управляемости и устойчивости транспортного средства и так далее, являющееся результатом последовательной компоновки соединительного механизма по отношению к приводу.

Каждая из первой передаточной функции и второй передаточной функции может быть определена в качестве отношения преобразования Лапласа выходного сигнала к преобразованию Лапласа входного сигнала или отношения z-преобразования выходного сигнала к z-преобразованию входного сигнала (z-преобразование может быть пояснено в качестве преобразования Лапласа на дискретной группе). Что касается «части определения целевой силы привода», описанной в варианте (1), ее часть для выполнения расчета двух передаточных функций особо не ограничена по конструкции, но может быть создана включением в состав вычислительного узла, такого как схема для расчета выходного значения по входному значению. В качестве альтернативы, часть определения целевой силы привода может быть создана включением в состав части для выполнения обработки согласно программе, которая хранится в компьютере общего применения, также используемого для другого управления и который предназначен для расчета выходного значения по входному значению.

В тех случаях, когда один из узла подрессоренной стороны и узла неподрессоренной стороны считается смещаемым в соответствии со смещением одной из подрессоренной части и неподрессоренной части, «инерционная сила», описанная в варианте (1), может рассматриваться в качестве силы, имеющей модуль в соответствии с ускорением одной из подрессоренной части и неподрессоренной части в вертикальном направлении. Отмечено, что инерционная сила не означает инерционную силу, имеющую модуль только в соответствии с фактической массой одного из узла подрессоренной стороны и узла неподрессоренной стороны. Инерционная сила может быть определена, как изложено ниже. В тех случаях, когда привод включает в себя винтовой механизм для преобразования относительно друг друга вращательного движения поворотного двигателя и относительного перемещения узла подрессоренной стороны и узла неподрессоренной стороны, момент инерции двух узлов может быть преобразован в инерциальную массу, а сила, имеющая модуль, который соответствует инерциальной массе, может рассматриваться в качестве инерционной силы. То есть в варианте (1) инерциальная масса может определяться с использованием так называемой эквивалентной инерциальной массы.

«Привод» в варианте (1) не является особо ограниченным по своей конструкции. Могут применяться различные электромагнитные приводы, известные в данной области техники. Сила, вырабатываемая приводом, является силой по относительному перемещению узла подрессоренной стороны и узла неподрессоренной стороны. Сила включает в себя не только силы сопротивления против относительного перемещения, но также и силу, посредством которой узел подрессоренной стороны и узел неподрессоренной стороны положительно перемещаются относительно друг друга, а именно толкающей силы, и силу, посредством которой относительное перемещение двух узлов предохраняется от внешней силы, подаваемой в него, а именно удерживающей силы. Тип «электромагнитного двигателя» привода может не быть ограниченным особым образом, но может надлежащим образом выбираться из числа различных типов, включающих в себя бесщеточный электродвигатель постоянного тока. Исходя из способа движения двигателя двигатель может быть поворотным двигателем или линейным двигателем.

«Закон управления» для определения целевой силы привода, например, включает в себя правило, относящееся к управлению демпфированием колебаний. Чтобы быть более точным, закон управления включает в себя правило для выполнения управления на основании так называемой теории амортизаторов верхней подвески для вырабатывания демпфирующей силы по отношению к колебаниям подрессоренной части (то есть подрессоренных колебаний). Правило может быть предназначено для одновременного выполнения в дополнение к управлению демпфированием колебаний, управления сдерживанием крена для сдерживания крена кузова транспортного средства, являющегося результатом поворачивания транспортного средства, управления сдерживанием продольного раскачивания для сдерживания продольного раскачивания кузова транспортного средства, являющегося результатом ускорения и замедления транспортного средства, и управления для регулировки расстояния между подрессоренной частью и неподрессоренной частью, а именно управления регулировкой высоты. В тех случаях, когда закон управления предназначен для одновременного выполнения множества управляющих воздействий, сумма составляющих силы привода в соответствующих управляющих воздействиях приведена в качестве требуемой действующей силы, и целевая сила привода может определяться на основании требуемой действующей силы, двух передаточных функций и инерционной силы.

«Соединительный механизм» в варианте (1) главным образом может быть предусмотрен, например, для борьбы с колебаниями, чья частота относительно высока. Несмотря на то, что соединительный механизм может включать в себя опорную пружину в качестве основного составляющего элемента, соединительный механизм может также включать в себя гидравлический амортизатор, который будет пояснен подробно, для демпфирования колебаний, производимых благодаря установке опорной пружины. Опорная пружина может иметь любую конструкцию. В тех случаях, когда соединительный механизм включает в себя гидравлический амортизатор, как пояснено ниже, может применяться винтовая пружина. В этом случае амортизатор в качестве цилиндрического устройства расположен, чтобы быть вставленным через винтовую пружину или размещенным в винтовой пружине, в силу чего может быть реализована система подвески, которая компактна по размеру.

Термин «соединять», используемый в настоящем описании изобретения, означает не только непосредственное соединение, но также и опосредованное соединение, при котором элементы присоединены друг к другу опосредованно некоторым компонентом, деталью, узлом или тому подобным, вставленным между ними. Например, в тех случаях, когда узел подрессоренной стороны и узел неподрессоренной стороны присоединены к подрессоренной части и неподрессоренной части соответственно, чьи узлы могут быть непосредственно присоединены к подрессоренной части и неподрессоренной части или опосредованно к подрессоренной части и неподрессоренной части через пружину, гидравлический амортизатор или тому подобное, вставленные между ними.

(2) Система подвески согласно варианту (1), в которой сложная передаточная функция установлена в качестве обратной функции от функции, которая является произведением первой передаточной функции и второй передаточной функции,

при этом часть определения целевой силы привода выполнена с возможностью определения целевой силы привода на основе выходного значения, полученного вводом требуемой действующей силы в сложную передаточную функцию, и инерционной силы.

(3) Система подвески согласно варианту (2), в которой часть определения целевой силы привода выполнена с возможностью определения целевой силы привода согласно зависимости между выходным значением, полученным вводом требуемой действующей силы в сложную передаточную функцию, и инерционной силой, зависимость указывает, что разность между выходным значением и целевой силой привода соответствует инерционной силе.

В вышеприведенных двух вариантах (2) и (3) воплощена технология расчета целевой силы привода. «Сложная передаточная функция», описанная в вышеприведенных двух вариантах, является передаточной функцией, согласно которой выдается значение силы привода, когда фактическая действующая сила вводится в нее. То есть посредством подачи требуемой действующей силы в сложную передаточную функцию выдается сила привода, которая должна формироваться приводом. Однако так как выходное значение, указывающее силу привода, выдаваемую из сложной передаточной функции, не учитывает смещение одной из подрессоренной части и неподрессоренной части, как описано выше, выходное значение, которое выдается из сложной передаточной функции, может корректироваться на основании инерционной силы. Более точно, как в последнем варианте (3), инерционная сила может прибавляться к или вычитаться из выходного значения сложной функции, принимая во внимание направление, в котором работает инерционная сила, в силу чего определяется целевая сила привода.

(4) Система подвески согласно любому одному из вариантов (1)-(3), в которой соединительный механизм выполнен с возможностью соединения узла неподрессоренной стороны в качестве упомянутого одного из узла подрессоренной стороны и узла неподрессоренной стороны и неподрессоренной части в качестве упомянутой одной из подрессоренной части и неподрессоренной части и сконфигурирован из условия, чтобы опорная пружина давала узлу неподрессоренной стороны возможность упруго подпираться неподрессоренной частью,

при этом часть определения целевой силы привода выполнена с возможностью определения целевой силы привода на основе требуемой действующей силы и инерционной силы узла неподрессоренной стороны по отношению к смещению неподрессоренной части наряду с использованием первой передаточной функции, согласно которой выдается величина смещения узла неподрессоренной части относительно неподрессоренной части, когда вводится сила привода, и второй передаточной функции, согласно которой выдается фактическая действующая сила, которая является силой, которая фактически действует между подрессоренной частью и неподрессоренной частью, когда вводится величина смещения.

Согласно вышеприведенному варианту (4) соединительный механизм расположен между неподрессоренной частью и узлом неподрессоренной стороны привода, в силу чего сотрясение, подаваемое с колеса и передаваемое на привод, смягчается и преодолеваются высокочастотные колебания, такие как резонанс неподрессоренных масс. Согласно варианту (4) поэтому сотрясение, передаваемое на электромагнитный двигатель, и высокочастотные колебания могут эффективно подавляться, так что реализуется система подвески с высокой надежностью.

В случае, когда колесо, например, проходит по выступам и впадинам поверхности дороги, неподрессоренная часть перемещается энергично, так что энергично перемещается узел неподрессоренной стороны. Соответственно, считается, что часто возникает ситуация, в которой инерционная сила узла неподрессоренной стороны становится относительно большой. В варианте (4) целевая сила привода определяется с учетом инерционной силы узла неподрессоренной стороны по отношению к смещению неподрессоренной части, так что сила привода может делаться более подходящей.

(5) Система подвески согласно любому одному из вариантов (1)-(4), в которой соединительный механизм включает в себя амортизатор, расположенный параллельно с опорной пружиной и выполненный с возможностью выработки демпфирующей силы по отношению к относительному перемещению упомянутого одного из узла подрессоренной стороны и узла неподрессоренной стороны и упомянутой одной из подрессоренной части и неподрессоренной части.

(6) Система подвески согласно варианту (5), в которой первая передаточная функция и вторая передаточная функция установлены на основании коэффициента демпфирования амортизатора.

В вышеприведенных двух вариантах (5) и (6) применяется соединительный механизм, в котором гидравлический амортизатор расположен параллельно опорной пружине. «Амортизатор» может быть предусмотрен для содействия опорной пружине, а именно для демпфирования колебаний, имеющих относительно высокую частоту. Согласно вышеприведенным двум вариантам поэтому можно эффективно демпфировать высокочастотные колебания, такие как резонанс неподрессоренных масс. Наряду с тем, что конструкция амортизатора особо не ограничена, амортизатор может иметь конструкцию в качестве цилиндрического устройства, имеющего корпус, поршень и т.д. В тех случаях, когда соединительный механизм включает в себя амортизатор, первая передаточная функция и вторая передаточная функция устанавливаются с использованием коэффициента демпфирования амортизатора, как описано в последнем варианте (6).

(7) Система подвески согласно варианту (6), в которой амортизатор выполнен таким образом, чтобы его коэффициент демпфирования делался разным в зависимости от направления относительного перемещения упомянутого одного из узла подрессоренной стороны и узла неподрессоренной стороны и упомянутой одной из подрессоренной части и неподрессоренной части,

при этом часть определения целевой силы привода выполнена с возможностью изменения первой передаточной функции и второй передаточной функции, которые должны использоваться в зависимости от направления относительного перемещения.

В «амортизаторе» согласно вышеприведенному варианту (7) его коэффициент демпфирования в пределах хода, в котором один из узла подрессоренной стороны и узла неподрессоренной стороны и одна из подрессоренной части и неподрессоренной части перемещаются друг к другу, сделан отличным от коэффициента демпфирования в пределах хода, в котором один из узла подрессоренной стороны и узла неподрессоренной стороны и одна из подрессоренной части и неподрессоренной части перемещаются друг от друга. Например, коэффициент демпфирования может делаться меньшим в пределах хода перемещения друг к другу, чем коэффициент демпфирования в пределах хода перемещения друг от друга, с целью эффективного ослабления толчкового сотрясения, которое возникает, например, когда колесо проходит по выступам и впадинам поверхности дороги. В тех случаях, когда соединительный механизм имеет амортизатор, первая передаточная функция и вторая передаточная функция устанавливаются с использованием коэффициента демпфирования амортизатора. Соответственно, вариант (7) может быть выполнен с возможностью из условия, чтобы первая передаточная функция и вторая передаточная функция изменялись между теми, которые установлены с использованием коэффициента демпфирования в пределах хода перемещения друг к другу, и теми, которые установлены с использованием коэффициента демпфирования в пределах хода перемещения друг от друга. Согласно варианту (7) оценивается направление относительного перемещения одного из узла подрессоренной стороны и узла неподрессоренной стороны и одной из подрессоренной части и неподрессоренной части, и целевая сила привода определяется в зависимости от направления, в силу чего модуль силы, которая действует между подрессоренной частью и неподрессоренной частью, может делаться более подходящим.

(8) Система подвески согласно варианту (7), дополнительно содержащая датчик величины перемещения для определения величины перемещения подрессоренной части и неподрессоренной части к и от друг друга и датчик величины действия двигателя для определения величины действия электромагнитного двигателя,

при этом часть определения целевой силы привода выполнена с возможностью оценки направления относительного перемещения упомянутого одного из узла подрессоренной стороны и узла неподрессоренной стороны и упомянутой одной из подрессоренной части и неподрессоренной части на основе значения, определенного датчиком величины перемещения, и значения, определенного датчиком величины действия двигателя.

В вышеприведенном варианте (8) воплощена технология оценки направления относительного перемещения одного из узла подрессоренной стороны и узла неподрессоренной стороны и одной из подрессоренной части и неподрессоренной части. Привод сконструирован из условия, чтобы относительное перемещение узла подрессоренной стороны и узла неподрессоренной стороны и работа двигателя были взаимосвязаны. Соответственно, величина относительного перемещения узла подрессоренной стороны и узла неподрессоренной стороны (в дальнейшем указываемая ссылкой как «величина относительного перемещения узлов», где уместно) может оцениваться по определенному значению датчика величины действия двигателя. Поэтому направление вытягивания и сжатия амортизатора может оцениваться по изменению разности между величиной перемещения подрессоренной части и неподрессоренной части к и от друг друга, определенной датчиком величины перемещения, и величиной относительного перемещения узлов, оцененной по определенному значению датчика величины действия двигателя. Так как датчик величины перемещения и датчик величины действия двигателя являются требуемыми при обычном управлении приводом и тому подобном, выполняемом системой подвески, вариант (8) устраняет установку дополнительных датчиков, предохраняя систему от усложнения.

Краткое описание чертежей

Фиг.1 - схематичный вид, иллюстрирующий общую структуру системы подвески для транспортного средства согласно одному из вариантов осуществления изобретения.

Фиг.2 - увеличенный вид в разрезе, иллюстрирующий сборку пружины-поглотителя, показанную на фиг.1.

Фиг.3 - смоделированный вид сборки пружины-поглотителя по фиг.2.

Фиг.4 - смоделированный вид сборки пружины-поглотителя по фиг.2 в случае, когда учитывается смещение неподрессоренной части.

Фиг.5 - блок-схема последовательности операций способа, показывающая программу управления приводом, выполняемую электронным блоком управления подвески, показанным на фиг.1.

Фиг.6 - структурная схема, показывающая функции контроллера системы подвески по фиг.1.

Фиг.7(a) - структурная схема части определения целевой силы привода в варианте осуществления, способного быть предметом притязания изобретения, и фиг.7(b) - структурная схема части определения целевой силы привода в модифицированном варианте осуществления.

Подробное описание вариантов осуществления изобретения

Один из вариантов осуществления способного быть предметом притязания изобретения и его модифицированный вариант осуществления будут подробно пояснены со ссылкой на чертежи. Однако должно быть понятно, что способное быть предметом притязания изобретение не ограничено последующими вариантами осуществления, но может быть воплощено с различными изменениями и модификациями, такими как описанные в разделе описания варианты осуществления изобретения, которые могут приходить на ум специалистам в данной области техники. Кроме того, должно быть понятно, что модифицированный вариант осуществления последующего варианта осуществления предоставлен посредством использования технических вопросов, описанных в пояснении каждого из вариантов в вариантах изобретения.

1. Конструкция системы подвески

Фиг.1 схематично показывает систему 10 подвески для транспортного средства согласно варианту осуществления, способного быть предметом притязания изобретения. Система 10 подвески включает в себя четыре независимых устройства подвески, которые соответственно соответствуют четырем колесам 12, а именно переднему левому колесу, переднему правому колесу, заднему левому колесу и заднему правому колесу. Каждое из устройств подвески включает в себя сборку 20 пружины-поглотителя, в которой объединены подвесная рессора и амортизатор. Четыре колеса 12 и четыре сборки 20 пружины-поглотителя совместно указываются ссылкой как колесо 12 и сборка 20 пружины-поглотителя соответственно. Там где необходимо проводить отличие четырех колес 12 друг от друга и проводить отличие четырех сборок 20 пружины-поглотителя друг от друга, присоединены индексы «FL», «FR», «RL» и «RR» соответственно, указывающие переднее левое колесо, переднее правое колесо, заднее левое колесо и заднее правое колесо.

Как показано на фиг.2, сборка 20 пружины-поглотителя расположена между нижним рычагом 22 подвески, удерживающим колесо 12 и частично составляющим неподрессоренную часть, и установочной частью 24, расположенной на кузове транспортного средства и частично составляющей подрессоренную часть, с тем чтобы соединять нижний рычаг 22 подвески и установочную часть 24. Сборка 20 пружины-поглотителя, в целом, сегментирована на электромагнитный привод 30, соединительный механизм 32 для соединения привода 30 и нижнего рычага 22 и пневматической рессоры 34 в качестве подвесной рессоры. Сборка 20 пружины-поглотителя включает в себя в качестве своих составляющих элементов привод 30, соединительный механизм 32 и пневматическую рессору 34, которые объединены.

Привод 30 включает в себя шариковый винтовой механизм, электромагнитный двигатель 46 роторного типа (в дальнейшем указанный ссылкой просто как «двигатель 46», где уместно) и корпус 48, который вмещает двигатель 46. Шариковый винтовой механизм включает в себя резьбовой стержень 42 в качестве части с наружной резьбой, в котором сформирована канавка, муфту 44 в качестве части с внутренней резьбой, которая удерживает шарики подшипника и которая свинчена с резьбовым стержнем 42. Корпус 48 с возможностью вращения удерживает резьбовой стержень и присоединен на своей круговой части к установочной части 24. Двигатель 46 имеет полый вал 50 двигателя. Резьбовой стержень 42, проходящий через вал 50 двигателя, прикреплен к верхней торцевой части вала 60 двигателя. То есть двигатель 46 выполнен с возможностью выдачи поворачивающей силы на резьбовой стержень 42.

Привод 30 включает в себя наружную трубу 60, прикрепленную на своем верхнем торце к корпусу 48, с резьбовым стержнем 42, вставленным через нее, и уступчатую внутреннюю трубу 62, помещенную в наружную трубу 60 и выступающую вниз из нижней торцевой части наружной трубы 60. Внутренняя труба 62 имеет верхнюю торцевую часть большого диаметра, в которой удерживается муфта 44, из условия, чтобы муфта 44 свинчивалась с резьбовым стержнем 42. Наружная труба 60 сформирована на своей внутренней поверхности стенки с парой направляющих канавок 64, которые проходят в направлении, в котором проходит ось привода 30 (в дальнейшем указываемом ссылкой как «направление оси», где уместно). В пару направляющих канавок 64 установлена пара шпонок 66, предусмотренных в верхней торцевой части внутренней трубы 62. Благодаря направляющим канавкам 64 и шпонкам 66, помещенным в них, наружная труба 60 и внутренняя труба 62 могут быть относительно подвижными в осевом направлении будучи не поворачиваемыми по отношению друг к другу. Внутренняя труба 62 присоединена в своей нижней торцевой части к соединительному механизму 32.

Соединительный механизм 32 имеет гидравлический амортизатор 70. Несмотря на то, что конструкция амортизатора 70 подробно не описана, амортизатор 70 имеет конструкцию, подобную таковой у гидравлического амортизатора двухтрубного типа. Амортизатор 70 включает в себя корпус 72, в который вмещена рабочая текучая среда, поршень 74, непроницаемым для текучей среды и допускающим скольжение образом вмещенный во внутренней части корпуса 72, и шток 76 поршня, присоединенный на своем нижнем конце к поршню 74 и проходящий вверх от верхней торцевой части корпуса 72. Корпус 72 присоединен к нижнему рычагу 22 через втулку 78, предусмотренную на нижнем торце корпуса 72. Шток 76 поршня присоединен в своей верхней концевой части, которая проходит вверх от верхней торцевой части корпуса 72, к нижней торцевой части внутренней трубы 62. Согласно конструкции внутренняя труба 62 присоединена к нижнему рычагу 22 через амортизатор 70.

Кольцевая нижняя тарелка 90 прикреплена к наружной круговой части корпуса 72 амортизатора 70. Защитная труба 92, которая вмещает внутреннюю трубу 62, нижнюю торцевую часть наружной трубы 60 и верхнюю часть амортизатора 70, прикреплена в своей нижней торцевой части к нижней тарелке 90. Плавающий элемент 94 прикреплен к части соединения внутренней трубы 62 и штока 76 поршня. Плавающий элемент 94 удерживается посредством и между винтовой пружиной 96 сжатия, расположенной между плавающим элементом 94 и нижней тарелкой, и винтовой пружиной 100 сжатия, расположенной между плавающим элементом 94 и кольцевой выступающей частью 98, функционирующей в качестве верхней тарелки и сформированной внутри защитной трубы 92.

Пневматическая рессора 34 включает в себя гильзу 120 камеры, прикрепленную к установочной части 24, защитную трубу 92, функционирующую в качестве воздушного поршневого цилиндра, и диафрагму 124, соединяющую гильзу 120 камеры и защитную трубу 92. Гильза 120 камеры присоединена в своей колпачковой части 126 к корпусу 48 привода 30 через пружинную опору 128, кото