Способ восстановления подземных сред и способы очистки песочного сетчатого фильтра и гравийной набивки

Иллюстрации

Показать все

Группа изобретений относится к способам обработки подземной среды, в частности к восстановительно-ремонтной обработке подземной среды с использованием импульсного давления и уплотняющих агентов. Способы восстановления подземной среды включают введение очищающей жидкости через буровую скважину в область подземной формации, применение импульсного давления к очищающей жидкости и введение уплотняющего агента через буровую скважину в область подземной формации. Способы очистки регулирующих песок сетчатых фильтров включают введение очищающей жидкости через сетчатый фильтр в область подземной формации, причем регулирующий песок сетчатый фильтр расположен в буровой скважине, применение импульсного давления к очищающей жидкости и введение уплотняющего агента через сетчатый фильтр в область подземной формации. Уплотняющий агент содержит, по меньшей мере, один элемент, выбранный из группы, состоящей из неводного и водного придающих клейкость агентов, смолы, гелеобразующей композиции и их комбинаций. Техническим результатом является предотвращение разрушения формации. 3 н. и 21 з.п. ф-лы, 6 ил.

Реферат

Предшествующий уровень техники

Настоящее изобретение относится к способам обработки подземной среды. В частности, настоящее изобретение относится к восстановительно-ремонтной обработке подземной среды с использованием импульсного давления и уплотняющих агентов.

Операции гравийной набивки в основном выполняются в подземных формациях для контроля частиц, которые не уплотняются. Типичная операция гравийной набивки включает размещение фильтрующего слоя, содержащего частицы гравия вблизи скважины в интересующей зоне. Фильтрующий слой действует как сортирующий физический барьер по отношению к неуплотняющимся частицам, перемещающимся к скважине и производимым совместно с получаемыми жидкостями. Один простой тип операции гравийной набивки включает помещение сетчатого фильтра в скважину и уплотнение кольцевого пространства между сетчатым фильтром и скважиной, спроектированной по специально подобранным размерам, частицами гравия для предотвращения прохождения песка. Песочным сетчатым фильтром обычно является фильтрующее устройство, используемое для удержания гравия, помещаемого во время проведения операции набивки. Кроме того, использование песочных сетчатых фильтров и операций гравийной набивки может включать использование широкого спектра разнообразного регулирующего песок оборудования, включая хвостовики (например, щелевые хвостовики, перфорированные хвостовики и т.д.), сочетания футеровок и сетчатых фильтров и другое подходящее устройство. Используются конфигурации с широким диапазоном в размерах и сетчатые фильтры, имеющиеся в распоряжении и подходящие по характеристикам частиц гравия. Аналогично, частицы гравия с широким диапазоном в размерах могут подойти по характеристикам для неуплотняющихся частиц. Полученная в результате структура используется в качестве барьера для перемещающегося песка из подземной формации до обеспечения протекания жидкости.

После операции гравийной набивки возникает проблема перемещения мелких частиц, которые забивают гравийную набивку и песочный сетчатый фильтр, что препятствует протеканию жидкости и приводит к образованию перепадов уровней. Используемый термин "мелкие частицы" означает свободные частицы, такие как мелкозернистые образования, песчаные образования, глинистые частицы, мелкие частицы каменного угля, частицы смолы, раздробленный расклинивающий агент или частицы гравия и тому подобное. Эти перемещающиеся мелкие частицы могут также препятствовать прохождению жидкости в скважину, уплотненную гравием. В частности, на месте мелкие частицы, мобилизованные в процессе производства или введения жидкостей, могут расположиться сами собой в сетчатых фильтрах и гравийных набивках, препятствуя или уменьшая поток проходящей жидкости. Подобные проблемы также могут возникнуть из-за образования отложений на песочных сетчатых фильтрах и гравийных набивках и осаждений, например твердообразных солей (например, неорганических солей, таких как сульфаты кальция и бария, карбонат кальция, образование отложений кальция/бария) на песочных сетчатых фильтрах и гравийных набивках.

Стимулирующие средства, такие как подкисление матрицы, разработанные для восстановления скважины, помогают решить эти проблемы. В подкисленной матрице тысячи галлонов кислоты инжектируются в скважину для растворения осаждений, мелких частиц или образовавшихся отложений на внутренней стороне трубопроводов, дренажных труб в отверстиях сетчатых фильтров, в пористых местах гравийной упаковки или матрицы проектной поверхности земляной выемки. В большинстве случаев для предотвращения коррозии в трубопроводах используется ингибитор коррозии. Также кислота должна быть удалена из скважины. Скважина неоднократно также должна быть промыта до подачи и после подачи растворов кислоты. Кроме того, сложности при определении правильной химической композиции для этих жидкостей и перекачки их с помощью насосно-трубопроводной системы вниз в скважину, оценка окружающей среды подкисленной матрицы может привести к протеканию нежелательных процессов. Вдобавок обработка матрицы кислотой в большинстве случаев обеспечивает только временное решение этих проблем. Сетчатые фильтры, предохраняющие футеровки и гравийные упаковки, могут также быть промыты раствором рассола для удаления твердых частиц. Несмотря на то что обработка рассолом является недорогой с экономической точки зрения и относительно простой по выполнению для завершения этапа обработки, эта обработка предлагается как временный вариант и обеспечивает отсрочку засорения мелкими частицами. Более того, частое промывание может разрушить подземную формацию и в дальнейшем уменьшить производство.

Применение импульсного давления является другим способом, который использовался для решения этой проблемы. Словосочетание "импульсное давление", используемое в данном описании, имеет отношение к применению периодических увеличений или "импульсов" в давлении вводимой в проектную поверхность земляной выемки жидкости, причем таким образом, чтобы осторожно варьировать давление жидкости, прилагаемое к подземной формации. Обнаружено, что импульсное давление является эффективным при очистке потока текущей жидкости и скважин. Приложение импульсного давления к жидкости может быть осуществлено на поверхности или в буровой скважине. Пульсация может иметь место при использовании любой подходящей методики, включающей возрастание или понижение уровня расположения взаимосвязанной системы локализованных внутри буровой скважины труб или за счет применяемых устройств, таких как жидкостные осцилляторы, работа которых основывается на эффектах осциллирования жидкости для создания импульсного давления. В некоторых вариантах осуществления, импульсное давление может быть создано за счет жидкости, протекающей через импульсное устройство, такое как жидкостной осциллятор. Например, жидкость может протекать через подходящее импульсное устройство, которое присоединено к концу гибких труб таким образом, чтобы создать желаемое импульсное давление в жидкости. В большинстве случаев жидкость может подаваться в импульсное устройство при постоянной скорости и давлении, причем таким образом, чтобы импульсное давление прилагалось к жидкости при ее протекании через импульсное устройство.

Сущность изобретения

Согласно изобретению создан способ восстановления подземных сред, содержащий следующие этапы:

введение очищающей жидкости через ствол скважины в область подземной формации, через которую проходит ствол скважины;

приложение импульсного давления к очищающей жидкости;

введение через ствол скважины в область подземной формации уплотняющего агента, содержащего, по меньшей мере, один элемент, выбранный из группы, состоящей из неводного придающего клейкость агента, выбранного из группы, состоящей из полиамида, продукта реакции конденсации поликислоты и полиамида, полиэфира, поликарбоната, поликарбамата, природной смолы и их комбинаций, водного придающего клейкость агента, выбранного из группы, состоящей из полимеров акриловой кислоты, полимеров сложных эфиров акриловой кислоты, производных полимеров акриловой кислоты, гомополимеров акриловой кислоты, гомополимеров сложных эфиров акриловой кислоты, сополимеров сложных эфиров акриловой кислоты, производных полимеров метакриловой кислоты, гомополимеров метакриловой кислоты, гомополимеров сложных эфиров метакриловой кислоты, акриламидо-метил-пропан сульфонатных полимеров, акриламидо-метил-пропан сульфонатных производных полимеров, акриламидо-метил-пропан сульфонатных сополимеров и акриловой кислоты/акриламидо-метил-пропан сульфонатных сополимеров и их комбинаций, смолы, выбранной из группы, состоящей из двухкомпонентной смолы на эпоксидной основе, новолачной смолы, полиэпоксидной смолы, фенол-альдегидной смолы, мочевинно-альдегидной смолы, уретановой смолы, фенольной смолы, фурановой смолы, фуран/фурфуроловой спиртовой смолы, фенольной/латексной смолы, фенол формальдегидной смолы, полиэфирной смолы, гибрида полиэфирной смолы, сополимеров полиэфирной смолы, полиуретановой смолы, гибридов полиуретановой смолы, сополимеров полиуретановой смолы, акрилатной смолы и комбинаций указанных смол, и гелеобразующей композиции, выбранной из группы, состоящей из гелеобразующей композиции смолы, водной силикатной гелеобразующей композиции, водной композиции сшиваемого полимера и полимеризуемой органической мономерной композиции и комбинаций неводного и водного придающих клейкость агентов, смолы и гелеобразующей композиции.

Очищающая жидкость может перемещать из ствола скважины множество мелких частиц, находящихся на путях прохождения потока жидкости в области подземной формации.

Очищающая жидкость может растворять образующиеся отложения и/или мелкие частицы в области подземной формации.

Область подземной формации может содержать, по меньшей мере, один элемент, выбранный из группы, состоящей из расклинивающего агента, гравийной набивки, хвостовика, песочного сетчатого фильтра и их комбинаций.

Импульсное давление может перемещать множество мелких частиц с путей прохождения потока жидкости в области подземной формации.

Импульсное давление может прилагаться с частотой в диапазоне от примерно 0,001 Гц до примерно 1 Гц.

Импульсное давление, приложенное к жидкости, может создавать импульсное давление в области подземной формации в пределе от около 10 фунтов на квадратный дюйм до около 3000 фунтов на квадратный дюйм.

Способ может дополнительно содержать протекание очищающей жидкости через импульсное устройство для создания импульсного давления.

Способ может дополнительно содержать протекание очищающей жидкости через жидкостной осциллятор для создания импульсного давления.

Способ может дополнительно содержать приложение импульсного давления к уплотняющему агенту.

Уплотняющий агент может дополнительно содержать растворитель.

Уплотняющий агент может содержать неводный придающий клейкость агент и дополнительно содержать растворитель.

Уплотняющий агент может содержать неводный придающий клейкость агент и дополнительно содержать растворитель и многофункциональный материал.

Уплотняющий агент может содержать водный придающий клейкость агент и дополнительно содержать растворитель.

Уплотняющий агент может содержать водный придающий клейкость агент, включающий полиакрилатный сложный эфиру и дополнительно содержать растворитель.

Уплотняющий агент может содержать водный придающий клейкость агент и дополнительно содержать растворитель и активатор.

Уплотняющий агент может содержать смолу и дополнительно содержать растворитель.

Уплотняющий агент может содержать гелеобразующую композицию.

Способ может дополнительно содержать, по меньшей мере, один этап, выбранный из закрытия ствола скважины на период времени после введения уплотняющего агента, введения жидкости после промывания в область подземной формации после введения уплотняющего агента, разрыва области подземной формации после введения уплотняющего агента и их комбинаций.

Согласно изобретению создан способ очистки песочного сетчатого фильтра, содержащий следующие этапы:

введение очищающей жидкости в область подземной формации через песочный сетчатый фильтр, расположенный в стволе скважины, проходящем через подземную формацию;

приложение импульсного давления к очищающей жидкости;

введение через песочный сетчатый фильтр в область подземной формации уплотняющего агента, содержащего, по меньшей мере, один элемент, выбранный из группы, состоящей из неводного придающего клейкость агента, выбранного из группы, состоящей из полиамида, продукта реакции конденсации поликислоты и полиамида, полиэфира, поликарбоната, поликарбамата, природной смолы и их комбинаций, водного придающего клейкость агента, выбранного из группы, состоящей из полимеров акриловой кислоты, полимеров сложных эфиров акриловой кислоты, производных полимеров акриловой кислоты, гомополимеров акриловой кислоты, гомополимеров сложных эфиров акриловой кислоты, сополимеров сложных эфиров акриловой кислоты, производных полимеров метакриловой кислоты, гомополимеров метакриловой кислоты, гомополимеров сложных эфиров метакриловой кислоты, акриламидо-метил-пропан сульфонатных полимеров, акриламидо-метил-пропан сульфонатных производных полимеров, акриламидо-метил-пропан сульфонатных сополимеров и акриловой кислоты/акриламидо-метил-пропан сульфонатных сополимеров и их комбинаций, смолы, выбранной из группы, состоящей из двухкомпонентной смолы на эпоксидной основе, новолачной смолы, полиэпоксидной смолы, фенол-альдегидной смолы, мочевинно-альдегидной смолы, уретановой смолы, фенольной смолы, фурановой смолы, фуран/фурфуроловой спиртовой смолы, фенольной/латексной смолы, фенол формальдегидной смолы, полиэфирной смолы, гибрида полиэфирной смолы, сополимеров полиэфирной смолы, полиуретановой смолы, гибридов полиуретановой смолы, сополимеров полиуретановой смолы, акрилатной смолы и комбинаций указанных смол, и гелеобразующей композиции, выбранной из группы, состоящей из гелеобразующей композиции смолы, водной силикатной гелеобразующей композиции, водной композиции сшиваемого полимера и полимеризуемой органической мономерной композиции и комбинаций неводного и водного придающих клейкость агентов, смолы и гелеобразующей композиции.

Песочным сетчатым фильтром может быть сетчатый фильтр с проволочной обмоткой, набивной сетчатый фильтр или расширяемый сетчатый фильтр.

Очищающая жидкость может вводиться в подземную формацию через гравийную набивку, расположенную в кольцевом пространстве между сетчатым фильтром и областью подземной формации.

Способ может дополнительно содержать протекание очищающей жидкости через жидкостной осциллятор для создания импульсного давления.

Согласно изобретению создан способ очистки песочного сетчатого фильтра и гравийной набивки, содержащий следующие этапы:

размещение жидкостного осциллятора в стволе скважины вблизи песочного сетчатого фильтра, расположенного в стволе скважины;

введение очищающей жидкости через жидкостной осциллятор, сетчатый фильтр и гравийную набивку в область подземной формации, через которую проходит ствол скважины, при этом гравийная набивка расположена в кольцевом пространстве между сетчатым фильтром и областью подземной формации, и импульсное давление создается в очищающей жидкости посредством введения очищающей жидкости через жидкостной осциллятор;

введение через сетчатый фильтр и гравийную набивку в область подземной формации уплотняющего агента, содержащего, по меньшей мере, один элемент, выбранный из группы, состоящей из неводного придающего клейкость агента, выбранного из группы, состоящей из полиамида, продукта реакции конденсации поликислоты и полиамида, полиэфира, поликарбоната, поликарбамата, природной смолы и их комбинаций, водного придающего клейкость агента, выбранного из группы, состоящей из полимеров акриловой кислоты, полимеров сложных эфиров акриловой кислоты, производных полимеров акриловой кислоты, гомополимеров акриловой кислоты, гомополимеров сложных эфиров акриловой кислоты, сополимеров сложных эфиров акриловой кислоты, производных полимеров метакриловой кислоты, гомополимеров метакриловой кислоты, гомополимеров сложных эфиров метакриловой кислоты, акриламидо-метил-пропан сульфонатных полимеров, акриламидо-метил-пропан сульфонатных производных полимеров, акриламидо-метил-пропан сульфонатных сополимеров и акриловой кислоты/акриламидо-метил-пропан сульфонатных сополимеров и их комбинаций, смолы, выбранной из группы, состоящей из двухкомпонентной смолы на эпоксидной основе, новолачной смолы, полиэпоксидной смолы, фенол-альдегидной смолы, мочевинно-альдегидной смолы, уретановой смолы, фенольной смолы, фурановой смолы, фуран/фурфуроловой спиртовой смолы, фенольной/латексной смолы, фенол формальдегидной смолы, полиэфирной смолы, гибрида полиэфирной смолы, сополимеров полиэфирной смолы, полиуретановой смолы, гибридов полиуретановой смолы, сополимеров полиуретановой смолы, акрилатной смолы и комбинаций указанных смол, и гелеобразующей композиции, выбранной из группы, состоящей из гелеобразующей композиции смолы, водной силикатной гелеобразующей композиции, водной композиции сшиваемого полимера и полимеризуемой органической мономерной композиции и комбинаций неводного и водного придающих клейкость агентов, смолы и гелеобразующей композиции.

Краткое описание чертежей

Чертежи иллюстрируют определенные аспекты некоторых вариантов осуществления представленного изобретения и не могут быть использованы для ограничения или характеристики этого изобретения.

Фиг.1 иллюстрирует в поперечном сечении вид сбоку внутренней поверхности ствола скважины, подлежащей обработке в соответствии с первым вариантом осуществления изобретения.

Фиг.2 иллюстрирует в поперечном сечении вид сверху по линии 3-3 фиг.1.

Фиг.3 иллюстрирует в поперечном сечении вид сбоку внутренней поверхности ствола скважины фиг.1, обработанной в соответствии с первым вариантом осуществления изобретения.

Фиг.4 иллюстрирует в поперечном сечении вид сбоку скважины с необсаженным стволом, подлежащей обработке в соответствии с первым вариантом осуществления изобретения.

Фиг.5 иллюстрирует в поперечном сечении вид сверху по линии 5-5 фиг.4.

Фиг.6 иллюстрирует в поперечном сечении вид сбоку скважины с необсаженным стволом фиг.4, обработанной в соответствии с первым вариантом осуществления изобретения.

Описание предпочтительного варианта осуществления

Настоящее изобретение относится к способам обработки подземных сред. В частности, настоящее изобретение относится к восстановительно-ремонтной обработке подземной среды с использованием импульсного давления и уплотняющих агентов. Несмотря на то что способы представленного изобретения могут быть пригодными в различных восстановительно-ремонтных обработках, они могут быть наиболее полезными для очистки регулирующего песок оборудования (например, футеровок, сетчатых фильтров и тому подобное) и/или гравийных упаковок.

1. Примеры способов настоящего изобретения

Настоящее изобретение обеспечивает способы восстановления подземных сред. Пример такого способа включает введение очищающей жидкости через ствол скважины в область подземной формации, через которую проходит ствол скважины, приложение импульсного давления к очищающей жидкости и введение уплотняющего агента через ствол скважины в область подземной формации. Способы настоящего изобретения подходят для использования в производстве и для заполнения скважин под давлением.

Согласно способам настоящего изобретения очищающая жидкость может быть введена сквозь ствол скважины в область подземной формации, через которую проходит ствол скважины. В некоторых вариантах осуществления, используемые песочный сетчатый фильтр, футеровка, гравийная набивка или их сочетание могут быть расположены между стволом скважины и областью подземной формации. Подходящие песочные сетчатые фильтры включают, но не ограничиваются только этими устройствами, сетчатые фильтры с проволочной обмоткой, набивные сетчатые фильтры, расширяемые сетчатые фильтры и любое другое подходящее устройство. В зависимости от состава очищающей жидкости, очищающая жидкость может растворять образующиеся отложения, осаждения или маленькие частицы, которые могут присутствовать. В некоторых вариантах осуществления, образующиеся отложения и осаждения могут присутствовать в подземной формации и/или на каких-либо песочных сетчатых фильтрах, футеровках и/или гравийных набивках. В некоторых вариантах осуществления мелкие частицы могут располагаться на путях потоков жидкостей в подземной формации и в каких-либо песочных сетчатых фильтрах, футеровках и/или в гравийных набивках. Эти мелкие частицы, расположенные на путях потоков жидкости, могут препятствовать прохождению по этим путям потоков жидкостей. Примеры подходящих очищающих жидкостей будут рассмотрены более подробно в деталях ниже.

Способы настоящего изобретения дополнительно включают приложение импульсного давления к очищающей жидкости. Например, очищающая жидкость может быть введена в область подземной формации через импульсное устройство. Среди других фактов, импульсное давление должно вытеснять, по меньшей мере, часть мелких частиц, расположенных на путях потока жидкости, которые препятствуют протеканию жидкости через подземную формацию, а также, по меньшей мере, часть мелких частиц, локализованных на путях потока жидкости и в каких-либо песочных сетчатых фильтрах, футеровках и/или гравийных набивках. Очищающая жидкость может также перемещать эти препятствующие мелкие частицы из ствола скважины. Приложение импульсного давления к очищающей жидкости будет рассмотрено более подробно ниже.

Способы настоящего изобретения дополнительно включают введение уплотняющего агента через ствол скважины в область подземной формации. В большинстве случаев, уплотняющий агент может быть введен после введения очищающей жидкости через ствол скважины в область подземной формации. Используемый термин "уплотняющий агент" относится к композиции, которая усиливает контакт частица к частице или частица к образованию между частицами (например, между частицами расклинивающего агента, частицами гравия, мелкозернистыми образованиями, мелкими частицами каменного угля и т.д.) в пределах подземной формации, причем таким образом, что частицы стабилизируются, локализуются на месте или, по меньшей мере, частично иммобилизуются таким образом, что они становятся устойчивыми по отношению к потокам жидкостей. Будучи помещенным в подземную формацию, уплотняющий агент должен замедлять перемещение мелких частиц последовательно вводимыми жидкостями. Уплотняющий агент может также перемещать эти мелкие частицы из ствола скважины. В некоторых вариантах осуществления, импульсное давление может быть приложено к уплотняющему агенту. Например, уплотняющий агент может быть введен в область подземной формации через импульсное устройство. Примеры подходящих уплотняющих агентов будут рассмотрены более подробно ниже.

Согласно способам настоящего изобретения после того как поместили уплотняющий агент, подземная формация необязательно, но может быть закрыта на некоторый период времени. Закрытие ствола скважины на некоторый период времени может усилить нанесение уплотняющего агента на мелкие частицы и минимизировать смывание уплотняющего агента во время проведения последующих подземных операций. Необходимость закрытия скважины на некоторый период времени зависит, среди других факторов, от состава используемого уплотняющего агента и температуры подземной формации. В большинстве случаев, выбираемый период времени будет находиться между 0,5 часами и 72 часами или дольше. Определение правильного периода времени, на которое закрывают подземную формацию, находится в ведении одного из квалифицированных специалистов, который является автором данного изобретения, и не раскрывается здесь.

В некоторых вариантах осуществления введение уплотняющего агента в область подземной формации может привести к уменьшению проницаемости этой части. Уменьшение проницаемости из-за введенного уплотняющего агента основывается на различных факторах, включая и особенности используемого уплотняющего агента, вязкость уплотняющего агента, объем уплотняющего агента, объем жидкости после проведения операции промывания и возможности перекачивания насосно-трубопроводной системой в подземной формации. В некоторых вариантах осуществления, разрыв в области подземной формации может быть предназначен для обновления соединения буровой скважины с областями подземной формации (например, с резервуаром подземной формации), снаружи обработанной уплотняющим агентом областью подземной формации. В других вариантах осуществления, например, в том случае если не используется разрыв, жидкость после промывания может быть использована для восстановления проницаемости области подземной формации. При использовании жидкость после промывания предпочтительно помещают в подземную формацию до тех пор, пока уплотняющий агент все еще находится в текучем состоянии. Среди других фактов жидкость после промывания помогает вытеснить, по меньшей мере, часть уплотняющего агента из протекающих потоков в подземную формацию и принудительно вытеснить часть уплотняющего агента далее в подземную формацию, где он может получить незначительный импульс на последующую добычу углеводорода. В большинстве случаев жидкостью после промывания может быть любая жидкость, которая не вступает в конкурирующие нежелательные реакции с другими компонентами, используемыми в соответствии с настоящим изобретением или с подземной формацией. Например, жидкостью после промывания может быть рассол на водной основе, жидкий углеводород (такой как керосин, дизель или сырое масло) или газ (такой как азот или диоксид углерода). В большинстве случаев существенное количество уплотняющего агента, однако, оттуда не может быть вытеснено. Например, достаточные количества уплотняющего агента должны оставаться в обрабатываемой области для обеспечения эффективной стабилизации областей, которые не уплотняются в подземной формации.

На фиг.1 и 2 показан ствол 100 скважины, проходящей в подземную формацию 102. Фиг.2 изображает поперечное сечение ствола 100 скважины вдоль линии 3-3 фиг.1. Фиг.1 изображает ствол 100 скважины в вертикальном положении, однако способы настоящего изобретения подходят для использования и в большинстве случаев горизонтального, в большинстве случаев вертикального или иного способа формирования областей скважин. Обсадная труба 104 может быть расположена в стволе 100 скважины, как показано на фиг.1 и 2, или, в некоторых вариантах осуществления, ствол 100 скважины может быть не обсаженным. В некоторых вариантах осуществления, обсадная труба 104 может проходить от поверхности земли (не показано) в ствол 100 скважины. В некоторых вариантах осуществления, обсадная труба 104 может быть соединена с поверхностью земли (не показано) за счет расположения между облицовкой (не показано), как, например, поверхность обсадной трубы и/или система трубопроводов. Обсадная труба 104 может быть или не быть зацементированной по отношению к подземной формации цементной оболочкой 106. Ствол 100 скважины содержит перфорации 108, сообщенные с подземной формацией 102. Перфорации 108 проходят от ствола 100 скважины 100 в область подземной формации 102. В случаях вариантов осуществления, как показано на фиг.1 и 2, перфорации 108 проходят от ствола 100 скважины через обсадную трубу 104 и цементную оболочку 106 в подземную формацию 102.

Хвостовик 110 с щелями включает внутренний регулирующий песок сетчатый фильтр 112, расположенный в стволе 100 скважины. Кольцевое пространство 114 образовано между хвостовиком 110 и сетчатым фильтром 112. Кольцевое пространство 116 образовано между хвостовиком 110 и обсадной трубой 104. Несмотря на то что на фиг.1 и 2 изображен хвостовик, имеющий внутренний сетчатый фильтр, способы представленного изобретения могут быть использованы с подходящим варьированием регулирующего песок оборудования, включая сетчатые фильтры, хвостовики (например, щелевые хвостовики, перфорированные футеровки и т.д.), сочетания сетчатых фильтров и футеровок и каких-либо других подходящих устройств. Хвостовик 110 содержит щели 118, которые могут быть кругообразными, удлиненными, прямоугольными или какой-либо другой подходящей формы. В некоторых вариантах осуществления, мелкие частицы (не показано) могут препятствовать протеканию жидкостей через щели 118 в хвостовике 110 и/или через регулирующий песок сетчатый фильтр 112. В некоторых вариантах осуществления, образующиеся отложение (не показано) или осаждение (не показано) могут быть на хвостовике 110 и/или сетчатом фильтре 112. Там где присутствуют мелкие частицы, образующиеся отложение и/или осаждение, они могут препятствовать протеканию жидкостей через щели 118 в хвостовике 110 и/или через сетчатый фильтр 112.

Гравийная набивка 120 расположена в стволе 110 скважины и содержит частицы гравия, помещенные в подземную формацию 102, кольцевое пространство 114 между хвостовиком 110 и сетчатым фильтром 112 и кольцевое пространство 116 между хвостовиком 110 и обсадной трубой 104. В некоторых вариантах осуществления, мелкие частицы (не показано) могут быть расположены в пределах промежуточного пространства частиц гравия, образующего гравийную набивку 120. В некоторых вариантах осуществления, образующиеся отложение (не показано) или осаждение (не показано) могут быть на гравийной набивке 120. Там где присутствуют мелкие частицы, образующиеся отложение и/или осаждение, они могут препятствовать протеканию жидкостей через гравийную набивку 120 за счет закупоривания путей, по которым может протекать жидкость в гравийной набивке 120.

В соответствии с первым вариантом осуществления представленного изобретения очищающая жидкость может быть введена через сетчатый фильтр 112, щели 118 в хвостовике 110 и гравийную набивку 120 в подземную формацию 102. Импульсное давление может быть приложено к очищающей жидкости при ее введении. В зависимости от состава очищающей жидкости, очищающая жидкость может растворять образующиеся отложения, осаждения или мелкие частицы. Среди других факторов, импульсное давление может вытеснять мелкие частицы, которые препятствуют протеканию жидкостей через подземную формацию 102, сетчатый фильтр 112, щели 118 в хвостовике 110 и/или гравийную набивку 120. Очищающая жидкость может увлекать за собой эти вытесненные мелкие частицы из ствола 100 скважины. Последующим этапом за введением очищающей жидкости может быть введение уплотняющего агента через сетчатый фильтр 112, щели 118 и гравийную набивку 120 в подземную формацию 102. Часть уплотняющего агента может остаться в гравийной набивке 120. Уплотняющий агент должен ингибировать вытеснение мелких частиц, которые перемещаются из ствола скважины, мигрируя с какими-либо последовательно производимыми жидкостями.

На фиг.3 показан ствол 100 скважины, обработанной в соответствии с первым вариантом осуществления изобретения. Импульсное устройство 322 может быть размещено в стволе 100 скважины на трубе 324. Труба 324 может включать гибкий трубопровод, соединительный трубопровод или какое-либо другое устройство, подходящее для размещения импульсного устройства 322 в стволе 100 скважины. Импульсное устройство 322 может быть размещено в стволе 100 скважины вблизи подземной формации 102, которая должна быть обработана. Очищающая жидкость может протекать по трубе 324, через импульсное устройство 322, сетчатый фильтр 112, щели 118 и гравийную набивку 120 в подземную формацию 102. Импульсное давление прикладывается к очищающей жидкости, протекающей через импульсное устройство 322. Последующим этапом за введением очищающей жидкости в подземную формацию 102 может быть введение уплотняющего агента через сетчатый фильтр 112, щели 118 и гравийную набивку 120 в подземную формацию 102. В некоторых вариантах осуществления, импульсное давление может быть приложено к уплотняющему агенту, протекающему через трубу 324 и импульсное устройство 322.

Фиг.4 и 5 иллюстрируют открытую ствол 400 скважины. Фиг.5 изображает поперечное сечение ствола 400 скважины по линии 5-5 фиг.4. Ствол 400 скважины проходит через подземную формацию 402. Способы настоящего изобретения могли бы быть подходящими для использования в большинстве случаев горизонтального и в большинстве случаев вертикального или иного способа формирования областей скважин. Песочный сетчатый фильтр 404 расположен в стволе 400 скважины. Способы настоящего изобретения могут быть использованы с любым подходящим регулирующим песок оборудованием, включая сетчатые фильтры, футеровки (например, щелевые хвостовики, перфорированные хвостовики и т.д.), сочетания сетчатых фильтров и хвостовиков и какого-либо другого подходящего устройства. Сетчатый фильтр 404 может быть сетчатым фильтром с проволочной обмоткой, набивным сетчатым фильтром, расширяемым сетчатым фильтром и любым другим подходящим сетчатым фильтром. Кольцевое пространство 406 образовано между сетчатым фильтром 404 и внутренней стенкой ствола 400 скважины. В некоторых вариантах осуществления мелкие частицы (не показано) могут препятствовать протеканию жидкостей через сетчатый фильтр 404. В некоторых вариантах осуществления, образующиеся отложение (не показано) или осаждение (не показано) могут располагаться на сетчатом фильтре 404. Там где присутствуют мелкие частицы, образующиеся отложение и/или осаждение, они могут препятствовать протеканию жидкостей через сетчатый фильтр 404.

Гравийная набивка 408 расположена в стволе 400 скважины и содержит частицы гравия, помещенные в кольцевом пространстве 406 между сетчатым фильтром 404 и внутренней стенкой ствола 400 скважины. В некоторых вариантах осуществления, мелкие частицы (не показано) могут быть расположены в промежуточном пространстве частиц гравия, образующего гравийную набивку 408. В некоторых вариантах осуществления образующиеся отложение (не показано) или осаждение (не показано) могут быть расположены на гравийной набивке 408. Там где присутствуют мелкие частицы, образующиеся отложение и/или осаждение, они могут препятствовать протеканию жидкостей через гравийную набивку 408 за счет закупоривания путей, по которым может протекать жидкость в гравийной набивке 408.

В соответствии с первым вариантом осуществления настоящего изобретения очищающая жидкость может быть введена через сетчатый фильтр 404 и гравийную набивку 408 в подземную формацию 402. Импульсное давление может быть приложено к очищающей жидкости при ее введении. В зависимости от состава очищающей жидкости, очищающая жидкость может растворять образующиеся отложения, осаждения или маленькие частицы, которые могут присутствовать. Среди других факторов, импульсное давление может перемещать мелкие частицы, которые препятствуют протеканию жидкостей через подземную формацию 402, сетчатый фильтр 404 и гравийную набивку 408. Очищающая жидкость может увлекать за собой эти вытесненные мелкие частицы из ствола 400 скважины. Последующим этапом за введением очищающей жидкости может быть введение уплотняющего агента через сетчатый фильтр 404 и гравийную набивку 408 в подземную формацию 402. Тонкое нанесенное покрытие уплотняющего агента может остаться на частицах гравия гравийной набивки 408. Уплотняющий агент должен усиливать вытеснение мелких частиц, которые перемещаются из ствола 100 скважины, мигрируя с какими-либо последовательно производимыми жидкостями.

На фиг.6 показана ствол 400 скважины, обработанной в соответствии с первым вариантом осуществления представленного изобретения. Импульсное устройство 610 может быть размещено в стволе 400 скважины 400 на трубе 612. Труба 612 может включать гибкий трубопровод, соединительный трубопровод или какое-либо другое устройство, подходящее для помещения импульсного устройства 610 в ствол 400 скважины. Импульсное устройство 610 может быть размещено в стволе 400 скважины вблизи сетчатого фильтра 404. Очищающая жидкость может протекать через трубу 612, импульсное устройство 610, сетчатый фильтр 404 и гравийную набивку 408 в подземную формацию 402. Импульсное давление прилагается к очищающей жидкости, протекающей через импульсное устройство 610. Последующим этапом за введением очищающей жидкости в подземную формацию 402 может быть введение уплотняющего агента через сетчатый фильтр 404 и гравийную набивку 408 в подземную формацию 402. В некоторых вариантах осуществления импульсное давление может быть приложено к уплотняющему агенту, протекающему через трубу 612 и импульсное устройство 610.

2. Импульсное давление

Любое подходящее устройство и/или способ приложения импульсного давления к очищающей жидкости могут быть использованы в настоящем изобретении. В некоторых вариантах осуществления импульсное давление также может