Многослойный корпус для медицинских контейнеров и медицинский контейнер
Иллюстрации
Показать всеГруппа изобретений относится к контейнерам для хранения медицинских жидкостей. Многослойный корпус, который используется для формирования медицинского контейнера, включает внутренний слой, состоящий из циклического полиолефина, промежуточный слой, который сформирован рядом с указанным внутренним слоем и в качестве основного компонента содержит линейный полиэтилен низкой плотности, полученный с использованием катализатора с единым центром полимеризации, и наружный слой, содержащий полиэтилен высокой плотности. Группа изобретений относится также к медицинскому контейнеру, включающему отсек для хранения медицинской жидкости, сформированный из указанного многослойного корпуса. Группа изобретений обеспечивает получение термостойкого многослойного корпуса для медицинских контейнеров, в котором внутренний слой без использования адгезива проявляет подходящую адгезию к промежуточному слою и обеспечивает сопротивление слипанию при формировании в виде пленки. При этом при стерилизации контейнера, включающего отсек для хранения медицинской жидкости, сформированный из указанного многослойного корпуса, паром под высоким давлением такие свойства, как прозрачность и сопротивление отслаиванию, ухудшаются незначительно. 2 н. и 9 з.п. ф-лы, 7 ил., 2 табл., 15 пр.
Реферат
ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к многослойному корпусу для медицинских контейнеров и медицинскому контейнеру, который содержит отсек для хранения медицинской жидкости, сформированный из многослойного корпуса для медицинских контейнеров.
ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ
Примеры используемых в медицинской сфере медицинских контейнеров, сформированных из полимеров, включают ампулы, сосуды, шприцы и инфузионные мешки, выполненные из пленок. Кроме того, примеры таких полимеров включают полиолефины, такие как полиэтилен и полипропилен, а также эластомеры на основе стирола, полимеры винилхлорида, сополимеры этилен-винилацетата и циклические полиолефины.
Среди этих полимеров полиэтилен проявляет превосходные гигиенические свойства, обладает гибкостью и не образует токсичных газов при сжигании, и, таким образом, широко используется для медицинских контейнеров. Однако известно, что если использовать полиэтилен для отсека внутри медицинского контейнера, который находится в контакте с медицинской жидкостью, то полиэтилен может адсорбировать из медицинской жидкости определенные лекарственные средства, например липофильные витамины, что приводит к снижению концентрации этих лекарственных средств в процессе хранения.
В итоге, циклические полиолефины, способные препятствовать какому-либо снижению титра определенного лекарственного средства, которое вызвано адсорбцией или абсорбцией этого лекарственного средства, проявляют прекрасную прозрачность, термостойкость и гигиенические свойства, а также предоставляют превосходные барьерные свойства, включая низкую скорость пропускания водяного пара, и все более широко используются в качестве материала для медицинских контейнеров. Одним из примеров медицинского контейнера, в котором используется циклический полиолефин, является предварительно набранный шприц, в котором камера шприца предварительно заполнена лекарственным средством, и такие предварительно набранные шприцы получают широкое распространение.
Кроме того, в патентном документе 1 раскрыт медицинский контейнер, который имеет многослойную структуру, в которой слой циклического полиолефина, сформированный из термопластического предельного полимера на основе норборнена, комбинирован со слоем синтетического полимера и/или защитным слоем или чем-то подобным.
В патентном документе 2 раскрыт медицинский контейнер, сформированный из многослойной пленки, имеющей поверхностный слой, гибкий слой, защитный слой и герметизирующий слой, в которой циклический полиолефин и этилен-α-олефиновый сополимер используются в качестве защитного слоя, а этилен-α-олефиновый сополимер используется в качестве основного компонента других слоев.
В патентном документе 3 раскрыта ламинированная пленка, в которой слой В, состоящий из линейного полиэтилена низкой плотности, обладающего определенной температурой плавления и температурой размягчения по Вика, ламинирован на любую одну или обе поверхности слоя A, состоящего из полимера, такого как циклический полиолефин, а также раскрыт медицинский контейнер, в котором используется эта ламинированная пленка.
Кроме того, в патентном документе 4 раскрыт медицинский контейнер, в котором используется ламинированная пленка, полученная ламинированием слоя герметика, который в качестве основного компонента содержит полимер на основе циклического полиолефина с определенной температурой стеклования, на подложку, которая в качестве основного компонента содержит полимер на основе полиолефина с определенной температурой плавления.
[Патентный документ 1] Публикация японского патента (выдан) № 3227709
[Патентный документ 2] Международная публикация патента 03/097355, памфлет
[Патентный документ 3] Нерассмотренная японская патентная заявка, первая публикация № 2004-167800
[Патентный документ 4] Нерассмотренная японская патентная заявка, первая публикация № 2005-254508
ОПИСАНИЕ ИЗОБРЕТЕНИЯ
ПРОБЛЕМЫ, РЕШАЕМЫЕ ИЗОБРЕТЕНИЕМ
Тем не менее, в параграфе 0027 патентного документа 1 и параграфе 0004 патентного документа 2 раскрыто, что недостатком циклических полиолефинов является плохая адгезионная способность. Таким образом, в процессе изготовления многослойной пленки, описанной в патентном документе 1, условия требуют использования адгезива при ламинировании слоя циклического полиолефина на другие слои. Однако существует возможность, что из многослойной пленки, в которой использован адгезив, будут вытекать компоненты, полученные из адгезива. Таким образом, из гигиенических соображений использование этого типа многослойных пленок в медицинских контейнерах и, в частности, в качестве внутренних слоев, расположенных близко к медицинской жидкости, является нежелательным.
В технологии, раскрытой в патентном документе 2, циклический полиолефин смешивают с этилен-α-олефиновым сополимером для улучшения адгезионной способности циклического полиолефина, и эту смесь используют для формирования защитного слоя. Однако такое смешивание с этилен-α-олефиновым сополимером вызывает ухудшение барьерных свойств защитного слоя, через который возможна абсорбция лекарственного средства слоем, смежным с защитным слоем. Кроме того, при увеличении толщины защитного слоя в попытке улучшения барьерных свойств возникает проблема, которая заключается в том, что увеличение толщины вызывает соответствующую потерю гибкости.
Кроме того, термостойкость медицинских контейнеров, раскрытых в патентных документах 3 и 4, не отвечает требованиям, а также эти материалы непригодны для медицинских контейнеров, которые необходимо стерилизовать с использованием пара под высоким давлением или чего-то подобного. Кроме того, ламинированные пленки, раскрытые в патентных документах 3 и 4, также имеют склонность к такому недостатку, как низкое сопротивление слипанию.
Настоящее изобретение выполнено в свете описанных выше обстоятельств и своей целью имеет предоставление многослойного корпуса для медицинских контейнеров, в котором самый внутренний слой, сформированный из циклического полиолефина, без использования адгезива проявляет подходящую адгезию к другому слою, который проявляет превосходную термостойкость и который обеспечивает подходящее сопротивление слипанию при формировании в виде пленки, а также предоставление медицинского контейнера, сформированного из этого многослойного корпуса для медицинских контейнеров, который в наименьшей степени страдает от ухудшения таких свойств, как прозрачность и сопротивление отслаиванию, даже при стерилизации паром под высоким давлением или чем-то подобным.
СРЕДСТВА РЕШЕНИЯ ПРОБЛЕМ
Многослойный корпус для медицинских контейнеров по настоящему изобретению используется для формирования медицинского контейнера и содержит по меньшей мере самый внутренний слой, состоящий из циклического полиолефина, промежуточный слой, который сформирован рядом с самым внутренним слоем и содержит в качестве основного компонента линейный полиэтилен низкой плотности, полученный с использованием катализатора с единым центром полимеризации, и самый наружный слой, который содержит полиэтилен высокой плотности.
Циклический полиолефин предпочтительно представляет собой гидрогенизированный продукт полимеризации циклического олефинового мономера с раскрытием кольца.
Плотность линейного полиэтилена низкой плотности предпочтительно составляет не менее 0,860 г/см3, но менее 0,940 г/см3.
Плотность полиэтилена высокой плотности предпочтительно находится в диапазоне от 0,940 до 0,970 г/см3.
Самый наружный слой предпочтительно представляет собой или смесь полиэтилена высокой плотности и полиэтилена высокого давления и низкой плотности, или состоит только из полиэтилена высокой плотности.
Многослойный корпус для медицинских контейнеров по настоящему изобретению предпочтительно имеет общую толщину в диапазоне от 60 до 1000 мкм, состоит из трех слоев - самого внутреннего слоя толщиной от 5 до 100 мкм, промежуточного слоя и самого наружного слоя толщиной от 5 до 100 мкм.
Медицинский контейнер по настоящему изобретению содержит отсек для хранения медицинской жидкости, в котором по меньшей мере отсек для хранения сформирован из указанного выше многослойного корпуса для медицинских контейнеров.
В этом случае многослойный корпус для медицинских контейнеров может представлять собой формованный раздувом корпус. Кроме того, многослойный корпус для медицинских контейнеров может представлять собой пленку, а отсек для хранения может быть изготовлен путем горячего формования пленки или может быть сформирован в форме мешка.
ЭФФЕКТ ИЗОБРЕТЕНИЯ
Настоящее изобретение позволяет предоставить многослойный корпус для медицинских контейнеров, в котором самый внутренний слой сформирован из циклического полиолефина, который без использования адгезива проявляет подходящую адгезию к другому слою, который проявляет превосходную термостойкость и который обеспечивает подходящее сопротивление слипанию при формировании в виде пленки, а также предоставить медицинский контейнер, сформированный из этого многослойного корпуса для медицинских контейнеров, который в наименьшей степени страдает от ухудшения таких свойств, как прозрачность и сопротивление отслаиванию, даже при стерилизации паром под высоким давлением или чем-то подобным.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На фиг.1 приведен вид в поперечном разрезе, который иллюстрирует один пример многослойного корпуса по настоящему изобретению.
На фиг.2(A) приведен вид сверху, который иллюстрирует один пример медицинского контейнера по настоящему изобретению, и на фиг.2(B) приведен вид в поперечном разрезе вдоль линии I-I' на фиг.2(A).
На фиг.3(A) приведен вид сверху, который иллюстрирует другой пример медицинского контейнера по настоящему изобретению, и на фиг.3(B) приведен вид сверху, который иллюстрирует другой пример области отверстия.
На фиг.4(A) приведен вид спереди, а на фиг.4(B) приведен вид сбоку формованного изделия из пленки, которое используется для изготовления медицинского контейнера, показанного на фиг.3.
На фиг.5 приведен вид сверху, который иллюстрирует еще один пример медицинского контейнера по настоящему изобретению.
На фиг.6 приведен вид сверху, который иллюстрирует многокамерный медицинский контейнер, который является одним из примеров медицинского контейнера по настоящему изобретению.
На фиг.7(A) приведено схематическое изображение, которое иллюстрирует тест на отслаивание, который использовался в примерах, и на фиг.7(B) приведен вид сверху, которое иллюстрирует способ получения образца для применения, которое показано на фиг.7(A).
ОПИСАНИЕ УСЛОВНЫХ ОБОЗНАЧЕНИЙ
10 Многослойный корпус
11 Самый внутренний слой
12 Промежуточный слой
13 Самый наружный слой
20, 30, 40 Медицинский контейнер
50 Многокамерный медицинский контейнер
ЛУЧШИЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Далее представлено более подробное описание настоящего изобретения.
Многослойный корпус для медицинских контейнеров по настоящему изобретению используется для формирования медицинского контейнера и, в частности, его можно использовать для того, чтобы внутри медицинского контейнера формировать отсек для хранения, в котором хранится медицинская жидкость. Многослойный корпус содержит по меньшей мере самый внутренний слой, состоящий из циклического полиолефина, промежуточный слой, который сформирован рядом с самым внутренним слоем и в качестве основного компонента содержит линейный полиэтилен низкой плотности, полученный с использованием катализатора с единым центром полимеризации, и самый наружный слой, который содержит полиэтилен высокой плотности.
На фиг.1 приведена схема, которая иллюстрирует многослойный корпус для медицинских контейнеров (который далее будет обозначаться просто как «многослойный корпус») 10, который является одним из примеров настоящего изобретения.
Многослойный корпус 10 из этого примера представляет собой трехслойную структуру, изготовленную ламинированием, в приведенном порядке, самого внутреннего слоя 11, состоящего из циклического полиолефина, промежуточного слоя 12, который содержит в качестве основного компонента линейный полиэтилен низкой плотности, полученный с использованием катализатора с единым центром полимеризации, и самого наружного слоя 13, который содержит полиэтилен высокой плотности, и сформированную в виде пленки с использованием способа многослойного формования раздувом или способа многослойного экструзионного формования через T-образную головку с воздушным охлаждением или с водным охлаждением или чего-то подобного. В настоящем изобретении для пленок и листов используется общий термин «пленка».
Самый внутренний слой 11 становится внутренней поверхностью, когда медицинский контейнер сформирован из многослойного корпуса 10, и, следовательно, он находится в непосредственном контакте с медицинской жидкостью, содержащейся внутри медицинского контейнера. Самый внутренний слой 11 сформирован из циклического полиолефина.
Циклические полиолефины проявляют минимальную адсорбцию или абсорбцию лекарственных средств, и снижение титра медицинской жидкости, содержащейся внутри медицинского контейнера, можно уменьшить, если формировать медицинский контейнер из многослойного корпуса 10 так, чтобы слой, состоящий из циклического полиолефина, выполнял функцию самого внутреннего слоя 11. Кроме того, циклические полиолефины проявляют превосходные барьерные свойства, включая низкую скорость пропускания водяного пара, а также проявляют превосходные гигиенические свойства, высвобождая крайне мало загрязняющих веществ, что также делает циклические полиолефины идеальным материалом для самого внутреннего слоя 11. Кроме того, циклические полиолефины также обладают подходящей термостойкостью и прозрачностью, и оба эти свойства идеально подходят для использования в медицинских контейнерах, которые должны подвергаться стерилизации с использованием пара под высоким давлением или чего-то подобного, и предпочтительно должны быть прозрачными, так чтобы можно было осуществлять визуальный контроль содержимого контейнера извне.
Примеры циклических полиолефинов включают продукты полимеризации циклических олефиновых мономеров с раскрытием кольца и гидрогенизированные производные таких продуктов полимеризации с раскрытием кольца, аддитивные полимеры циклических олефиновых мономеров и аддитивные сополимеры циклического олефинового мономера и другого мономера, который поддается сополимеризации с циклическим олефиновым мономером. Среди них гидрогенизированные продукты полимеризации с раскрытием цикла циклических олефиновых мономеров являются предпочтительными с точки зрения термостойкости, механической прочности и т.п. Кроме того, с точки зрения получения полимера, обладающего слабо выраженными адсорбционными свойствами, использование исключительно углеводородного циклического олефинового мономера является предпочтительным.
Несмотря на то, что отсутствуют конкретные ограничения на циклические олефиновые мономеры, типичные примеры включают мономеры на основе норборнена и моноциклические олефиновые мономеры. Мономер на основе норборнена представляет собой мономер, в мономерной структуре которого содержится звено, полученное из структуры норборнена, а конкретные примеры включают бицикло[2.2.1]гепт-2-ен (тривиальное название: норборнен), трицикло[4.3.0.12,5]дека-3,7-диен (тривиальное название: дициклопентадиен), 7,8-бензотрицикло[4.3.0.12,5]дека-3-ен (тривиальное название: метанотетрагидрофлуорен) и тетрацикло[4.4.0.12,5.17,10]додека-3-ен (тривиальное название: тетрациклододецен). Кроме того, эти мономеры на основе норборнена могут содержать углеводородную группу из 1-3 атомов углерода. Конкретные примеры моноциклических олефиновых мономеров включают циклогексен, циклогептен и циклооктен. Эти циклические олефиновые мономеры можно использовать по отдельности или в сочетаниях из двух или более типов циклических олефиновых мономеров.
Продукт полимеризации циклического олефинового мономера с раскрытием кольца получают посредством полимеризации циклического олефинового мономера с помощью реакции обмена в присутствии известного катализатора полимеризации с раскрытием кольца. Кроме того, гидрогенизированный продукт полимеризации циклического олефинового мономера с раскрытием кольца получают посредством гидрогенизации продукта полимеризации с раскрытием кольца с использованием известного катализатора гидрогенизации.
Примеры других мономеров, которые поддаются аддитивной сополимеризации с циклическим олефиновым мономером, включают α-олефины из 2-20 атомов углерода, такие как этилен, пропилен, 1-бутен и 1-гексен. Любой из этих α-олефинов можно использовать по отдельности или в сочетании из двух или более типов α-олефинов. Аддитивные (со)полимеры циклического олефинового мономера можно получить посредством осуществления полимеризации с использованием стандартного катализатора, состоящего из соединения титана или циркония и органоалюминиевого соединения.
Среди различных циклических полиолефинов, доступных на рынке, примеры аддитивных (со)полимеров циклических олефиновых мономеров включают продукты APEL (зарегистрированная торговая марка), которые производятся компанией Mitsui Chemicals, Inc., и TOPAS (зарегистрированная торговая марка), которые производятся компанией Ticona GmbH, тогда как примеры гидрогенизированных продуктов полимеризации циклических олефиновых мономеров с раскрытием кольца включают продукты ZEONOR (зарегистрированная торговая марка) и ZEONEX (зарегистрированная торговая марка), которые производятся компанией Zeon Corporation.
Температура стеклования (также в дальнейшем она будет обозначаться как Tg) циклического полиолефина предпочтительно находится в диапазоне от 70 до 180°C и более предпочтительно от 100 до 140°C. Если Tg составляет менее 70°C, то термостойкость медицинского контейнера, сформированного из многослойного корпуса 10, будет склонна к снижению, и медицинский контейнер может оказаться непригодным для стерилизации с использованием пара под высоким давлением или чего-то подобного. Наоборот, если Tg превышает 140°C, то возможно ухудшение формуемости и качества термосварки многослойного корпуса. В настоящем описании температура стеклования относится к величине, которую измеряют в соответствии с JIS К 7121 с использованием дифференциального сканирующего калориметра (в дальнейшем обозначается аббревиатурой DSC) и которая в основном содержится в каталогах и технических данных, предоставляемых производителем.
Tg циклического полиолефина может быть подобрана произвольным образом с помощью способа, в котором в соответствующем соотношении вместе смешивают те циклические полиолефины из множества циклических полиолефинов, которые проявляют подходящую совместимость. Степень совместимости смеси циклических полиолефинов может быть определена с помощью DSC для того, чтобы измерить Tg смеси. В случае если смесь обладает подходящей совместимостью, то наблюдается только одна Tg, тогда как в случаях с не вполне достаточной совместимостью наблюдается несколько Tg. Предпочтительна смесь с достаточной совместимостью, поскольку она способна обеспечить сочетание некоторого уровня термостойкости, который способен противостоять температуре запланированной стерилизации паром под высоким давлением, и подходящей формуемости.
Несмотря на то что самый внутренний слой 11 состоит из циклического полиолефина, он также может включать обычные количества любых добавок, которые, как правило, используются в сфере полимеров, например антистатические средства, антиоксиданты, смазки, противозапотевающие средства, поглотители ультрафиолетовых лучей и нейтрализующие средства, при условии, что добавление этих добавок не ослабляет эффекты настоящего изобретения.
Промежуточный слой 12, сформированный рядом с самым внутренним слоем 11, описанным выше, получен с использованием катализатора с единым центром полимеризации, примером которого может служить металлоценовый катализатор, и в качестве основного компонента содержит линейный полиэтилен низкой плотности (далее также обозначается как ЛПЭНП) с плотностью не менее 0,860 г/см3, но менее 0,940 г/см3. В настоящем документе выражение «основной компонент» указывает на то, что содержание составляет по меньшей мере 50% по массе.
Этот тип ЛПЭНП, полученный с использованием катализатора с единым центром полимеризации, проявляет превосходную адгезию к циклическим полиолефинам, и в наименьшей степени страдает ухудшением способности к адгезии, даже когда подвергается воздействию высокой температуры и высокой влажности в процессе стерилизации паром под высоким давлением. Таким образом, предоставляя этот тип промежуточного слоя 12, содержащий ЛПЭНП в качестве основного компонента рядом с самым внутренним слоем 11, состоящим из циклического полиолефина, другие слои могут быть прикреплены удобным и прочным образом с помощью этого промежуточного слоя 12. Кроме того, ЛПЭНП, полученный с использованием катализатора с единым центром полимеризации, проявляет превосходную прозрачность и в наименьшей степени страдает ухудшением этой прозрачности, даже когда подвергается воздействию высокой температуры и высокой влажности. По этим причинам многослойный корпус 10, снабженный этим типом промежуточного слоя 12, идеален для формирования медицинских контейнеров, для которых требуется стерилизация с помощью пара под высоким давлением.
Удобно использовать любой ЛПЭНП продукта, полученный с использованием катализатора с единым центром полимеризации и обладающий плотностью не менее 0,860 г/см3, но менее 0,940 г/см3, хотя среди таких продуктов предпочтительным является использование ЛПЭНП, обладающего плотностью в диапазоне от 0,900 до 0,917 г/см3, поскольку он придает многослойному корпусу 10 и медицинскому контейнеру превосходную термостойкость, которая не испытывает никаких проблем, даже при стерилизации с использованием пара под высоким давлением при температуре 121°C, а также способен препятствовать какому-либо ухудшению сопротивления отслаиванию промежуточного слоя 12 от самого внутреннего слоя 11 при стерилизации медицинского контейнера, сформированного из многослойного корпуса 10, с использованием пара под высоким давлением. Если плотность ЛПЭНП составляет менее 0,860 г/см3, то термостойкость может ухудшаться. Наоборот, если плотность ЛПЭНП превышает 0,940 г/см3, то может ухудшаться прозрачность и ударная прочность контейнера.
Кроме того, сочетание нескольких типов ЛПЭНП, обладающих различными плотностями, можно использовать в качестве ЛПЭНП, полученного с использованием катализатора с единым центром полимеризации.
Кроме того, среди различных ЛПЭНП продуктов, полученных с использованием катализатора с единым центром полимеризации, предпочтительными являются те, в которых распределение состава из этилена и α-олефина, измеренное с помощью анализа состава, явно указывает на превосходную технологичность и ударную прочность. Примеры коммерчески доступных продуктов, которые проявляют эти типы свойств и которые удобно использовать, включают продукты HARMOREX (зарегистрированная торговая марка), производимые компанией Japan Polyethylene Corporation, UMERIT (зарегистрированная торговая марка), производимые компанией Ube Industries, Ltd., и EVOLUE (зарегистрированная торговая марка), производимые компанией Prime Polymer Co., Ltd.
В качестве основного компонента промежуточный слой 12 содержит ЛПЭНП, полученный с использованием катализатора с единым центром полимеризации, конкретно в количестве по меньшей мере 50% по массе, и с точки зрения достижения подходящей гибкости, это количество предпочтительно составляет по меньшей мере 65% по массе и более предпочтительно 80% по массе или более, хотя промежуточный слой 12 также может содержать другие полиэтилены или циклические полиолефины, при условии, что добавление этих других соединений не ослабляет адгезию к самому внутреннему слою 11. В частности, если полиэтилен высокой плотности, обладающий плотностью, которая превышает плотность ЛПЭНП, полученного с использованием катализатора с единым центром полимеризации, используется в сочетании с ЛПЭНП в количестве, которое предпочтительно составляет не более 30% по массе и более предпочтительно не более 25% по массе, то может быть улучшена термостойкость, а также может быть ослаблено какое-либо ухудшение способности промежуточного слоя 12 к адгезии, вызванное стерилизацией паром под высоким давлением. Таким образом, кроме этого можно добиться другого преимущества, которое заключается в превосходном внешнем виде многослойного корпуса 10, если использовать сочетание ЛПЭНП с другими полиэтиленами или циклическими полиолефинами.
Кроме того, промежуточный слой 12 также может включать обычные количества любых добавок, которые, как правило, используются в сфере полимеров, например антистатические средства, антиоксиданты, смазки, противозапотевающие средства, поглотители ультрафиолетовых лучей и нейтрализующие средства, при условии, что добавление этих добавок не ослабляет эффектов настоящего изобретения.
Самый наружный слой 13 становится самым наружным слоем, если медицинский контейнер сформирован из многослойного корпуса 10, и содержит полиэтилен высокой плотности (далее также обозначается как ПЭВП).
Предоставляя слой, содержащий ПЭВП, в качестве самого наружного слоя 13, можно улучшить термостойкость изготовленного многослойного корпуса 10, и может быть сформирован медицинский контейнер, который в наименьшей степени страдает от ухудшения свойств медицинского контейнера, например, от деформации поверхности контейнера после стерилизации паром под высоким давлением. Кроме того, в случае многослойного корпуса 10 в виде пленки, например, такого, который проиллюстрирован на фиг.1, для хранения или манипулирования продукт зачастую будет смотан в виде рулона, а предоставление слоя, содержащего ПЭВП, в качестве самого наружного слоя 13 гарантирует то, что многослойный корпус 10 будет проявлять превосходное сопротивление слипанию.
Удобно использовать любой ПЭВП продукт, обладающий плотностью в диапазоне от 0,940 до 0,970 г/см3, хотя среди таких ПЭВП продуктов использование ПЭВП, обладающего плотностью от 0,945 до 0,970 г/см3, придает многослойному корпусу 10 превосходные термостойкость и сопротивление слипанию. Кроме того, также можно использовать сочетание из нескольких типов ПЭВП, обладающих различными плотностями.
Идеальное количество ПЭВП в самом наружном слое 13 меняется в зависимости от плотности ПЭВП, но, например, если плотность ПЭВП находится в диапазоне от 0,945 до 0,970 г/см3, то это гарантирует, что содержание ПЭВП в самом наружном слое 13, равное по меньшей мере 20% по массе, сделает возможным формирование медицинского контейнера с подходящей термостойкостью, который в наименьшей степени страдает от ухудшения свойств контейнера, даже при стерилизации с использованием пара под высоким давлением при температуре 121°C. Однако для того, чтобы добиться более стабильного уровня термостойкости и превосходного сопротивления слипанию, содержание ПЭВП в самом наружном слое 13 предпочтительно составляет по меньшей мере 30% по массе, более предпочтительно 70% по массе или более и наиболее предпочтительно 100% по массе.
Однако другие полимеры также могут входить в состав самого наружного слоя 13 в целях увеличения стабильности формования, и в таких случаях содержание ПЭВП может быть изменено соответствующим образом. Примеры таких других полимеров включают полиолефины, отличающиеся от ПЭВП, и другие полиэтиленовые полимеры, например, особенно благоприятным является использование линейного полиэтилена низкой плотности и полиэтилена высокого давления и низкой плотности. Среди них, использование полиэтилена высокого давления и низкой плотности в сочетании с ПЭВП дает более значительное увеличение стабильности формования самого наружного слоя 13. Полиэтилен высокого давления и низкой плотности предпочтительно имеет плотность в диапазоне от 0,910 до 0,935 г/см3 и более предпочтительно от 0,920 до 0,935 г/см3.
Кроме того, самый наружный слой 13 также может включать обычные количества любых добавок, которые, как правило, используются в сфере полимеров, например антистатические средства, антиоксиданты, смазки, противозапотевающие средства, поглотители ультрафиолетовых лучей и нейтрализующие средства, при условии, что добавление этих добавок не ослабляет эффектов настоящего изобретения. Кроме того, самый наружный слой 13 также может подвергаться модифицированию, например, сшиванию с помощью пучка электронов для того, чтобы дополнительно улучшить термостойкость.
Несмотря на то что отсутствуют конкретные ограничения общей толщины многослойного корпуса 10, его толщина в основном находится в диапазоне от 60 до 1000 мкм, и, если принимать во внимание такие факторы, как гибкость и прочность многослойного корпуса 10, то толщина предпочтительно находится в диапазоне от 100 до 600 мкм и более предпочтительно от 100 до 400 мкм.
Несмотря на то что отсутствуют конкретные ограничения толщины каждого слоя, толщина самого внутреннего слоя 11 предпочтительно находится в диапазоне от 5 до 100 мкм, а толщина самого наружного слоя 13 предпочтительно находится в диапазоне от 5 до 100 мкм. Если толщина самого внутреннего слоя 11 составляет менее 5 мкм, то существует вероятность того, что лекарственное средство, содержащееся внутри контейнера, может быть адсорбировано более быстро, тогда как если толщина превышает 100 мкм, то гибкость и качество термосварки многослойного корпуса 10, достигаемые при формировании медицинского контейнера из многослойного корпуса 10, могут ухудшаться. Кроме того, если толщина самого наружного слоя 13 составляет менее 5 мкм, то существует вероятность того, что может ухудшаться термостойкость многослойного корпуса 10, тогда как если толщина превышает 100 мкм, то может ухудшаться прозрачность.
Таким образом, в случае многослойного корпуса 10, состоящего из трех слоев, общая толщина предпочтительно соответствует значению в диапазоне от 60 до 1000 мкм, толщина самого внутреннего слоя 11 предпочтительно соответствует диапазону от 5 до 100 мкм, и толщина самого наружного слоя предпочтительно соответствует диапазону от 5 до 100 мкм, а оставшаяся толщина соответствует толщине промежуточного слоя 12.
В тех случаях, когда многослойный корпус 10, состоящий из трех слоев, представляет собой пленку, толщина самого внутреннего слоя 11 предпочтительно составляет от 5 до 100 мкм, толщина промежуточного слоя 12 предпочтительно составляет от 50 до 300 мкм, а толщина самого наружного слоя предпочтительно составляет от 5 до 100 мкм.
Как описано выше, многослойный корпус 10, изображенный на фиг.1, состоит из трех слоев, из которых самый внутренний слой 11, состоящий из циклического полиолефина, и самый наружный слой 13, содержащий ПЭВП, удобно соединены вместе с помощью промежуточного слоя 12, расположенного между ними, и, несмотря на то, что эта структура обладает удовлетворительными свойствами для применения в качестве многослойного корпуса 10 для медицинского контейнера, один или несколько дополнительных слоев может быть предоставлено между промежуточным слоем 12 и самым наружным слоем 13, что создаст многослойный корпус из четырех слоев или более для того, чтобы придать структуре другие дополнительные свойства. Примеры таких дополнительных слоев включают слой газоизоляционного полимера, сформированный из сополимера этилена-винилового спирта или чего-то подобного, слой адгезивного полимера, сформированный из этилен-винилацетатного сополимера или чего-то подобного, слой, не пропускающий ультрафиолет, который сформирован из полиолефинового полимера, содержащего оксид железа или что-то подобное, или слой, поглощающий кислород, который сформирован из соли кобальта и полиамидного полимера, такого как MXD нейлон, полученный из ксилилендиамина и α,ω-линейной алифатической двухосновной кислоты, например адипиновой кислоты.
Кроме того, многослойный корпус не обязательно должен иметь конфигурацию многослойного корпуса 10 в виде пленки, например, показанного на фиг.1, и, что подробно описано далее, также может принимать трехмерную форму многослойного корпуса, такого как корпус, формованный раздувом, который сформован с использованием способа многослойного формования раздувом (способ многослойного полого формования).
Медицинский контейнер по настоящему изобретению относится к отсеку для хранения медицинской жидкости, где по меньшей мере отсек для хранения сформирован из многослойного корпуса, описанного выше. Многослойный корпус расположен так, чтобы самый внутренний слой формировал внутреннюю поверхность отсека для хранения и самый наружный слой формировал наружную поверхность. Кроме того, помимо отсека для хранения, обычно медицинский контейнер содержит область отверстия, которая играет роль отверстия для введения и извлечения медицинской жидкости.
Конкретные примеры медицинского контейнера по настоящему изобретению описаны ниже со ссылками на рисунки.
На фиг.2 представлен медицинский контейнер 20, в котором отсек для хранения 21 и область отверстия 22 сформованы интегрированным образом с помощью способа многослойного формования раздувом. Верхний отсек этого медицинского контейнера 20 выполняет функцию части для подвешивания 23, которая имеет сформированное в ней отверстие для подвешивания, тогда как нижняя область отверстия 22 герметически закрыта резиновой пробкой 22a, которая изготовлена с использованием способа литьевого формования, чтобы предоставить слой синтетического полимера, который может быть приварен к самому внутреннему слою 11 вокруг внешней периферии по бокам от круглого резинового материала цилиндрической формы, который можно проколоть инъекционной иглой.
Этот медицинский контейнер 20 может быть изготовлен с помощью обычного способа многослойного формования раздувом с использованием установки для многослойного формования раздувом. Другими словами, экструдируют многослойную заготовку для выдувания и затем вставляют в форму для литья под давлением, после чего в многослойную заготовку для выдувания закачивают очищенный воздух. С использованием формы для литья под давлением, которая позволяет интегральным образом формовать отсек для хранения 21 и область отверстия 22, медицинский контейнер 20, изображенный на фиг.2, может быть сформирован из полого корпуса, формованного раздувом. Кроме того, точность передачи формы для литья под давлением можно улучшить, когда, перед тем как вставить многослойную заготовку для выдувания в форму для литья под давлением, предварительно проводят предварительное раздувание с использованием очищенного воздуха, и затем, после закрытия формы для литья под давлением, осуществляют укладку внутри формы для литья под давлением при отрицательном давлении с использованием вакуумных отверстий, предусмотренных в форме для литья под давлением.
Другие возможные способы формирования области отверстия, помимо описанного выше способа многослойного формования раздувом, в котором область отверстия интегрированным образом сформирована вместе с отсеком для хранения, включают способы, например, показанные на фиг.3 и описанные ниже, в которых отдельно изготовленная цилиндрическая деталь прикрепляется к отсеку для хранения с помощью термосварки, и способы, в которых цилиндрическая деталь предоставлена в виде вставки, используемой в способе формования раздувом со вставкой, которую объединяют с отсеком для хранения во время процесса формования. В тех случаях, когда используется деталь цилиндрического типа, в дополнение к тем конфигурациям, в которых резиновая пробка 22a вставлена внутрь цилиндрической детали для герметизации контейнера, возможна другая конфигурация, в подробностях описанная ниже со ссылкой на фиг.3(B),