Фрезерная головка и режущая фрезерная пластина с подачей охлаждающей жидкости
Иллюстрации
Показать всеИзобретение относится к машиностроению и может быть использовано на операциях фрезерования. Режущая пластина содержит корпус режущей пластины с по меньшей мере одной зоной резания и проточный канал для входа охлаждающей жидкости, через который она может протекать. Корпус выполнен с передней поверхностью, содержащей по меньшей мере одну отдельную выемку, сообщающуюся с проточным каналом для входа охлаждающей жидкости, соответствующую зоне резания и проходящую в направлении соответствующей зоны резания в радиальном направлении наружу. Отдельная выемка имеет глубину относительно передней поверхности, уменьшающуюся в радиальном направлении наружу. Узел режущей пластины содержит корпус режущей пластины и отклоняющее устройство, примыкающее к корпусу режущей пластины. Оно выполнено с впускным отверстием, выровненным с проточным каналом, и с желобком, сообщающимся с впускным отверстием и выровненным в направлении одной выбранной зоны резания, для образования канала для прохождения охлаждающей жидкости в направлении выбранной зоны резания. Узел фрезерной головки содержит корпус фрезерной головки, корпус режущей пластины и отклоняющее устройство. Улучшается поступление охлаждающей жидкости в зону контакта между режущей пластиной и заготовкой, улучшаются условия резания. 4 н. и 35 з.п. ф-лы, 30 ил.
Реферат
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Изобретение касается фрезерной головки, а также режущей фрезерной пластины, используемых для выполнения операций стружкообразования и удаления материала. Более конкретно данное изобретение имеет отношение к фрезерной головке, а также к режущей фрезерной пластине, используемым для выполнения операций стружкообразования и удаления материала, где для снижения избыточного тепла в зоне контакта между режущей пластиной и образовавшимися стружками реализована улучшенная подача охлаждающей жидкости в место, расположенное рядом с зоной контакта между режущей фрезерной пластиной и рабочей заготовкой (например, зона контакта между режущей пластиной и образовавшимися стружками).
При выполнении операции стружкообразования и удаления материала (например, операции фрезерования) в зоне контакта между режущей фрезерной пластиной и местом снятия стружки с рабочей заготовки генерируется тепло (например, зона контакта между режущей пластиной и образовавшимися стружками). Хорошо известно, что излишнее тепло может оказать отрицательное воздействие на срок службы режущей фрезерной пластины (то есть снизить или укоротить его). Можно определить, что более короткий срок службы фрезы приводит к увеличению операционных затрат и снижению общей производительности металлообработки. Отсюда возникают легко воспринимаемые как очевидные преимущества, связанные с уменьшением уровня тепла в зоне контакта между режущей пластиной и образовавшимися стружками.
В этом отношении в патенте США № 6053669, выданном Лагербергу, обсуждается важность снижения уровня тепла в зоне контакта между режущей пластиной и образовавшимися стружками. Если говорить более конкретно, то Лагерберг упоминает о том, что при достижении режущей фрезерной пластиной, изготовленной из твердых сплавов, определенной температуры ее сопротивление пластической деформации уменьшается. Уменьшение пластической деформации повышает риск поломки режущей фрезерной пластины. В патенте США № 5775854, выданном Уэртхейму, указывается, что повышение рабочей температуры приводит к снижению твердости режущей пластины с последующим возрастанием ее износа. В каждом из патентов, выданных Лагербергу и Уэртхейму, обсуждается важность подачи охлаждающей жидкости в зону контакта между режущей пластиной и образовавшимися стружками.
В других патентных документах раскрываются различные методы или системы для подачи охлаждающей жидкости в зону контакта между режущей пластиной и стружками. В этом отношении патент США № 6045300, выданный Энтону (Antoun), раскрывает применение поступления больших объемов охлаждающей жидкости под высоким давлением для решения проблемы теплообразования в зоне контакта между режущей фрезерной пластиной и образовавшимися стружками. В опубликованной заявке на патент США № 2003/00820118, поданной Кремером, показано применение канавок, расположенных между режущей фрезерной пластиной и верхней пластиной. Через эти канавки протекает охлаждающая жидкость, предназначенная для устранения тепла, которое генерируется в зоне контакта между режущей головкой и стружками. В патенте США № 5901623, выданном Хонгу, показана система подачи охлаждающей жидкости, в качестве которой используется жидкий азот, в зону контакта между режущей фрезерной пластиной и образовавшимися стружками.
Легко становится очевидным тот факт, что при выполнении операции стружкообразования и удаления материала более высокие рабочие температуры в зоне контакта между режущей пластиной и образовавшимися стружками могут оказать пагубное влияние на срок службы фрезы, которое приведет к ее преждевременной поломке и/или чрезмерному износу. Отсюда, крайне желательно обеспечить создание такой шпиндельной бабки фрезерного станка (например, фрезерной бабки), а также режущей пластины (например, режущей фрезерной пластины), используемой для выполнения операций стружкообразования и удаления материала, которые отличаются тем, что в зону контакта между режущей фрезерной пластиной и рабочей заготовкой осуществляется улучшенная подача охлаждающей жидкости (то есть в зону контакта между режущей пластиной и образовавшимися стружками, представляющую собою место на рабочей заготовке, где происходит стружкообразование).
При выполнении операции фрезерования стружки, отсоединяемые от рабочей заготовки, могут иногда прилипать (например, в результате сваривания) к поверхности режущей пластины (например, режущей фрезерной пластины). Возникающее таким образом нагромождение налипших стружек на режущей пластине является нежелательным фактом, который может отрицательно повлиять на рабочие характеристики режущей пластины и, следовательно, на всю операцию по удалению налипшего материала.
Таким образом, будет крайне желательным создание узла режущего инструмента (например, узла фрезерной головки), а также режущей пластины (например, режущей фрезерной пластины), используемых для выполнения операций стружкообразования и удаления материала, в процессе которых в зону контакта между режущей пластиной и образовавшимися стружками осуществляется увеличенная подача охлаждающей жидкости, что улучшает смазывание зоны контакта между режущей пластиной и образовавшимися стружками. Результатом улучшения смазывания зоны контакта между режущей пластиной и стружками является снижение тенденции их прилипания к режущей пластине.
При выполнении таких операций металлообработки резанием, как, например, фрезерование, могут возникать ситуации, когда стружки, прилипая к режущей пластине, не выходят за пределы зоны контакта между режущей пластиной и образовавшимися стружками. Когда стружки не выходят за пределы зоны контакта между режущей пластиной и образовавшимися стружками, существует вероятность их повторного разрезания. Нежелательно, чтобы режущая пластина фрезы повторно разрезала стружки после их снятия с рабочей заготовки. Поток охлаждающей жидкости, подаваемый в зону контакта между режущей пластиной и образовавшимися стружками, облегчит их удаление из этой зоны, в результате чего минимизируется вероятность повторного разрезания стружек.
Таким образом, будет крайне желательным создание группы узлов системы режущего инструмента (например, узла фрезерной головки), а также режущей пластины (например, режущей фрезерной пластины), используемых для выполнения операций стружкообразования и удаления материала, при которых в зону контакта между режущей пластиной и образовавшимися стружками осуществляется увеличенная подача охлаждающей жидкости, которая приводит к снижению вероятности повторного разрезания стружек. Результатом увеличенного потока охлаждающей жидкости в зону контакта между режущей пластиной и образовавшимися стружками является улучшенное удаление стружек вблизи зоны контакта с последующим снижением вероятности повторного разрезания стружек.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В одном из вариантов выполнения изобретение представляет собой режущую пластину, используемую при стружкообразовании и для удаления материала и на которую подается охлаждающая жидкость. Режущая пластина включает корпус режущей пластины, имеющий, по меньшей мере, одну зону резания. Корпус режущей пластины содержит проточный канал для входа охлаждающей жидкости, через который она может протекать. Корпус режущей пластины имеет переднюю поверхность, содержащую, по меньшей мере, одну отдельную выемку, сообщающуюся с проточным каналом для входа охлаждающей жидкости. Отдельная выемка соответствует зоне резания и проходит в направлении зоны резания.
В другом варианте выполнения изобретение представляет собой узел режущей пластины, используемый при стружкообразовании и для удаления материала, при этом узел режущей пластины устанавливается в гнездо корпуса режущего инструмента, при этом охлаждающая жидкость может вытекать из отверстия в гнезде. Узел режущей пластины содержит корпус режущей пластины, имеющий, по меньшей мере, две отдельные зоны резания. Корпус режущей пластины содержит проточный канал для входа охлаждающей жидкости, выровненный с отверстием в гнезде для протекания охлаждающей жидкости по этому проточному каналу для входа охлаждающей жидкости. Корпус режущей пластины включает переднюю поверхность, содержащую, по меньшей мере, две отдельные выемки, при этом каждая из них соответствует одной из зон резания. Каждая из отдельных выемок проходит в направлении соответствующей ей зоны резания. Узел режущей пластины содержит отклоняющее устройство, примыкающее к корпусу режущей пластины, при этом отклоняющее устройство имеет впускное отверстие, выровненное с проточным каналом для входа охлаждающей жидкости для приема охлаждающей жидкости в проточный канал для входа охлаждающей жидкости. Отклоняющее устройство содержит желобок для охлаждающей жидкости, сообщающийся с впускным отверстием и выровненный в направлении одной выбранной зоны резания, в результате чего желобок для охлаждающей жидкости и отдельная выемка, соответствующая выбранной зоне резания, образуют канал для прохождения охлаждающей жидкости в направлении выбранной зоны резания.
В еще одном варианте выполнения изобретение представляет собой отклоняющее устройство, используемое в комбинации с режущей пластиной. Отклоняющее устройство содержит центральную часть, содержащую впускное отверстие для приема потока охлаждающей жидкости из режущей пластины. Центральная часть дополнительно содержит желобок для охлаждающей жидкости, сообщающийся со впускным отверстием. Желобок для охлаждающей жидкости проходит в радиальном направлении наружу от впускного отверстия. Желобок для охлаждающей жидкости содержит удаленный конусообразный фланец.
В еще одном варианте выполнения изобретение представляет собой узел фрезерной головки, используемый при стружкообразовании и для удаления материала, при этом охлаждающая жидкость подается к фрезерной головке из источника охлаждающей жидкости. Фрезерная головка содержит корпус фрезерной головки, содержащий емкость для охлаждающей жидкости, сообщающуюся с источником охлаждающей жидкости. Корпус фрезерной головки дополнительно содержит гнездо с отверстием, сообщающимся с емкостью для охлаждающей жидкости. Именно корпус режущей пластины имеет, по меньшей мере, две отдельные зоны резания. Корпус режущей пластины содержит проточный канал для входа охлаждающей жидкости, выровненный с отверстием в гнезде для прохождения охлаждающей жидкости через проточный канал для входа охлаждающей жидкости. Корпус режущей пластины имеет переднюю поверхность, по меньшей мере, с двумя отдельными выемками, при этом каждая из них соответствует одной зоне резания и проходит в направлении соответствующей ей зоны резания. Имеется отклоняющее устройство, примыкающее к корпусу режущей пластины, причем отклоняющее устройство имеет впускное отверстие, выровненное с проточным каналом для входа охлаждающей жидкости для приема ее в этот проточный канал для входа охлаждающей жидкости. Отклоняющее устройство включает желобок для охлаждающей жидкости, сообщающийся со впускным отверстием и выровненный с выбранной зоной резания, в результате чего желобок для охлаждающей жидкости и отдельная выемка, соответствующая одной из выбранных зон резания, образуют канал для прохождения потока охлаждающей жидкости в направлении выбранной зоны резания.
КРАТКОЕ ОПИСАНИЕ ФИГУР
Ниже представлено краткое описание чертежей, которые составляют часть данной патентной заявки:
На ФИГ. 1 представлена аксонометрическая проекция конкретного осуществления узла фрезерной головки, при этом корпус фрезерной головки содержит гнезда, расположенные через интервалы по окружности, и некоторые из этих гнезд показаны пустыми (то есть без узла режущей фрезерной пластины в этом месте), а два гнезда показаны как те, что содержат узел режущей фрезерной пластины, где стрелками показано движение потока охлаждающей жидкости;
На ФИГ. 2 представлена аксонометрическая горизонтальная проекция одного гнезда, которое находится на режущем краю корпуса фрезерной головки, где показана направляющая вогнутая поверхность и участок опорной поверхности и где гнездо демонстрируется в окружении корпуса фрезерной головки, показанном на фигуре с внутриобъемными деталями;
На ФИГ. 3 представлена аксонометрическая боковая проекция одного гнезда, которое находится на режущем краю корпуса фрезерной головки, где показаны направляющая вогнутая поверхность и участок опорной поверхности, и отличается тем, что демонстрируется в окружении корпуса фрезерной головки, показанном на рисунке с внутриобъемными деталями;
На ФИГ. 4 представлена увеличенная аксонометрическая проекция гнезда, обведенного кружком 4 на ФИГ. 2;
На ФИГ. 5 представлена увеличенная аксонометрическая проекция гнезда, обведенного кружком 5 на ФИГ. 3;
На ФИГ. 6 представлена аксонометрическая проекция узла фрезерной головки на ФИГ. 1, где показан корпус фрезерной головки вместе с крышкой емкости и стопорным винтом, которые отделены от корпуса фрезерной головки с целью представления центральной емкости для охлаждающей жидкости, где прохождение потока охлаждающей жидкости указано стрелками;
На ФИГ. 7 представлена боковая проекция стопорного винта на ФИГ. 6, часть которого отделена для показа центрального расточенного отверстия, и вспомогательных наклонных расточенных отверстий его, отличающаяся тем, что прохождение потока охлаждающей жидкости указано стрелками;
На ФИГ. 8 представлен вид сверху крышки емкости на ФИГ. 6;
На ФИГ. 9 представлен поперечный вид крышки емкости, взятый вдоль линии сечения 9-9 на ФИГ. 8;
На ФИГ. 10 представлена аксонометрическая проекция узла режущей фрезерной пластины, представленного на ФИГ. 1, в которой ее компоненты собраны вместе, а прохождение потока охлаждающей жидкости указано стрелками с входом в сторону регулировочной прокладки через удлиненную щель и выходом из режущей фрезерной пластины, расположенной рядом с режущей кромкой, которая касается рабочей заготовки (то есть с режущей кромкой, обрабатывающей рабочую заготовку);
На ФИГ. 11 представлена аксонометрическая проекция одного конкретного осуществления регулировочной прокладки так, как использовано в узле фрезерной головки, показанном на ФИГ. 6, где проточные каналы в регулировочной прокладке показаны пунктирными линиями, а поток охлаждающей жидкости - стрелками;
На ФИГ. 12 представлена аксонометрическая проекция второго конкретного осуществления регулировочной прокладки, пригодной для использования в узле фрезерной головки, показанном на ФИГ. 6, где проточные каналы в регулировочной прокладке показаны пунктирными линиями, а поток охлаждающей жидкости - стрелками;
На ФИГ. 13 представлена аксонометрическая проекция узла режущей фрезерной пластины вместе с компонентами, отделенными вдоль центральной оси, где конкретное осуществление регулировочной прокладки показано на ФИГ. 12, а поток охлаждающей жидкости представлен стрелками;
На ФИГ. 14 представлен вид сверху передней поверхности режущей фрезерной пластины, показанной на ФИГ. 6;
На ФИГ. 14A представлено поперечное сечение режущей фрезерной пластины, показанной на ФИГ. 14, взятое вдоль линии сечения 14A-14A на ФИГ. 14;
На ФИГ. 14В представлено поперечное сечение режущей фрезерной пластины, показанной на ФИГ. 14, взятое вдоль линии сечения 14В-14В на ФИГ. 14;
На ФИГ. 14С представлена аксонометрическая проекция режущей фрезерной пластины, показанной на ФИГ. 14;
На ФИГ. 15 представлена аксонометрическая проекция первого конкретного осуществления элемента отклоняющего устройства;
На ФИГ. 16 представлен вид снизу элемента отклоняющего устройства, показанного на ФИГ. 15;
На ФИГ. 16А представлено поперечное сечение элемента отклоняющего устройства, показанного на ФИГ. 16, взятое вдоль линии сечения 16А-16А на ФИГ. 16;
На ФИГ. 16В представлен вид сбоку элемента отклоняющего устройства, показанного на ФИГ. 16;
На ФИГ. 16С представлено поперечное сечение элемента отклоняющего устройства, показанного на ФИГ. 16, взятое вдоль линии сечения 16С-16С на ФИГ. 16;
На ФИГ. 16D представлено поперечное сечение скомпонованной режущей фрезерной пластины и элемента отклоняющего устройства, взятое вдоль линии сечения, как правило, в том же направлении, что и направление, указанное на ФИГ. 14B, где показан поток охлаждающей жидкости, поступающий в узел режущей фрезерной пластины и элемента отклоняющего устройства, а также выход охлаждающей жидкости и ниже плоскости резания;
На ФИГ. 17 представлена аксонометрическая проекция левостороннего варианта элемента отклоняющего устройства, представленного на ФИГ. 15, показанная в сочетании с режущей фрезерной пластиной (с представлением внутриобъемных деталей), где этот элемент отклоняющего устройства выборочно располагается так, чтобы направить поток охлаждающей жидкости (показанный стрелками) в направлении выбранной режущей кромки, находящейся в положении касания рабочей заготовки;
На ФИГ. 18 представлена аксонометрическая проекция правостороннего варианта элемента отклоняющего устройства, показанного в сочетании с режущей фрезерной пластиной (с представлением внутриобъемных деталей), где этот элемент отклоняющего устройства выборочно располагается так, чтобы направить поток охлаждающей жидкости (показанный стрелками) в направлении выбранной режущей кромки, находящейся в положении касания рабочей заготовки;
На ФИГ. 19 представлена аксонометрическая проекция двунаправленного элемента отклоняющего устройства, показанного в сочетании с режущей фрезерной пластиной (с представлением внутриобъемных деталей), где этот элемент отклоняющего устройства выборочно располагается так, чтобы направить поток охлаждающей жидкости (показанный стрелками) в направлении выбранной режущей кромки, находящейся в положении касания рабочей заготовки;
На ФИГ. 20 представлена аксонометрическая проекция другого конкретного варианта выполнения узла для фрезерной головки - предмета изобретения, отличающейся тем, что корпус фрезерной головки содержит гнезда, расположенные через интервалы по окружности, где некоторые из этих гнезд показаны пустыми (то есть, без узла режущей фрезерной пластины в этом месте), а два гнезда показаны как те, что содержат узел режущей фрезерной пластины, где стрелками показано движение потока охлаждающей жидкости;
На ФИГ. 21 представлена аксонометрическая проекция узла режущей фрезерной пластины, где ее компоненты собраны вместе, а прохождение потока охлаждающей жидкости указано стрелками с входом через проточный канал в нижней поверхности другого конкретного осуществления регулировочной прокладки и выходом через режущую фрезерную пластину, расположенную рядом с режущей кромкой, которая касается рабочей заготовки;
На ФИГ. 22 представлена аксонометрическая проекция узла режущей фрезерной пластины, показанного на ФИГ. 21, компоненты которого отделены вдоль центральной оси;
На ФИГ. 23 представлен вид сверху другого конкретного осуществления режущей фрезерной пластины, где две конкретные выемки соответствуют каждой из режущих кромок.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Если обратиться к чертежам, то ФИГ. 1 иллюстрирует конкретное осуществление изобретения в виде узла фрезерной головки, в общем случае обозначенного как 40, где узел фрезерной головки 40 предназначен для использования при выполнении операций стружкообразования и удаления материала (или узел фрезерной головки предназначен для использования при удалении материала в результате образования стружек). При выполнении такой операции материал удаляется от рабочей заготовки. При выполнении операции узел фрезерной головки 40 вращается в направлении, указанном стрелкой “R”.
Узел фрезерной головки 40 содержит корпус фрезерной головки, который в общем случае имеет цилиндрическую форму и обозначена как 42, а ее режущий край с окружной поверхностью 46 - как 44. Узел фрезерной головки 40, кроме того, содержит цельный зависимый кольцевой выступ 48, который при движении вниз зависит (как видно на ФИГ. 1) от режущего края 44. В этом конкретном осуществлении узел фрезерной головки 40, кроме того, содержит множество отделенных друг от друга гнезд, обычно обозначаемых как 52 и расположенных на окружной поверхности 46 режущего края 44. Как будет более подробно описано далее, каждое гнездо 52 принимает и надежно удерживает узел режущей фрезерной пластины в этом месте.
Следует принять во внимание тот факт, что корпус 42 фрезерной головки может содержать множество гнезд, отличных от того, которое показано в данном конкретном осуществлении. Кроме того, также следует принять во внимание тот факт, что интервал между гнездами может отличаться от того, который показан в этой работе. В этом отношении количество и местоположение гнезд может меняться в зависимости от конкретного применения узла фрезерной головки. Заявители не имеют намерения ограничивать область применения изобретения такими конкретными геометрическими характеристиками корпуса фрезерной головки и такой ориентацией гнезд в этом месте, как те, что показаны на чертежах данной работы.
Каждое гнездо 52 имеет ведущую вогнутую поверхность 54 и участок опорной поверхности (смотри консоль 60 на ФИГ. 1 и 5), который прилегает к ведущей вогнутой поверхности 54 и замыкает ее. Переходной участок 58 обеспечивает переход между вогнутой поверхностью 54 и участком опорной поверхности 60. В контексте данного изобретения термины «ведущий» и «замыкающий» (а также подобные и связанные с этим термины) указывают на относительное положение структурных аспектов гнезда и узла режущей фрезерной пластины касательно работы узла режущей головки. Например, при указании на один и тот же компонент часть того, что обозначается как «ведущий», при вращении находится впереди того, что обозначается как «замыкающий», во время работы, выполняемой узлом фрезерной головки. В использовании этих относительных терминов отсутствует намерение ограничить с их помощью область применения изобретения, а присутствует лишь желание определить различные особенности одной структуры по отношению к другой.
Участок опорной поверхности 60 охватывает опорную поверхность 62 на замыкающем конце участка опорной поверхности 60. Опорная поверхность 62 имеет радиально-осевое расположение. Опорная поверхность 62 имеет верхнюю кромку 64 и нижнюю кромку 66. Корпус 42 фрезерной головки содержит закрытое нарезное расточенное отверстие 68, проход которого заканчивается на опорной поверхности 62. В нарезное расточенное отверстие 68 ввинчивается резьбовая крепежная деталь так, как описано ниже. Использование терминов «верхний» и «нижний», а также подобных им, связано с относительной ориентацией структурных компонентов так, как показано при их расположении, проиллюстрированном на ФИГ 1. В использовании этих относительных терминов отсутствует намерение ограничить с их помощью область применения изобретения, а присутствует лишь желание определить различные особенности одной структуры по отношению к другой.
Кроме того, участок опорной поверхности 60 содержит замыкающую наклонную опорную поверхность 74, которая подсоединена к опорной поверхности 62. Корпус 42 фрезерной головки имеет два проточных канала для охлаждающей жидкости 76, которые открываются на замыкающей наклонной опорной поверхности 74 так, как показано на примере впускных отверстий 77. Отверстия 77, расположенные на замыкающей наклонной опорной поверхности 74, можно рассматривать как отверстия в гнездах. Эти проточные каналы для охлаждающей жидкости 76 обеспечивают канал для прохождения потока охлаждающей жидкости на режущую фрезерную пластину, которая располагается в гнезде так, как будет описано далее. На ФИГ. 1 стрелками показано протекание потока охлаждающей жидкости из проточных каналов для охлаждающей жидкости 76.
Кроме того, участок опорной поверхности 60 содержит ведущую наклонную опорную поверхность 80, которая примыкает к замыкающей наклонной опорной поверхности 74. Когда положение узла режущей фрезерной пластины фиксируется в пределах гнезда, режущая фрезерная пластина покоится на (и поддерживается) ведущей наклонной опорной поверхности 80, а регулировочная прокладка располагается на поддерживающей ее замыкающей наклонной опорной поверхности 74. Следует принять во внимание тот факт, что ведущая наклонная опорная поверхность 80 и замыкающая наклонная опорная поверхность 74 имеют радиально-осевое расположение.
Кроме того, участок опорной поверхности 60 содержит опорную поверхность фиксатора 84, которая примыкает к ведущей опорной наклонной поверхности 80. Плечевое соединение 86 связывает ведущую наклонную опорную поверхность 80 с опорной поверхностью фиксатора 84. Другое плечевое соединение 88 обеспечивает переход между опорной поверхностью фиксатора 84 и ведущей вогнутой поверхностью 54. Опорная поверхность фиксатора 84, а также плечевые соединения 86 и 88 имеют радиально-осевое расположение. Корпус 42 фрезерной головки содержит резьбовое отверстие (или прорезь) 90, которое открывается на опорной поверхности фиксатора 84. Резьбовое отверстие 90 сконструировано для установки стопорного штифта, который проходит через фиксатор, при этом содействуя надежному удержанию регулировочной прокладки и режущей фрезерной пластины в гнезде.
Как показано на ФИГ. 6, узел фрезерной головки 42 дополнительно включает центральную емкость для хранения охлаждающей жидкости (или жидкости) 94, сообщающуюся с источником охлаждающей жидкости, обозначенном на ФИГ. 6 как источник охлаждающей жидкости. Центральная емкость для хранения охлаждающей жидкости 94 определяется (по меньшей мере, частично) выступающей и направленной вверх центральной перегородкой 96, которая ориентирована в верхнем направлении (или в общем случае имеет вертикальную ориентацию так, как видно на ФИГ. 6). Выступающая вверх перегородка 96 проходит вертикально от нижней поверхности 98 корпуса 42 фрезерной головки, при этом нижняя поверхность 98 также определяет (частично) местоположение центральной емкости для хранения охлаждающей жидкости 94. Как видно на ФИГ. 6, центральная выступающая вверх перегородка 96 имеет верхний край 100.
Центральная выступающая вверх перегородка 96 содержит множество пар проточных каналов для охлаждающей жидкости 76, которые обеспечивают прохождение жидкости между емкостью для хранения охлаждающей жидкости 94 и гнездом 52. Каждая пара проточных каналов для охлаждающей жидкости 76 соответствует гнезду 52 в том, что охлаждающая жидкость подается в соответствующее гнездо 52 через соответствующую пару проточных каналов для охлаждающей жидкости 76. Хотя заявители не имеют намерения ограничить свое изобретение проточными каналами 76 для охлаждающей жидкости любого конкретного размера или внутренних геометрических характеристик, они предполагают размер и геометрические характеристики проточного канала 76 для охлаждающей жидкости такими, которые обеспечивают поступление достаточного потока охлаждающей жидкости в соответствующее гнездо и, следовательно, на соответствующую режущую фрезерную пластину, удерживаемую в этом гнезде.
Как показано на ФИГ. 6 и 7, узел фрезерной головки 40 дополнительно содержит стопорный винт, обычно обозначаемый как 106. Как видно на ФИГ. 7, стопорный винт 106 состоит из верхнего конца 108 и нижнего конца 110. Стопорный винт 106 имеет увеличенное сечение по диаметру 112, которое определяет плечевое соединение 114, примыкающее к его верхнему концу 108 стопорного винта. Удлиненный цельный сердечник цилиндрической формы 116 выступает из увеличенного сечения диаметра 112. Стопорный винт 106 содержит расположенное по центру продольное шестигранное расточенное отверстие 118, которое двигается по всей длине узла.
Кроме того, стопорный винт 106 содержит множество расточенных отверстий 124, наклоненных в радиальном направлении и расположенных под углом к продольной оси Z-Z стопорного винта 106. Каждое из наклонных расточенных отверстий 124 обеспечивает проход жидкости между центральным расточенным отверстием 118 и верхним уголковым изгибом округлой формы 122 стопорного винта 106. Эти наклонные расточенные отверстия 124 обеспечивают дополнительные проточные каналы, через которые охлаждающая жидкость может поступать из источника охлаждающей жидкости в емкость для хранения охлаждающей жидкости. Как показано стрелками на ФИГ. 6 и 7, охлаждающая жидкость поступает в шестигранное расточенное отверстие 118, расположенное в нижнем конце стопорного винта 120, и вытекает через расточенное отверстие 118 таким образом, что охлаждающая жидкость выходит из шестигранного расточенного отверстия 118, расположенного на верхнем конце 122 стопорного винта, и перетекает через верхний конец 122 во всех направлениях. Охлаждающая жидкость, как показано стрелками, также выходит из центрального расточенного отверстия 118 через наклонные расточенные отверстия 124. Охлаждающая жидкость, которая выходит из стопорного винта 106 (либо через центральное расточенное отверстие 118 или через наклонные расточенные отверстия 124), затем поступает в центральную емкость для хранения охлаждающей жидкости 94 так, как показано стрелками.
Как показано на ФИГ. 8 и 9, узел фрезерной головки 40 также содержит крышку емкости, которая обычно обозначается как 126 и определяет частично местоположение центральной емкости для хранения охлаждающей жидкости 94. У крышки емкости 126 имеются верхняя поверхность 128 и нижняя поверхность 130. Крышка емкости 126 содержит множество отверстий под болт 132, которые располагаются на равноудаленном расстоянии по окружности крышки емкости 126. Каждое из отверстий под болт 132 приспособлено для установки болта 134 (обратитесь к ФИГ. 6) с целью прикрепления крышки емкости 126 к корпусу 42 фрезерной головки. Кроме того, крышка емкости 126 содержит в целом цельный фланец 136 круговой формы, который содержит множество насечек 138, которые располагаются на равноудаленном расстоянии по окружности фланца 136.
При рассмотрении ФИГ. 10-21 узел фрезерной головки 40 дополнительно содержит множество узлов режущих фрезерных пластин (или режущих пластин) и отличается тем, что каждая из отдельных режущих фрезерных пластин в общем случае обозначается как 150. Следует принять во внимание тот факт, что заявители определили охват термином «режущая поверхность», включающим (без ограничения) все режущие пластины для фрезерной и токарной обработки, а также прочие типы и разновидности режущих пластин, используемых в для обработки рабочей заголовки и удаления материала в такой операции по съему стружек как, например, операция стружкообразования и удаления стружек.
Как очевидно из ФИГ. 1, каждое из гнезд 52 и, в частности, каждый из участков опорной поверхности 60 вмещают и удерживают узел режущей фрезерной пластины 150. Узел режущей фрезерной пластины 150 содержит множество компонентов; а именно: режущую фрезерную пластину (которую в более широком смысле можно рассматривать как режущую пластину), регулировочную прокладку, фиксатор и резьбовые элементы, которые будут более подробно описаны далее по тексту. Как показано на ФИГ. 1 и ФИГ. 10, охлаждающая жидкость уходит из режущей фрезерной пластины на том участке, который примыкает к выбранной зоне резания (или к режущей кромке). Как станет очевидно, существуют три разных варианта выполнения регулировочной прокладки.
Как упоминалось ранее, узел режущей фрезерной пластины 150 имеет в своем составе регулировочную прокладку, обычно обозначаемую как 152. На ФИГ. 10 и 11 показано одно конкретное осуществление регулировочной прокладки 152. Регулировочная прокладка 152 состоит из верхней поверхности 154, нижней поверхности 156 и периферийной задней поверхности (или кромки) 158. Регулировочная прокладка 152 в этом месте содержит три расточенных отверстия. Одно из этих расточенных отверстий является отверстием для крепежной детали 160, которая вмещает резьбовой элемент 164, прикрепляющий регулировочную прокладку 152 и режущую фрезерную головку к узлу режущей головки 42 способом, известным специалистам в предметной области. Регулировочная прокладка 152 также имеет четыре уголковых изгиба (162A, 162B, 162C, 162D), которые отличаются тем, что уголковые изгибы 162B и 162C являются острыми, а уголковые изгибы 162 A и 162D - плоскими, определяемыми плоской поверхностью.
Каждое из других двух расточенных отверстий, которые сообщаются друг с другом для прохождения жидкости и находятся на регулировочной прокладке 152, обеспечивает проточный канал для охлаждающей жидкости для прохождения ее из проточного канала 76 для охлаждающей жидкости, который открывается в замыкающей наклонной опорной поверхности 74, на верхнюю поверхность 154 регулировочной прокладки 152. Эти два расточенных отверстия совместно можно рассматривать как внутренний проточный канал для охлаждающей жидкости. Одно из этих расточенных отверстий представляет собой удлиненную щель 166, которая открывается в направлении одной из периферийных боковых режущих кромок 158, а его проход простирается в радиальном направлении вовнутрь до пересечения с проходом другого расточенного отверстия, которым является центральное расточенное отверстие 168. Центральное расточенное отверстие 168 открывается на верхней поверхности 154 регулировочной прокладки 152. Как показано стрелками, охлаждающая жидкость проходит через щель 166 и поступает в центральное расточенное отверстие 160. Как будет описано далее, охлаждающая жидкость (в направлении, указанном вертикальными стрелками на ФИГ. 11) из центрального расточенного отверстия 168 поступает на режущую фрезерную пластину.
На ФИГ. 12 показано альтернативное осуществление регулировочной прокладки. В этом отношении регулировочная прокладка, обычно обозначаемая как 170, содержит верхнюю поверхность 172, нижнюю поверхность 174 и периферийную заднюю поверхность или кромку 176. В корпусе регулировочной прокладки 170 имеются четыре расточенных отверстия. Одно расточенное отверстие 178 является тем отверстием, которое предназначено для установки крепежной детали и ввода резьбового элемента 182, который прикрепляет регулировочную прокладку 170 и режущую фрезерную пластину к узлу фрезерной головки 42 способом, известным специалистам стандартной квалификации из соответствующей предметной области. Регулировочная прокладка 170 имеет четыре уголковых изгиба (180A, 180B, 180C, 180D), которые отличаются тем, что уголковые изгибы 180B и 180C являются острыми, а уголковые изгибы 180 A и 180D - плоскими, определяемыми плоской поверхностью.
Два других расточенных отверстия обеспечивают проточный канал для охлаждающей жидкости для протекания ее из проточного канала 76 для охлаждающей жидкости, который открывается на замыкающей наклонной опорной поверхности 74, к верхней поверхности 172 регулировочной прокладки 170. Эти два расточенных отверстия совместно можно рассматривать как внутренний проточный канал для охлаждающей жидкости. Одно из этих расточенных отверстий представляет собой удлиненную щель 184, которая открывается на одну из периферийных задних поверхностей 176, а ее проход простирается в радиальном направлении вовнутрь до пересечения с проходом центрального расточенного отверстия 186. Центральное расточенное отверстие 186 открывается на верхнюю поверхность 172 регулировочной прокладки 170.
И, наконец, четвертое расточенное отверстие, которое является радиальным отверстием 188, обеспечивает проточный канал для текучей среды для прямого поступления охлаждающей жидкости в направлении периферийной поверхности регулировочной прокладки 170, которая примыкает к режущей кромке фрезерной пластины, занятой обработкой рабочей заготовки. В этом отношении радиальное расточенное отверстие 188 для прохождения жидкости сообщено с удлиненной щелью 184 в такой способ, что, по меньшей мере, часть охлаждающей жидкости, поступающая в щель 184, протекает в радиальное расточенное отверстие 188. Радиальное расточенное отверстие 188 можно рассматривать как радиальный проточный канал для охлаждающей жидкости, который связан с внутренним проточным каналом для охлаждающей жидкости.
Радиальное расточенное отверстие 188 располагается так,