Инерционный двигатель богданова

Иллюстрации

Показать все

Изобретение относится к инерционным двигателям, выполненным с возможностью создания реактивной тяги. Инерционный двигатель содержит, по крайней мере, одну систему с движителем и маховик с рабочим телом. Вокруг маховика выполнена турбина, а маховик выполнен с возможностью подавать рабочее тело на внутреннюю рабочую поверхность турбины. В другом варианте вокруг маховика выполнена спираль или кольцо с желобом на внутренней поверхности, обращенной к оси вращения маховика, а на выходе из спирали или кольца выполнено отверстие с возможностью выхода из отверстия ускоренного рабочего тела. Изобретение позволяет создавать тягу в безвоздушном космическом пространстве. 24 з.п. ф-лы, 12 ил.

Реферат

Изобретение относится к области реактивных двигателей. Может быть использовано в авиации и космонавтике для создания летательных аппаратов.

Кроме того, изобретение также может быть использовано для перемещения объекта в любом виде транспорта, в том числе, на суше, в воде и под водой.

Кроме того, изобретение также может быть использовано для увеличения возможностей существующих видов транспорта. Например, изобретение может быть использовано для создания летающего автомобиля или летающей подводной лодки.

Известен химический ракетный двигатель [Космические двигатели: состояние и перспективы. Под редакцией Кейвни Л., Москва, Мир, 1988, стр.411], использующий для создания ракетной тяги химическую энергию сгорающего топлива.

Недостатком химического ракетного двигателя является то, что химические ракетные двигатели имеют малое удельное содержание энергии на единицу веса топлива, не более 1,2·107 Дж/кг.

Следующим недостатком химического ракетного двигателя является малая скорость истечения продуктов сгорания химического ракетного топлива, которая не превышает 5,7 км/сек (стр.415).

Известен электромагнитный двигатель Богданова для создания тяги на новых физических принципах [Электромагнитный двигатель Богданова для создания тяги на новых физических принципах. Патент №2200875. Заявка №2000112072. Приоритет 17.05.2000].

Электромагнитный двигатель Богданова для создания тяги на новых физических принципах содержит либо диск, либо кольцо и систему вращения диска или кольца, выполненную с возможностью вращения диска или кольца, при этом кольцо или диск выполнены внутри криостата, причем криостат выполнен с возможностью вращаться вместе с кольцом. При этом диск или кольцо содержит структуру, содержащую 50 слоев сверхпроводника, разделенных диэлектриком с высоким удельным электрическим сопротивлением (электрическим изолятором), или более 50 слоев сверхпроводника, разделенных диэлектриком с высоким удельным электрическим сопротивлением.

Во время вращения диска или кольца, содержащего 50 слоев сверхпроводника, разделенных изолятором, или более 50 слоев сверхпроводника, разделенных изолятором, над каждым слоем сверхпроводника наблюдается уменьшение веса на 2 процента. Это явление нашло экспериментальное подтверждение [Статья на тему «Научные исследования ». Российские ученые открыли антигравитацию. © 2008 ScienceArt.Ru,

http://scienceart.m/researches/rossiyskie_uchenie_otkrili_antigravitaciyu.html].

При этом над двумя слоями вращающегося сверхпроводника наблюдается уменьшение веса на 4 процента, что также нашло экспериментальное подтверждение.

Таким образом, над всеми 50 слоями вращающегося сверхпроводника наблюдается полное уменьшение веса, что позволяет уменьшить затраты энергии при выведении на орбиту (или при полете на другое небесное тело) расположенного над вращающимися структурами со слоями сверхпроводника полезного груза.

Недостатком электромагнитного двигателя Богданова для создания тяги на новых физических принципах является тот факт, что не предусмотрен эффективный механизм, снимающий действие уменьшения гравитации над вращающимся сверхпроводником без выведения его из сверхпроводящего состояния или без выведения его из вращения. Это мешает применению электромагнитного двигателя Богданова во время посадки летательного аппарата с таким двигателем.

Следующим недостатком электромагнитного двигателя Богданова для создания тяги на новых физических принципах является тот факт, что не предусмотрен эффективный механизм быстрого снятия и восстановления уменьшения гравитации над вращающимся сверхпроводником без выведения его из сверхпроводящего состояния или без выведения его из вращения с новым созданием ситуации, когда сверхпроводник вращается в сверхпроводящем состоянии. Это затрудняет многократное повторение сочетаний взлета и посадки летательного аппарата с таким двигателем.

Известен электроракетный двигатель Богданова [Богданов И.Г. Электроракетный двигатель Богданова. Патент №2046210. Заявка №5064411. Приоритет изобретения 5 октября 1992 г.], содержащий систему питания, катушку магнитного поля, источники ионизирующего излучения и систему электродов, позволяющую ускорять предварительно ионизованный газ атмосферы создаваемыми электрическими токами и электрическими полями в создаваемых магнитных полях.

При этом электроракетный двигатель Богданова работает как мощный плазменный двигатель корабля многоразового использования (шатлла), работающий как мощный плазменный ракетоноситель.

Электроракетный двигатель Богданова позволяет выводить на орбиту многотонные летательные аппараты либо за счет накопленной в катушке магнитного поля энергии, либо за счет энергии, вырабатываемой ядерным или термоядерным реактором бортовой системы питания. В обоих случаях электроракетный двигатель Богданова в состоянии заменить и превзойти существующие на сегодняшний день ракетоносители, ускоряемые химическим ракетным двигателем.

Недостатком электроракетного двигателя Богданова является сложность конструкции.

Следующим недостатком электроракетного двигателя Богданова является малый КПД работы, обусловленный следующими факторами. КПД перевода тепловой энергии в электрическую энергию обычно не превышает 40 процентов. Лучший КПД работы электроракетных двигателей не превышает 80 процентов. Таким образом, КПД работы электроракетного двигателя Богданова составляет не более 32 процента.

Следующим недостатком электроракетного двигателя Богданова являются значительные потери энергии при охлаждении соленоида до температуры жидкого гелия во время запитки его энергией.

При охлаждении соленоида до температуры жидкого гелия потери энергии на запитку его энергии составляют от 500 до 1000 раз от количества запасенной в нем энергии (но это без использования запатентованного изобретения автора [Способ Богданова изменения количества энергии в магнитной системе и устройство для его реализации. Патент №2295146. Патент зарегистрирован 10 марта 2007. Заявка №2005121237. Дата подачи заявки 7.07.2005], решающего эту проблему). Поэтому создание этого двигателя становится актуальным после развития индустрии реакторов на быстрых нейтронах и реакторов размножителей бридеров, позволяющих получать с единицы веса ядерного топлива примерно в 100 раз больше энергии, чем с традиционного ядерного топлива урана 235 реакторов на медленных нейтронах. Это позволит использовать бросовый уран 238, которого скопилось в отвалах очень много, для получения плутония. Также создание этого двигателя становится актуальным после развития термоядерной энергетики. Также создание этого двигателя становится актуальным при использовании нового способа запитки соленоидов - запатентованного изобретения автора, позволяющего запитать соленоид энергией без потерь энергии в 500-1000 раз, поскольку в этом изобретении основная часть запитки энергией осуществляется в магнитную систему, находящуюся полностью в сверхпроводящем состоянии.

Известен турбореактивный двигатель, представляющий собой авиационный газотурбинный двигатель [Советский энциклопедический словарь. Издательство «Советская Энциклопедия». Москва, 1980 г., стр.1374]. Турбореактивный двигатель содержит входное отверстие, компрессор, турбину, форсажную камеру, сопло и камеру сгорания.

В турбореактивном двигателе тяга создается прямой реакцией потока сжатых газов, вытекающих из сопла.

Недостатком турбореактивного двигателя является малое удельное содержание энергии на единицу веса топлива. Например, удельное содержание энергии на единицу веса керосина составляет 9,05·106 Дж/кг [Бурдаков В.П., Данилов Ю.И. Физические проблемы космической тяговой энергетики. Москва.: Атомиздат. 1969 г., стр.37].

Прототипом изобретения является инерционный двигатель, представляющий собой энергосиловую машину, использующий энергию, запасенную маховиком [Бурдаков В.П., Данилов Ю.И. Физические проблемы космической тяговой энергетики. Москва.: Атомиздат. 1969 г., стр.37]. Инерционный двигатель содержит маховик.

Известен инерционный двигатель, представляющий собой энергосиловую машину, использующий энергию, запасенную маховиком [Советский энциклопедический словарь. Издательство «Советская Энциклопедия», Москва.: 1980 г., стр.498]. Иногда применяется для привода машин, транспортных средств. Например, известен жиробус, гиробус. Жиробус, гиробус [от итал. giro, греческое gyros - круг, оборот и латинское omnibus - для всех], вид аккумуляторного безрельсового транспорта, движущегося за счет кинетической энергии, накопленной в маховике [29]. Некоторое практическое применение с 1955 получили электрожиробусы (ЭЖ), оборудованные маховым агрегатом, состоящим из асинхронного двигателя - генератора, сочлененного с маховиком, и тяговых электродвигателей. Раскручивание маховика ЭЖ осуществляется электродвигателем. Запасенной кинетической энергии достаточно для преодоления расстояния 4-5 км. Кпд ЭЖ не более 50%; материалоемкость махового агрегата составляет 322 кг/кВт·ч (в 32 раза больше, чем у современных электрохимических источников тока).

По удельным эксплуатационным затратам ЭЖ дороже троллейбуса на 5% и автобуса на 20%. Опытные ЭЖ эксплуатировались, например, на междугородных линиях Гент-Мерелбеке (Бельгия). ЭЖ является вспомогательным пассажирским транспортом для коротких трасс, пригодным для обслуживания взрывоопасных объектов.

Недостатком инерционного двигателя является то, что не предусмотрено использование его для полета в безвоздушном космическом пространстве.

Задачей, стоящей перед изобретением, является обеспечение возможности создания тяги в безвоздушном пространстве космоса.

Указанная задача решается тем, что в инерционном двигателе, содержащем маховик, дополнительно маховик содержит рабочее тело и при этом предусмотрена возможность вывода из маховика рабочего тела таким образом, чтобы на выходе из двигателя рабочее тело двигалось в заданном направлении.

В корпусе маховика выполнена полость, при этом в полости выполнено рабочее тело, причем с корпусом маховика соединен клапан или соединена форсунка, при этом клапан выполнен с возможностью дистанционного управления и с возможностью контролировать выход из маховика рабочего тела, и форсунка выполнена с возможностью дистанционного управления и с возможностью контролировать выход из маховика рабочего тела.

Инерционный двигатель выполнен с возможностью соединения с тепловой электростанцией, причем предусмотрена возможность вывода из маховика рабочего тела таким образом, чтобы рабочее тело сталкивалось с топливом тепловой электростанции и нагревало топливо тепловой электростанции.

Инерционный двигатель содержит устройство приведения во вращение маховика, при этом устройство приведения во вращение маховика содержит маховик, кольцо и трубу, соединяющую маховик и кольцо, причем сверху и снизу кольца выполнен ускоряющий зазор, образованный срезами двух расположенных вокруг кольца и обращенных друг к другу электродов, имеющих форму полых полуцилиндров, причем электроды выполнены с возможностью присоединения к генератору.

На кольце выполнена дистанционно управляемая система с аккумулятором, электрически соединенная, по крайней мере, с двумя электрически изолированными друг от друга проводящими пластинами, при этом аккумулятор системы с аккумулятором выполнен с возможностью электрически заряжать, по крайней мере, две проводящие пластины зарядами противоположных знаков.

Инерционный двигатель содержит систему с генератором, выполненным с возможностью вырабатывать электрическую энергию при вращении маховика или кольца, соединенного с маховиком.

Инерционный двигатель содержит магнитный подвес, выполненный с возможностью удерживать на весу маховик во время вращения маховика.

Магнитный подвес содержит сверхпроводящий магнит.

С маховиком соединена турбина, причем маховик соединен с системой охлаждения турбины и выполнен с возможностью подавать рабочее тело на внутреннюю рабочую поверхность соединенной с ним турбины через систему охлаждения турбины.

Вокруг маховика выполнена турбина, причем маховик выполнен с возможностью подавать рабочее тело на внутреннюю рабочую поверхность турбины.

В двух маховиках в качестве рабочего тела выполнено ракетное топливо, при этом в одном маховике в качестве рабочего тела выполнено горючее топлива, а в другом маховике в качестве рабочего тела выполнен окислитель топлива.

Инерционный двигатель содержит систему распыления графитового порошка.

Снизу маховика выполнен криостат, при этом внутри криостата выполнена структура, содержащая, по крайней мере, два сверхпроводящих слоя, разделенных диэлектриком, причем структура выполнена под маховиком в виде кольца.

Снизу маховика выполнен криостат, при этом внутри криостата выполнена система структур со сверхпроводящими слоями, разделенными диэлектриком, содержащая, по крайней мере, два элемента, причем элемент содержит структуру, содержащую, по крайней мере, два слоя сверхпроводника, разделенных диэлектриком, при этом система соединена с системой изменения положения элементов системы структур со сверхпроводящими слоями, разделенными диэлектриком, и выполнена с возможностью дистанционного управления, при этом система изменения положения элементов системы структур со сверхпроводящими слоями, разделенных диэлектриком, выполнена с возможностью получать электрическое питание либо от аккумулятора, либо от генератора, выполненного с возможностью вырабатывать электроэнергию при вращении маховика, при этом система изменения положения элементов системы структур со сверхпроводящими слоями, разделенными диэлектриком, выполнена с возможностью располагать элементы системы структур со сверхпроводящими слоями, разделенными диэлектриком, так, что сверхпроводящие слои соединяются в кольца, расположенные снизу маховика, а также выполнена с возможностью располагать элементы так, что сверхпроводящие слои не соединяются в кольца.

Корпус маховика выполнен полностью из синтетических волокон или армирован синтетическими волокнами.

Корпус маховика выполнен полностью из углеродных нанотрубок или армирован углеродными нанотрубками.

Инерционный двигатель содержит систему с движителем, содержащую маховик, устройство приведения во вращение маховика и спираль или кольцо с желобом на внутренней поверхности, обращенной к оси вращения, при этом спираль или кольцо выполнены вокруг маховика, причем на выходе из спирали или кольца выполнено отверстие с возможностью выхода из отверстия ускоренного рабочего тела.

Система с движителем соединена с поворотным устройством, выполненым с возможностью разворачивать системы с движителем для создания нужного направления вектора тяги.

Со спиралью или с кольцом в области отверстия соединен руль, выполненный с возможностью выдвижения и установки под углом на пути вылета из отверстия ускоренного вылетающего рабочего тела.

С клапаном соединен модулятор, выполненный с возможностью открывать доступ рабочего тело в клапан в строго рассчитанные промежутки времени, при этом модулятор содержит диск с прорезью, соединенный с системой вращения диска.

В качестве рабочего тела выполнена жидкость или дробь.

Инерционный двигатель содержит устройство приведения во вращение маховика, содержащее маховик, выполненный вокруг системы вложенных друг в друга шарикоподшипников, выполненных таким образом, что в паре двух соседних шарикоподшипников внутренний шарикоподшипник вложен во внешний шарикоподшипник таким образом, что шарики или ролики внешнего шарикоподшипника выполнены с возможностью катиться по кольцу внутреннего шарикоподшипника, и таких пар выполнено, по крайней мере, две.

Система с движителем соединена с зарядным устройством, выполненным с возможностью на выходе из маховика заряжать ускоренное рабочее тело электрическим зарядом определенного знака, при этом с зарядным устройством соединено устройство изменения направления потока ускоренного рабочего тела с системой электродов, содержащей, по крайней мере, два электрода.

Система с движителем соединена с источником тока и устройством изменения направления потока ускоренного рабочего тела, содержащим, по крайней мере, одну магнитную катушку.

Система с движителем соединена с автомобилем или выполнена в подводной лодке, при этом, по крайней мере, две системы с движителем соединены с автомобилем или выполнены в подводной лодке.

Такое техническое решение обеспечивает возможность создания тяги в безвоздушном пространстве космоса, поскольку позволяет маховику выбрасывать ускоренное во время вращения рабочее тело в определенном направлении, создавая тем самым реактивную тягу.

Это осуществляется за счет того, что маховик разгоняют вместе с рабочим телом, выполненным в полости корпуса маховика. Затем с помощью дистанционного управления открывают клапан, и ускоренное в ходе вращения рабочее тело за счет центробежных сил выходит из полости, создавая реактивную тягу. Эту реактивную тягу можно использовать при движении объекта в любой среде. И в безвоздушном пространстве открытого космоса, и в воде, и на суше.

Также такое техническое решение обеспечивает возможность увеличить удельное содержание энергии, приходящееся на единицу веса инерционного двигателя больше, чем удельное содержание энергии в химическом топливе за счет того, что в рабочем теле, приведенном во вращении вместе с маховиком, запасенная энергия растет с ростом радиуса со скоростью быстрее, чем возрастают центробежные разрушающие нагрузки.

Также такое техническое решение обеспечивает возможность увеличить скорость истечения рабочего тела по сравнению с химическим ракетным топливом также за счет того, что в рабочем теле, приведенном во вращении вместе с маховиком, запасенная энергия вместе со скоростью растет с ростом радиуса быстрее, чем возрастают центробежные разрушающие нагрузки.

За счет этого такое техническое решение позволит при радиусе стального маховика 8 м скорость истечения рабочего тела увеличить до скорости 53,38 км/сек.

Это превышает максимальную скорость истечения продуктов сгорания химического ракетного топлива, которая не превышает 5,7 км/сек [2], в 9,37 раз.

Однако для существенного увеличения удельного содержания энергии в маховиках есть дополнительные возможности. Для этого, например, можно использовать для изготовления маховика новые материалы: синтетические волокна и, в первую очередь, углеродные нанотрубки. Синтетические волокна кевлар и углепластик способны увеличить прочность маховика до 20 раз на единицу его веса по сравнению со сталью, углеродные нановолокна способны увеличить этот показатель в сотни раз, поскольку углеродные нановолокна в 78,7 раз прочнее и значительно легче стали. Информация об изготовлении скрученных канатов длиной 10 км опубликована [Популярная механика №2, 2010 год, стр.42].

В другом случае, кевлар может увеличить удельную прочность маховика на единицу его веса по сравнению со сталью в 20 раз, углепластик в диапазоне от 10 до 20 раз, а углеродные нанотрубки могут увеличить его прочность в 78,7 раз [Богданов К.Ю. Как можно вычислить прочность углеродной нанотрубки, 20 марта 2009, http://www.nanometer.ru/2009/03/19/nanotubes_145296.html; http://tarefer.ru/; www.chemnet.ru/rus/jvho/2001-2/56.pdf; http://works.tarefer.ru/94/100071/undex.html; http://e-science.ru/mdex/?id=4630].

Технологии изготовления длинных нанотрубок разработаны в Кембриджском университете для изготовления космического лифта для НАСА. Они разработали, как сделать гигантскую наноконструкцию длиной 230 тысяч километров. Они разработали новый материал для изготовления нанотрубок, а также нашли способ их многократного соединения вместе, чтобы сформировать длинные отрезки [Нанотрубки для космического лифта, РБК daily, понедельник 26 января 2009 года, №11 (574), стр.11].

При изготовлении корпусов маховиков из углеродных нанотрубок маховики способны выдержать центробежную силу в 78,7 раз больше, чем если бы они были выполнены из стали.

За счет этого удельное содержание энергии на единицу их веса может быть сделано порядки больше, чем в маховиках, выполненных из стали.

Это позволит дополнительно повысить удельное содержание энергии в рабочем теле, ускоряемом маховиками, по крайней мере, еще до 78,7 раз, по сравнению с химическим ракетным топливом. И позволит дополнительно повысить скорость истечения рабочего тела еще до 8,871 раз по сравнению со скоростью истечения рабочего тела ракетного двигателя на химическом ракетном топливе.

Соответственно скорость истечения из маховиков рабочего тела с помощью магнитного подвеса может быть увеличена еще до 8,871 раз, и составит 473,5 5 км/сек.

Это превышает максимальную скорость истечения продуктов сгорания химического ракетного топлива, которая не превышает 5,7 км/сек [Космические двигатели: состояние и перспективы. Под редакцией Кейвни Л., Москва, Мир, 1988, стр.415], в 83,07 раз. Соответственно, пропорционально этой величине уменьшится и время полета на другие планеты Солнечной системы, по сравнению с использованием известных ракетных двигателей па химическом ракетном топливе. Так если пилотируемый полет на Марс с возвращением космонавтов обратно занимал бы раньше 2 года, то теперь эти два года при полете на максимальной крейсерской скорости могут быть уменьшены до 8,8 суток. (Естественно, в расчет не принимается время разгона, а только полет на максимальной крейсерской скорости.) А с учетом того, что гравитационные влияния планет на расчет оптимальной траектории полета при таких громадных скоростях истечения рабочего тела не столь сильно влияют на расход топлива и время полета, то итоговое время полета может уменьшиться еще больше. В этом случае траекторию можно максимально приблизить к прямой линии, а прямая, как известно, это ближайшее расстояние между двумя точками.

Соответственно, удельное содержание энергии на единицу веса ускоряемого рабочего тела пропорционально квадрату отношения скоростей истечения рабочего тела, а значит, удельное содержание энергии на единицу веса ускоряемого рабочего тела будет больше в 6900,6 раз.

Кроме того, такое техническое решение дает возможность вращать в маховике топливо и сжигать его таким образом, чтобы использовать для создания тяги не только энергию сгорания топлива, но и его кинетическую энергию, полученную за счет вращения его в маховике.

Кроме того, такое техническое решение дает возможность летать летательному аппарату с таким двигателем в облаке вулканического пепла, что дает ему преимущество перед самолетами, которые не могут летать при извержениях вулкана, поскольку частицы вулканического пепла попадают внутрь двигателей самолетов, расплавляются и превращаются в стекло. Эта паразитная стекловидная масса засоряет двигатель самолета, остывает, затвердевает и портит двигатель самолета. В инерционном двигателе Богданова такого не происходит, поскольку он не забирает внутрь себя воздух, как происходит в самолетах для сжигания горючего, и поэтому не забирает внутрь себя и вулканический пепел.

Не обнаружено технических решений, выполняющих поставленную задачу аналогичными техническими средствами.

На фиг.1 изображена принципиальная схема инерционного двигателя Богданова.

На фиг.2 изображена принципиальная схема устройства приведения во вращение маховика.

На фиг.3 изображена принципиальная схема маховика с рабочим телом и клапаном.

На фиг.4 изображена принципиальная схема кольца устройства приведения во вращение маховика.

На фиг.5 изображена принципиальная схема системы с движителем первого типа.

На фиг.6 изображена принципиальная схема системы с движителем второго типа.

На фиг.7 изображен вид сверху принципиальной схемы инерционного двигателя Богданова.

На фиг.8 изображен вид сверху принципиальной схемы инерционного двигателя Богданова.

На фиг.9 изображен вид спереди принципиальной схемы инерционного двигателя Богданова.

На фиг.10 изображен вид сзади принципиальной схемы инерционного двигателя Богданова.

На фиг.11 изображен местный разрез А-А.

На фиг.12 изображен местный разрез Б-Б.

Инерционный двигатель Богданова, далее просто двигатель Богданова или просто двигатель, состоит из следующих элементов.

В нижней части двигателя на его оси выполнена система 1 с движителем первого типа.

Система 1 с движителем первого типа содержит устройства 2, 3, 4 приведения во вращение маховика. Каждое из устройств 2, 3, 4 приведения во вращение маховика содержит маховик 5, ускоряющий зазор, образованный срезами двух расположенных вокруг кольца 6 и обращенных друг к другу электродов 7, 8, частично имитирующих форму полых полуцилиндров - дуантов [Физическая энциклопедия, 1998 г., т.5, стр.249]. Электроды представляют собой два полукольца, электрически соединенных внутренними периметрами половиной проводящей трубы. Электроды присоединяются к полюсам высокочастотного генератора внешнего источника питания через передающие линии, например, возможно, через четвертьволновые линии.

Электроды 7, 8 присоединяются к полюсам высокочастотного генератора внешнего источника питания через передающие линии. Электроды 7, 8 выполнены с возможностью отсоединения от них перед полетом летательного аппарата или перед приведением в движение другого транспортного средства с двигателем.

На кольце 6 выполнена дистанционно управляемая система 9 с аккумулятором, электрически соединенная с проводящими пластинами 10, 11. Аккумулятор системы 9 с аккумулятором выполнен с возможностью электрически заряжать электрически изолированные друг от друга проводящие пластины 10, 11 зарядами противоположных знаков. Проводящие пластины 10, 11 с разными знаками периодически чередуются друг с другом.

Например, проводящие пластины 10, 11 с разными знаками электрических зарядов выполнены на противоположных сторонах кольца 6. Проводящие пластины 10, 11 выполнены на угловых сегментах кольца 6 с одинаковым периодом чередования друг с другом. Проводящие пластины 10, 11 выполнены с возможностью попеременно находиться в ускоряющем зазоре.

Вместе с системой 9 с аккумулятором или вместо нее могут быть выполнены системы с электрическим генератором, выполненным с возможностью вырабатывать электрическую энергию при вращении кольца или маховика.

Кольцо 6 и маховик 5 удерживают на весу элементы 12, 13, 14, 15 магнитного подвеса, например, содержащие сверхпроводящие магниты.

Элементы 12, 13, 14, 15 магнитного подвеса выполнены сверху и снизу от электродов 7, 8 устройства приведения во вращение маховика с возможностью экранирования элементов от переменных электрических и магнитных полей, создаваемых электродами. Например, вокруг электродов может быть выполнен массивный разомкнутый медный кожух, выполненный с возможностью экранирования переменных электрических и магнитных полей, выполненный по аналогии с аналогичным кожухом, применяемым для аналогичных целей в токамаках.

Неподвижные элементы системы 1 с движителем первого типа крепятся на корпусе 18.

Устройства 2, 3 приведения во вращение маховика условно назовем верхними, а устройство 4 приведения во вращение маховика условно назовем нижним.

К маховикам верхних устройств 2, 3 приведения во вращение маховика прикреплены снизу вдоль периметров маховиков турбины 16, 17. При этом маховики выполнены с возможностью подавать на внутренние рабочие поверхности турбин 16, 17 рабочее тело, например, через внутренние каналы охлаждения и поры турбин, соединенные через систему охлаждения турбин с маховиком. Система охлаждения турбин может содержать дистанционно управляемые клапаны и форсунки, которые дистанционно регулируют подачу рабочего тела на турбину, например, с помощью радио.

Снизу от верхнего устройства 3 приведения во вращение маховика выполнено нижнее устройство 4 приведения во вращение маховика с возможностью подачи на турбину 17 ускоренного рабочего тела. Снизу от верхнего устройства 2 приведения во вращение маховика выполнено верхнее устройство 3 приведения во вращение маховика с возможностью подачи на турбину 16 ускоренного рабочего тела.

Неподвижные элементы системы 1 с движителем первого типа крепятся на корпусе 18.

Все маховики, кроме маховика верхнего устройства 2 приведения во вращение маховика, содержат следующие элементы.

В полости в корпусе 19 каждого маховика выполнено рабочее тело 20. В полости в корпусе 19 каждого маховика, кроме маховика верхнего устройства 2 приведения во вращение маховика, выполнен клапан 21, выполненный с возможностью открываться и закрываться с помощью дистанционного управления, например, с помощью радио. При этом предусмотрена возможность того, что при открытом клапане 21 из внутренней полости корпуса 19 маховика при его вращении рабочее тело 20 вытекает под действием центробежной силы. Боковая поверхность корпуса маховика 19 выполнена наклонной с наклоном в сторону клапана с возможностью направлять центробежной силой рабочее тело в сторону клапана.

Маховик верхнего устройства 2 приведения во вращение маховика соединен с системой охлаждения турбины и выполнен с возможностью подавать свое рабочее тело на внутреннюю рабочую поверхность соединенной с ним турбины 16 через систему охлаждения турбины.

Система охлаждения турбины выполнена с возможностью создавать подобие защитной пленки из рабочего тела на внутренней рабочей поверхности турбины.

Маховик верхнего устройства 3 приведения во вращение маховика соединен с системой охлаждения турбины и выполнен с возможностью подавать свое рабочее тело на внутреннюю рабочую поверхность соединенной с ним турбины 17 через систему охлаждения турбины.

Маховики устройств 2, 3, 4 приведения во вращение маховика выполнены с возможностью подавать ускоренное рабочее тело на турбины 16, 17. Турбины 16, 17 выполнены с возможностью своими лопастями направлять падающее на них рабочее тело вниз с возможностью создавать реактивную тягу.

Первые модели инерционного двигателя Богданова, в которых очень высокая скорость вращения маховиков может еще не быть достигнута, могут быть выполнены с возможностью использовать в своей работе дополнительную тягу, возникающую за счет сгорания химического ракетного топлива.

Для этого в одном или в двух устройствах 2, 3, 4 приведения во вращение маховика в маховике в качестве рабочего тела выполнено горючее топлива, а в другом или в других из устройств 2, 3, 4 приведения во вращение маховика в маховике в качестве рабочего тела выполнен окислитель топлива.

Окислитель топлива лучше располагать в маховике верхнего устройства 2 приведения во вращение маховика, а горючее топлива лучше располагать в маховике нижнего устройства 4 приведения во вращение маховика и в маховике верхнего устройства 3 приведения во вращение маховика.

Снизу от устройств 2, 3, 4 приведения во вращение маховика выполнено сопло 22.

Снизу маховика выполнен двойной криостат 23, который состоит из двух частей. Внутренняя часть содержит криостат с жидким гелием, помещенный во внешнюю часть, содержащую криостат с жидким азотом. Внутри криостата 23 выполнена система 24 изменения положения элементов системы 25 структур со сверхпроводящими слоями, разделенными диэлектриком с высоким удельным электрическим сопротивлением.

При этом система 24 изменения положения элементов системы 25 структур со сверхпроводящими слоями, разделенными диэлектриком с высоким удельным электрическим сопротивлением, выполнена с возможностью управляться дистанционно, например, с помощью радио, и электрически запитываться либо аккумулятором, соединенным с ней, либо генератором, соединенным с ней и вырабатывающим электроэнергию при вращении маховика.

При этом система 24 изменения положения элементов системы 25 структур со сверхпроводящими слоями, разделенными диэлектриком с высоким удельным электрическим сопротивлением, выполнена с возможностью располагать элементы системы 25 структур со сверхпроводящими слоями, разделенных диэлектриком с высоким удельным электрическим сопротивлением, так, что сверхпроводящие слои в одном положении соединяются в кольца, расположенные снизу маховика, а в другом положении элементы разъединяются и кольца не образуются.

При этом диск или кольцо содержит структуру, содержащую 50 слоев сверхпроводника, разделенных диэлектриком с высоким удельным электрическим сопротивлением (электрическим изолятором), или более 50 слоев сверхпроводника, разделенных диэлектриком с высоким удельным электрическим сопротивлением.

Такая система 25 структур со сверхпроводящими слоями может быть взята как элемент из электромагнитного двигателя Богданова для создания тяги на новых физических принципах [Электромагнитный двигатель Богданова для создания тяги на новых физических принципах. Патент №2200875. Заявка №2000112072. Приоритет 17.05.2000], который содержит либо диск, либо кольцо и систему вращения диска или кольца, выполненную с возможностью вращения диска или кольца, при этом кольцо или диск выполнены внутри криостата, причем криостат выполнен с возможностью вращаться вместе с кольцом.

Например, с возможностью складывать элементы системы - структуры в виде гармошки или устанавливать их в виде стопки один над другим.

Вокруг системы 1 с движителем первого типа двигателя выполнены верхние системы 26, 27 с движителем второго типа и нижние системы 28, 29 с движителем второго типа.

В этих системах может быть предусмотрена возможность создавать вакуум и поддерживать вакуум на Земле с возможностью создания ими тяги только в космическом безвоздушном пространстве.

В каждой системе с движителем второго типа выполнено устройство 30 приведения во вращение маховика, вокруг которого выполнена спираль 31 с желобом на внутренней поверхности, обращенной к оси вращения. (Вместо спирали может быть выполнено кольцо с аналогичным желобом.) На выходе из спирали выполнено отверстие, выполненное с возможностью выхода через него рабочего тела.

В одних системах с движителем второго типа предусмотрено вращать маховики в одну сторону, а в других - в противоположную сторону, и в этих же направлениях закручены их спирали.

В маховиках верхних систем 26, 27 с движителем второго типа и нижних систем 28, 29 с движителем второго типа выполнен модулятор 32 с возможностью открывать доступ рабочего тела в клапан в строго рассчитанные промежутки времени, когда вылетающее из клапана ускоренное рабочее тело по предварительному расчету будет направлено строго в направлении на отверстие спирали. Модулятор 32 содержит диск с прорезью, соединенный с системой вращения диска, выполненной с возможностью вращать диск таким образом, чтобы прорезь оказывалась напротив клапана в предварительно рассчитанные моменты времени, когда клапан находится напротив отверстия спирали.

В качестве рабочего тела может быть использована любая жидкость, например вода, или шарики, например дробь или картечь.

Верхние системы 26, 27 с движителем второго типа и нижние системы 28, 29 с движителем второго типа соединены с поворотными устройствами 33, 34, 35, выполненными с возможностью разворачивать системы с движителем второго типа относительно друг друга для создания нужного направления вектора тяги.

В зависимости от скорости истечения ускоренного рабочего тела возможны различные варианты исполнения верхних систем 26, 27 с движителем второго типа и нижних систем 28, 29 с движителем второго типа.

Варианты могут успешно быть выполнены в одном двигателе.

Для работы при относительно небольшой скорости истечения ускоренного рабочего тела выполнен следующий вариант их исполнения.

На выходе из спирали 31 выполнены рули 36, 37, выполненные с возможностью попеременного выдвижения и установки под углом на пути вылета из отверстия ускоренного вылетающего рабочего тела.

Рули и спирали могут быть выполнены с возможностью подачи на их рабочие поверхности системой охлаждения рулей и спиралей охлаждающей жидкости, например, через каналы охлаждения и через поры с возможностью создания на их поверхности защитной пленки. В качестве охлаждающей жидкости могут использоват