Медь содержащие цеолитные катализаторы структуры сна

Иллюстрации

Показать все

Настоящее изобретение относится к катализаторам, имеющим кристаллическую структуру типа СНА, способам их изготовления и использования их в системе обработки отработавших газов и восстановления оксидов азота. Описан катализатор, включающий цеолит, имеющий структуру типа СНА и мольное соотношение диоксида кремния к оксиду алюминия более чем 15 и атомное соотношение меди к алюминию, превышающее 0,25, и способ его получения, где ионно-обменная медь обменена с использованием ацетата меди. Описан катализатор, включающий сотовый носитель, на котором отложен описанный выше катализатор и содержащий количество свободной меди, превышающее ионно-обменную медь. Описаны система обработки отработавших газов и способ восстановления оксидов азота. Технический эффект - удаление оксидов азота из газовой среды в широком температурном диапазоне и гидротермическая стойкость катализаторов при высоких температурах реакции. 5 н. и 29 з.п. ф-лы, 6 табл., 22 пр., 12 ил.

Реферат

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ

[0001] Эта заявка является выделенной заявкой из заявки на получение патента США №2/038,423, поданной 27 февраля 2008 года, которая в соответствии с 35 U.S.C. § 119(е) имеет право на приоритет предыдущей заявки на получение патента США №60/891,835, поданной 27 февраля 2007 года, содержание каждой из которых при этом включено путем ссылки в целом.

ОБЛАСТЬ ТЕХНИКИ

[0002] Варианты осуществления изобретения относятся к цеолитам, которые имеют кристаллическую структуру типа СНА, способам их изготовления, и катализаторам, которые включают в себя такие цеолиты. Более подробно, варианты осуществления изобретения касаются цеолитных катализаторов структуры СНА с содержанием меди и способов их изготовления и использования в системах обработки отработанного газа.

УРОВЕНЬ ТЕХНИКИ

[0003] Цеолитами является алюмокремниевые кристаллические материалы, которые имеют преимущественно однородные поры, размеры которых, в зависимости от типа цеолита и типа и количества катионов, включенных в решетку цеолита, обычно находятся в пределах приблизительно от 3 до 10 ангстрем в диаметре. Как искусственные, так и природные цеолиты и их использование в промотировании определенных реакций, включая селективное восстановление оксидов азота с помощью аммиака в присутствии кислорода, являются хорошо известными из уровня техники.

[0004] Известны металлсодержащие цеолитные катализаторы, которые включают, среди прочих, железосодержащие и медьсодержащие цеолитные катализаторы, предназначенные для селективного каталитического восстановления оксидов азота аммиаком. Цеолит, который содержит бета-железо, был более эффективным катализатором для селективного восстановления оксидов азота аммиаком. К сожалению, было обнаружено, что под воздействием жестких гидротермических условий, таких как восстановление оксидов азота отработанного газа при температуре, которая превышает 500°С, активность многих металлосодержащих цеолитов начинает уменьшаться. Допускают, что это уменьшение активности происходит вследствие дестабилизации цеолита, такой как деалюминизация, и, как следствие, снижение металлосодержащих каталитических участков внутри цеолита. Для сохранения полной активности восстановления оксидов азота, необходимо обеспечить повышенный уровень железосодержащего цеолитного катализатора. Так как уровень цеолитного катализатора повышается ради обеспечения соответствующего удаления оксидов азота, существует очевидное снижение стоимостной эффективности способа удаления оксидов азота, так как стоимость катализатора возрастает.

[0005] Желательно изготовить материалы, которые обеспечат низкотемпературную активность SCR (селективного каталитического восстановления) и/или улучшат гидротермическую стойкость существующих цеолитов, например материалы катализатора, которые являются стойкими при температуре выше, по крайней мере, приблизительно 650°С и выше.

СУТЬ ИЗОБРЕТЕНИЯ

[0006] Характеристики изобретения направлены на цеолиты, которые имеют кристаллическую структуру типа СНА (как определено Международной Ассоциацией Цеолитов), катализаторы, которые включают в себя такие цеолиты, и системы обработки отработанных газов, которые включают такие катализаторы. Катализатор может быть частью системы обработки отработанного газа, который используется для обработки отработанных газовых потоков, особенно тех, которые выделяются из бензиновых или дизельных двигателей.

[0007] Одно из осуществлений этого изобретения относится к катализаторам структуры СНА с содержанием меди и их применению в системах отработанного газа, таких, которые предназначены восстанавливать оксиды азота. В определенных вариантах осуществления изобретения представлены новые шабазитные катализаторы с содержанием меди, которые демонстрируют улучшение селективного каталитического восстановления оксидов азота аммиаком. Шабазитные катализаторы с содержанием меди, изготовленные в соответствии с одним или более вариантами осуществления этого изобретения, обеспечивают каталитический материал, который демонстрирует отличную гидротермическую стойкость и высокую каталитическую активность по отношению к широкому диапазону температур. По сравнению с другими цеолитными катализаторами, которые применяются в этой области, такими как цеолиты с содержанием бета-железа, материалы катализатора структуры СНА с содержанием меди, в соответствии с вариантами осуществления этого изобретения, обеспечивают лучшую низко температурную активность и гидротермическую стойкость.

[0008] Один вариант осуществления изобретения относится к катализаторам, которые включают в себя цеолит, имеющий кристаллическую структуру типа СНА и мольное соотношение диоксида кремния к оксиду алюминия более приблизительно 15 и атомное соотношение меди к алюминию более приблизительно 0,25. В отдельном варианте осуществления изобретения мольное соотношение диоксида кремния к оксиду алюминия составляет от приблизительно 15 до приблизительно 256 и атомное соотношение меди к алюминию составляет от приблизительно 0,25 до приблизительно 0,50. В более особом варианте осуществления изобретения мольное соотношение диоксида кремния к оксиду алюминия составляет от приблизительно 25 до приблизительно 40. Еще в более особом варианте осуществления изобретения, мольное соотношение диоксида кремния к оксиду алюминия составляет приблизительно 30. В одном отдельном варианте осуществления изобретения атомное соотношение меди к алюминию составляет от приблизительно 0,30 до приблизительно 0,50. В отдельном варианте осуществления изобретения атомное соотношение меди к алюминию составляет приблизительно 0,40. В отдельном варианте осуществления изобретения мольное соотношение диоксида кремния к оксиду алюминия составляет от приблизительно 25 до приблизительно 40 и атомное соотношение меди к алюминию составляет от приблизительно 0,30 до приблизительно 0,50. В другом отдельном варианте осуществления изобретения соотношение диоксида кремния к оксиду алюминия составляет приблизительно 30 и атомное соотношение меди к алюминию составляет приблизительно 0,40.

[0009] В отдельном варианте осуществления изобретения катализатор содержит ионно-обменную медь и количество необменной меди, достаточное для поддержания осуществления катализатором преобразования оксидов азота в отработанном газовом потоке, который содержит оксиды азота, после гидротермического старения катализатора. В одном варианте осуществления изобретения, преобразование катализатором оксидов азота при температуре приблизительно 200°С после старения, составляет, по меньшей мере, 90% осуществления катализатором преобразования оксидов азота при температуре приблизительно 200°С до его старения. В отдельном варианте осуществления изобретения катализатор содержит, по крайней мере, приблизительно 2,00 массового процента оксида меди.

[0010] По крайней мере, в одном варианте осуществления изобретения катализатор откладывается на сотовом носителе. В одном или более вариантах осуществления изобретения сотовый носитель включает в себя носитель с прохождением потока вдоль стенок. В других вариантах осуществления изобретения сотовый носитель включает в себя сквозной носитель. В определенных вариантах осуществления изобретения, по крайней мере, часть сквозного носителя покрыта CuCHA (медьсодержащим цеолитом структуры СНА), способным восстанавливать оксиды азота, содержащиеся в потоке газа, который проходит через носитель. В отдельном варианте осуществления изобретения, по крайней мере, часть сквозного носителя покрыта Pt и CuCHA, способными окислять аммиак в потоке отработанных газов.

[0011] В вариантах осуществления изобретения, которые используют носитель с прохождением потока вдоль стенок, по крайней мере, часть носителя с прохождением потока вдоль стенок покрыта CuCHA, способным восстанавливать оксиды азота, содержащиеся в потоке газа, который проходит через носитель. В других вариантах осуществления изобретения, по крайней мере, часть носителя с прохождением потока вдоль стенок покрыта Pt и CuCHA, способными окислять аммиак в потоке отработанных газов.

[0012] В отдельном варианте осуществления изобретения катализаторный продукт включает в себя сотовый носитель, содержащий цеолит с кристаллической структурой типа СНА, отложенный на носителе, и цеолит, который имеет мольное соотношение диоксида кремния к оксиду алюминия более приблизительно 15 и атомное соотношение меди к алюминию более приблизительно 0,25 и содержит количество свободной меди, которое превышает ионно-обменную медь. В одном варианте осуществления изобретения свободная медь присутствует в количестве, достаточном предотвратить гидротермическую деградацию катализатора при преобразовании оксида азота. В одном или более вариантах осуществления изобретения свободная медь предотвращает гидротермическую деградацию катализатора при преобразовании оксида азота при гидротермическом старении. Катализатор может дополнительно включать в себя связующее вещество. В отдельных вариантах осуществления изобретения ионно-обменная медь обменивается с использованием ацетата меди.

[0013] Другие аспекты изобретения относятся к системам обработки отработанного газа, которые включают катализаторы видов, описанных выше. Другие аспекты относятся к способам восстановления оксидов азота, которые содержатся в потоке газа в присутствии кислорода там, где указанные способы включают в себя контактирование потока газа с катализатором, описанным выше.

[0014] Другие аспекты относятся к системе обработки отработанного газа, которая включает в себя поток отработанных газов, который содержит оксиды азота и катализатор, описанный выше, эффективный для селективного каталитического восстановления, по крайней мере, одного компонента оксидов азота в потоке отработанных газов. Другие аспекты относятся к системе обработки отработанного газа, который включает в себя поток отработанных газов, который содержит аммиак и катализатор, который описан выше, эффективный для удаления, по крайней мере, части аммиака в потоке отработанных газов.

КРАТКИЕ ОБЪЯСНЕНИЯ ФИГУР

[0015] Фиг.1 является графиком, который изображает эффективность удаления оксидов азота (%), затрат аммиака (%) и образование N2O (млн.ч.) катализатором CuCHA как функции температур реакции для CuCHA, изготовленного в соответствии с способами Примера 1.

[0016] Фиг.1А является графиком, который изображает эффективность удаления оксидов азота (%), затрат аммиака (%) и образование N2O (млн.ч.) катализатором CuCHA как функции температур реакции для CuCHA, изготовленного в соответствии с способами Примеров 1 и 1А.

[0017] Фиг.2 является графиком, который изображает эффективность удаления оксидов азота (%), затрат аммиака (%) и образование N2O (млн.ч.) катализатором CuCHA как функции температур реакции, для CuCHA, изготовленного в соответствии с способами Примера 2.

[0018] Фиг.3 является графиком, который изображает эффективность удаления оксидов азота (%), затрат аммиака (%) и образование N2O (млн.ч.) катализатором CuCHA как функции температур реакции для CuCHA, изготовленного в соответствии с способами Примера 3.

[0019] Фиг.4 является графиком, который изображает эффективность удаления оксидов азота (%), затрат аммиака (%) и образование N2O (млн.ч.) катализатором CuCHA как функции температур реакции для CuCHA, изготовленного в соответствии с способами Примера 4.

[0020] Фиг.5 является графиком, который изображает действие СО, пропилена, n-октана и воды на активность CuCHA в SCR при разных температурах.

[0021] Фиг.5А является графиком, который показывает количество HCs (углеводородов), накопленных, выделенных, отложенных в качестве нагара и сгоревшего нагара для образцов, испытанных в соответствии с Примером 12А.

[0022] Фиг.5В является гистограммою, которая показывает поведение углеводорода под воздействием CuCHA, по сравнению с цеолитами, содержащими Cu и Fe-beta в соответствии с Примером 12А.

[0023] Фиг.6 является графиком, который изображает выделение NH3, оксидов азота (=NO+NO2), N2O, и N2, приведенных как млн.ч. относительно атома азота, с выхода катализатора АМОХ (катализатора окисления аммиака), изготовленного и состаренного в соответствии с способом Примеров 13 и 14.

[0024] Фиг.7 является графиком, который изображает эффективность удаления оксидов азота (%), затрат аммиака (%) и образование N2O (млн.ч.) катализатором CuCHA как функции температур реакции, для CuCHA, изготовленного в соответствии с способами Примера 16.

[0025] Фиг.8 является графиком, который изображает эффективность удаления оксидов азота (%), затрат аммиака (%) и образование N2O (млн.ч.) катализатором CuCHA как функции температур реакции, для CuCHA, изготовленного в соответствии с способами Примера 17.

[0026] Фиг.9 является графиком, который изображает эффективность удаления оксидов азота (%), затрат аммиака (%) и образование N2O (млн.ч.) катализатором CuCHA как функции температур реакции для CuCHA, изготовленного в соответствии с способами Примера 18.

[0027] Фиг.10А, 10В, и 10С являются схематическими изображениями трех типичных вариантов осуществления изобретения для системы обработки выхлопных газов.

[0028] Фиг.11 является UV/VIS (ультрафиолетовой и видимой областями спектра) Примера 22 и 22А; и

[0029] Фиг.12 является спектрами ЯМР (ядерного магнитного резонанса) 27Al при вращении образца под «магическим» углом Примеров 22 и 22А, по сравнению с образцами СНА и состаренного СНА.

ДЕТАЛЬНОЕ ОПИСАНИЕ

[0030] Перед тем как описывать каждый типичный вариант осуществления изобретения, необходимо иметь в виду, что изобретение не является ограниченным относительно деталей конструкции или этапов способа, изложенных в следующем описании. Изобретение может быть осуществлено по другим вариантам и практически осуществленным или выполненным разными способами.

[0031] В одном варианте осуществления изобретения представлены цеолиты, которые имеют кристаллическую структуру СНА, такие как шабазит. В одном или более вариантах осуществления изобретение представлено цеолитом, который имеет кристаллическую структуру СНА и мольное соотношение диоксида кремния к оксиду алюминия более приблизительно 15 и атомное соотношение меди к алюминию более приблизительно 0,25. В отдельных вариантах мольное соотношение диоксида кремния к оксиду алюминия составляет приблизительно 30 и атомное соотношение меди к алюминию составляет приблизительно 0,40. Другие цеолиты, которые имеют структуру СНА, включают, но не ограничиваются, такие виды: SSZ-13, LZ-218, Linde D, Linde R, Phi, ZK-14 и ZYT-6.

[0032] Синтез цеолитов, которые имеют структуру СНА, может быть проведен в соответствии с разными способами, известными из уровня техники. Например, в типичном синтезе SSZ-13 исходный материал диоксида кремния, исходный материал оксида алюминия и органическое направляющее вещество смешиваются при водно-щелочных условиях. Типичный исходный материал диоксида кремния включает разные виды коллоидного диоксида кремния, осажденного диоксида кремния и коллоидного кремния, равно как алкооксиды кремния. Типичный исходный материал оксида алюминия включает бомиты, псевдобомиты, гидрооксиды алюминия, алюминиевые соли, сульфат алюминия и алкооксиды алюминия. К реакционной смеси по обыкновению добавляется гидрооксид натрия, но не обязательно. Типичным направляющим веществом для этого синтеза является гидроксид адамантилтриментиламоний, также другие амины и/или четвертичные соли аммония могут заменить или быть добавленными к последнему направляющему веществу. Реакционная смесь нагревается в герметичном сосуде с помешиванием до выхода кристаллического продукта SSZ-13. Типичный диапазон температур реакции лежит в пределах 150-180°С. Типичное время реакции составляет 1-5 дней.

[0033] По завершении реакции продукт фильтруется и промывается водой. Как альтернатива, продукт может быть пропущен через центрифугу. Для обработки и отделения твердого продукта могут быть использованы органические добавки. Как необязательный этап способа изготовления продукта, может применяться спрей-сушка. Твердый продукт подвергается термической обработке в воздухе или в азоте. Как альтернатива, каждая обработка газом может быть применена в разной последовательности, или могут быть применены смеси газов. Типичные температуры прокаливания лежат в пределах 400°С-700°С.

[0034] Цеолитный катализатор CuCHA в соответствии с одним или более вариантами осуществления изобретения может быть использован в каталитических способах, которые включают окисление и/или гидротермические условия, например, при температурах, которые превышают приблизительно 600°С, например выше приблизительно 800°С, и в присутствии приблизительно 10% водяного пара. В частности, было установлено, что цеолитные катализаторы CuCHA, которые были изготовлены в соответствии с вариантами осуществления изобретения, имели повышенную гидротермическую стойкость по сравнению с цеолитами типа Cu и Cu-Beta. Цеолитные катализаторы CuCHA, изготовленные в соответствии с вариантами осуществления изобретения, дают улучшенную активность в селективном каталитическом восстановлении оксидов азота аммиаком, особенно когда действуют при высоких температурах, по крайней мере, приблизительно с 600°С, например, приблизительно 800°С и выше, и в среде высокого процента водяной пары, приблизительно 10% или больше. Цеолиту CuCHA присуща высокая активность, которая дает возможность использовать низкое количество каталитического материала, который, в свою очередь, уменьшает противодавление сотовых носителей, покрытых пористым оксидом катализатора CuCHA. В одном или более вариантах осуществления изобретения гидротермическое старение относится к воздействию на катализатор температур приблизительно 800°С в среде высокого процента водяного пара, приблизительно 10% или более, на протяжении, по крайней мере, приблизительно 5-25 часов, или в отдельных вариантах осуществления изобретения, на протяжении приблизительно 50 часов.

[0035] Варианты осуществления этого изобретения также касаются способа восстановления оксидов азота в потоке отработанных газов двигателя внутреннего сгорания, в котором используются цеолитные катализаторы CuCHA, которые имеют мольное соотношение диоксида кремния к оксиду алюминия более приблизительно 15 и атомное соотношение меди к алюминию более приблизительно 0,25. Другие варианты осуществления изобретения касаются катализаторов SCR, которые включают в себя цеолитный катализатор CuCHA, который имеет мольное соотношение диоксида кремния к оксиду алюминия более приблизительно 15 и атомное соотношение меди к алюминию, который превышает приблизительно 0,25, и системы обработки отработанного газа, которые включают цеолитные катализаторы CuCHA. Другие варианты осуществления изобретения касаются катализаторов окисления аммиака (АМОХ) и систем обработки отработанного газа, которые включают катализатор АМОХ, который включает в себя цеолитный катализатор CuCHA, который имеет мольное соотношение диоксида кремния к оксиду алюминия более приблизительно 15 и атомное соотношение меди к алюминию, которое превышает приблизительно 0,25. В соответствии с одним или более вариантами осуществления изобретения катализаторы и системы, которые используют цеолитные катализаторы CuCHA, которые имеют ионно-обменную медь и достаточный излишек свободной меди для предотвращения термической деградации катализаторов, которые действуют при высоких температурах, по крайней мере, приблизительно начиная с 600°С, например, приблизительно 800°С и выше, и в среде высокого процента водяного пара, приблизительно 10% или более.

[0036] Эксперименты показали, что улучшенные характеристики катализаторов в соответствии с вариантами осуществления изобретения связывают с насыщением Cu. В то время как Cu может быть обменена для повышения уровня Cu, связанной с центрами обмена в структуре цеолита, было установлено, что является полезным оставлять необменную Cu в форме соли, например как CuSO4 внутри цеолитного катализатора. После прокаливания соль меди разлагается на Сu, которая может быть упомянута здесь как "свободная медь" или "растворимая медь." В соответствии с одним или более вариантами осуществления изобретения эта свободная медь является одновременно активной и селективной, что приводит к образованию низкого уровня N2O, когда применяется в обработке потока газа, который включает в себя оксиды азота. Неожиданно было установлено, что эта "свободная" медь придает большей стойкости катализаторам, подверженным термическому старению при температурах выше приблизительно 800°С.

[0037] В то время как варианты осуществления изобретения не направлены на то, чтобы быть связанными отдельными правилами, допускается, что соответственно малые пустоты структуры СНА не дают возможности углеводородам большой молекулярной массы, типичным для дизельного горючего, проникать и адсорбировать внутри структуры CuCHA. В отличие от других цеолитов, таких как Beta или ZSM5, цеолитные катализаторы СНА, которые изготовлены в соответствии с вариантами осуществления изобретения имеют соответственно низкое свойство к адсорбции указанных разновидностей углеводородов большой молекулярной массы. Указанное является полезным свойством для использования катализаторов в селективном каталитическом восстановлении (SCR).

[0038] В системах, которые используют SCR после катализатора дизельного окисления (DOC), свойства катализаторов CuCHA обеспечивают один или более полезных результатов в соответствии с вариантами осуществления изобретения. Во время появления и продолжительности низкотемпературного способа лишь SCR или катализатор дизельного окисления (DOC) или DOC и каталитически активный сажевый фильтр (CSF), размещенные перед катализатором CuCHA SCR, не являются полностью активированными для окисления углеводородов. В соответствии с одним или более вариантами осуществления изобретения из-за того, что углеводороды при низкой температуре не влияют на катализатор CuCHA SCR, он остается активным на протяжении более широкого интервала низкотемпературного способа. В соответствии с одним или более вариантами осуществления изобретения низкая температура относится к температурам приблизительно 250°С и ниже.

[0039] В соответствии с одним или более вариантами осуществления изобретения катализаторы CuCHA функционируют в пределах низкотемпературного интервала. Со временем в системе обработки отработанного газа, которая имеет предыдущий катализатор DOC внизу от двигателя, за которым следуют катализатор SCR и CSF, или которая имеет предыдущий катализатор DOC, размещенный до CSF и SCR, катализатор DOC будет иметь тенденцию активировать как низкотемпературное зажигание, так и горение углеводородного горючего. В таких системах является полезным, если катализатор SCR может поддерживать свою способность функционировать при низких температурах. После того, как катализаторы окисления теряют свою способность окислять NO в NO2, является полезным подать катализатор SCR, который может влиять на NO так же эффективно, как и на NO2. Цеолитные катализаторы CuCHA, изготовленные в соответствии с вариантами осуществления изобретения, имеют способность снижать NO с помощью NH3 при низких температурах. Это свойство может быть усилено добавлениям необменной Cu к цеолитного катализатору.

[0040] В соответствии с вариантами осуществления изобретения катализатор SCR может быть в форме автономных частиц катализатора или в форме сотового монолита, сформированного из композиции катализатора SCR. Однако, в одном или более вариантах осуществления изобретения, композиция катализатора SCR откладывается в качестве покрытия из пористого оксида или в качестве композиции покрытия из пористых оксидов на керамическом или металлическом носителе, например на сотовом сквозном носителе.

[0041] В отдельном варианте осуществления изобретения относительно системы обработки отработанных газов катализатор SCR формируется из обменной меди цеолитного материала СНА, который в дополнение к ионно-обменной меди имеет свободную медь.

[0042] При отложении на монолитных сотовых носителях такие композиции катализатора SCR откладываются в концентрациях, по крайней мере, приблизительно от 0,5 грамм/куб. дюйм, например приблизительно 1,3 грамм/куб. дюйм, приблизительно 2,4 грамм/куб. дюйм или выше для гарантии достижения желательного восстановления оксидов азота и обеспечения надлежащей стойкости катализатора на протяжении продолжительного времени использования.

[0043] Термин катализатор "SCR" применяется здесь в широком значении, под которым имеется в виду селективное каталитическое восстановление, в котором каталитическая реакция восстановления оксидов азота с помощью восстановителя восстанавливает оксиды азота. "Восстановитель" и "восстанавливающий реагент" также является применимым здесь широко и имеет значение любого химического вещества или смеси, которые имеет тенденцию восстанавливать оксиды азота при повышении температуры. В отдельных вариантах осуществления изобретения восстанавливающим реагентом является аммиак, особенно предшественник аммиака, т.е. мочевина, и SCR является восстановителем азота SCR. Однако, в соответствии с более широким объемом изобретения, восстановитель может включать горючее, в частности дизельное горючее и его фракции так же как и любые углеводороды и окисленные углеводороды, на которые дается общая ссылка как на углеводородный восстановитель.

НОСИТЕЛИ

[0044] Композиции катализаторов откладываются на носитель. Носитель может быть любым из тех материалов, которые по обыкновению используются для изготовления катализаторов, и обычно включает в себя керамический или металлический сотовый носитель. Может применяться любой пригодный носитель, такой как монолитный такого вида, который имеет небольшие, параллельные газовому потоку каналы, которые распространяются из входной или выходной стороны носителя, так, что каналы являются открытыми таким образом для прохождения потока (ссылка как на сотовые сквозные носители). Каналы, которые, по сути, являются прямолинейными траекториями от входа потока к выходу потока, определяются стенками, на которые откладывается каталитический материал в качестве покрытия из пористого оксида так, что газы, которые протекают через каналы, контактируют с каталитическим материалом. Каналы потока монолитного носителя является тонкостенными каналами, которые могут быть любых пригодных форм поперечного профиля и размеров, такими как трапециевидные, прямоугольные, квадратные, синусоидальные, шестиугольные, овальные, круглые, и т.д. Такие структуры могут содержать от приблизительно 60 до приблизительно 400 или более входных пустот для газа (т.е. ячеек) на квадратный дюйм поперечного сечения.

[0045] Носитель также может быть носителем, который является фильтром с прохождением потока вдоль стенок, где каналы поочередно блокированы, что дает возможность газовому потоку проникать в каналы с одного направления (входное направление), течь по стенкам канала и выходить из каналов из другого направления (исходное направление). Композиция катализатора АМОХ и/или SCR может быть нанесена на сквозной носитель или на фильтр с прохождением потока вдоль стенок. Если используется носитель с прохождением потока вдоль стенок, то в результате система будет способной удалять твердые частицы вместе с газовыми загрязнениями. Фильтрующий носитель с прохождением потока вдоль стенок может быть изготовлен из материалов, общеизвестных из уровня техники, таких как кордиерит, титанат алюминия или карборунд. Понятно, что насыщение композиции катализатора на носителе с прохождением потока вдоль стенок будет зависеть от свойств носителя, таких как пористость и толщина стенок, и по обыкновению будет ниже, чем насыщение на сквозном носителе.

[0046] Керамический носитель может быть изготовлен из любого пригодного стойкого материала, например кордиерита, кордиерита на основе глинозема, нитрида кремния, циркониевого муллита, сподумена, алюмосиликатной магнезии, циркониевого силиката, силлиманита, силиката магния, циркона, петалита, альфа-корунда, алюмосиликата и подобных.

[0047] Носители, пригодные для катализаторов вариантов осуществления этого изобретения, также могут быть металлическими по природе и состоять из одного или более металлов или сплавов металлов. Металлические носители могут применяться в разных формах, таких как гофрированный лист или монолитная форма. Подходящие металлические основы включают жароупорные металлы и металлические сплавы, такие как титан и нержавеющая сталь, равно как и другие сплавы, в которых железо является важным или главным компонентом. Такие сплавы могут содержать один или более компонентов: никеля, хрома и/или алюминия, и общее количество этих металлов преимущественно может включать в себя, по крайней мере, 15 мас.% сплава, например, 10-25 мас.% хрома, 3-8 мас.% алюминия и до 20 мас.% никеля. Сплавы могут также содержать малое или незначительное количество одного или более других металлов, таких как магний, медь, ванадий, титан и подобных. Поверхность металлических носителей может быть окислена при высоких температурах, например при температуре 1000°С и выше, что повысит сопротивляемость сплавов коррозии формированием пласта оксида на поверхности носителя. Такое окисление, вызванное высокой температурой, может улучшить соединение жароустойчивого оксида металла с основой и каталитически поддерживать металлические компоненты на носителе.

[0048] В альтернативных вариантах осуществления изобретения один или обе композиции катализатора CuCHA могут быть отложены на проницаемом ячеисто-губчатом носителе. Такие носители хорошо известны из уровня техники, и обычно формируются из жароустойчивых керамических или металлических материалов.

ИЗГОТОВЛЕНИЕ ПОКРЫТИЯ ИЗ ПОРИСТОГО ОКСИДА

[0049] В соответствии с одним или более вариантами осуществления изобретения покрытие из пористых оксидов CuCHA могут быть изготовлены с использованием связующего вещества. В соответствии с одним или более вариантами осуществления изобретения используют связующее вещество Zr2, производное из пригодного предшественника, такого как ацетат цирконила, или любого другого пригодного предшественника циркония, такого как нитрат цирконила. В одном варианте осуществление изобретения связующее вещество ацетата цирконила обеспечивает каталитическое покрытие, которое остается однородным и неповрежденным после термического старения, например, тогда, когда катализатор подвергается воздействию высоких температур, по крайней мере, приблизительно с 600°С, например, приблизительно 800°С и выше, в среде высокопроцентного водяного пара, приблизительно 10% или выше. Сохранение покрытия из пористого оксида неповрежденным является полезным потому, что несвязанное или свободное покрытие может закупорить снизу CSF, усиливая противодавление.

[0050] В соответствии с одним или более вариантами осуществления изобретения катализаторы CuCHA могут быть применены в качестве катализаторов окисления аммиака. Такие катализаторы АМОХ являются полезными в системах обработки отработанного газа, которые включают катализатор SCR. Как обсуждалось в принадлежащем тем же владельцам патенте США №5,516,497, полный объем которого включен здесь путем ссылки, газовый поток, который содержит кислород, оксиды азота и аммиак, может последовательно проходить через первый и второй катализаторы, первый катализатор оказывает содействие восстановлению оксидов азота и второй катализатор оказывает содействие окислению или другому распаду излишек аммиака. Как описано в патенте США №5,516,497, первый катализатор может быть катализатором SCR, который включает в себя цеолит, и второй катализатор может быть катализатором АМОХ, который включает в себя цеолит.

[0051] Как известно из уровня техники, для снижения выделений оксидов азота из газохода и выхлопных газов, к газовому потоку, который содержит оксиды азота, с целью катализировать способ восстановления оксидов азота аммиаком, добавляется аммиак и тогда газовый поток контактирует с соответствующим катализатором при повышенных температурах. Такие газовые потоки, например, продукты сгорания двигателя внутреннего сгорания или турбореактивного двигателя, обычно также часто содержат значительное количество кислорода. Типичный выхлопной газ турбореактивного двигателя содержит приблизительно от 2 до 15 процентов объемов кислорода и приблизительно от 20 до 500 частиц на миллион от объема оксидов азота, последний обычно включает в себя смесь NO и NO2. Конечно, существует достаточное присутствие кислорода в газовом потоке для того, чтобы окислить остаточный аммиак, даже тогда, когда применяется излишек над стехиометрическим количеством аммиака, необходимого для снижения всех присутствующих оксидов азота. Однако, в случаях, когда используется очень большой излишек над стехиометрическим количеством аммиака, или тогда, когда в газовом потоке, который обрабатывается, кислород отсутствует или присутствует в незначительном количестве, газ, который содержит кислород, обычно воздух, может быть подан между первой катализаторной зоной и второй катализаторной зоной, с целью обеспечить присутствие указанного кислорода во второй катализаторной зоне для окисления остатка или излишка аммиака.

[0052] Металлосодержащие цеолиты использовались для промотирования реакции аммиака с оксидами азота для формирования азота и H2O селективно через параллельную реакцию кислорода и аммиака. Поэтому катализованная реакция аммиака и оксидов азота иногда называется как селективное каталитическое восстановление ("SCR") оксидов азота или, как иногда указывается здесь, просто как "способ SCR". Теоретически, желательно в способе SCR обеспечивать аммиак в излишке стехиометрического количества, необходимом для полной реакции с присутствующими оксидами азота для того, чтобы, как поддержать проведение реакции до завершения, так и помочь преодолеть недостаточное смешивание аммиака с газовым потоком. Однако, на практике, существенный излишек аммиака свыше такого стехиометрического количества обычно не обеспечивается, поэтому выделение аммиака, который не вступил в реакцию, из катализатора в атмосферу само по себе будет порождать проблему загрязнения воздуха. Такое выделение аммиака, который не вступил в реакцию, может случаться даже в случаях, когда аммиак присутствует лишь в стехиометрическом или в субстехиометрическом количестве, в результате незавершенной реакции и/или плохого смешивания аммиака с газовым потоком, результатом чего является формирования внутри каналов высокой концентрации аммиака. Такое уплотнение представляет отдельный интерес, когда используемые катализаторы включают в себя монолитные основы сотового типа, которые включают в себя стойкие каркасы, которые имеют множество небольших, параллельных газовому потоку каналов, поэтому, в отличие от случая слоев катализатора в форме частиц, не существует возможности для смешивания газа между каналами.

[0053] В соответствии с вариантами осуществления этого изобретения, катализаторы CuCHA могут быть созданы для поддержания или (1) способа SCR, т.е. восстановление оксидов азота аммиаком для формирования азота и H2O, или (2) окисления аммиака кислородом для создания азота и Н2О, селективность катализатора приспособлена специально путем контролирования содержимого Cu в цеолите. Патент США №5,516,497 показывает уровень насыщения железа и меди на цеолитах, других чем CuCHA, необходимого для получения селективности для реакции SCR и селективности катализатора для окисления аммиака кислородом при затрате в способе SCR, таким образом улучшая удаление аммиака. В соответствии с вариантами осуществления изобретения насыщение медью CuCHA может быть специально приспособленным для получения селективности для реакций SCR и окисления аммиака кислородом, и получают системы обработки отработанного газа, которые применяют оба типа катализатора.

[0054] Вышеупомянутые принципы применяют путем обеспечения стадийного или двозонного катализатора, в котором первая каталитическая зона с насыщением меди на цеоли